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ABSTRACT

Due to the absence of global knowledge, elements in a self-
organizing emergent system tend to make suboptimal local
decisions that result in globally inefficient solutions. How-
ever, improving the solutions of such systems, which work
in a bottom-up style, by the principles of self-adaptive sys-
tems, which work in a top-down style, is not a straight for-
ward process. In this paper, we present challenges and con-
straints that have to be respected during this process and
describe early work on an approach, how to autonomously
adapt the local behavior of self-organizing elements by so-
called exception rules in order to improve the performance of
the global solution. In particular, we present a set of excep-
tion rules that can be employed in different situations for
the improvement of environment-mediated, self-organizing
emergent solutions to pickup and delivery problems.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems; D.2.11 [Software Archi-
tectures]: Patterns; D.2.8 [Software Engineering]: Met-
rics—performance measures
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1. INTRODUCTION

Self-organizing emergent systems [6] consist of many lo-
cally interacting elements, which can either be autonomous
software elements, such as agents [19], or autonomous real-
world elements, such as mobile devices, robots, or modern
cars [13]. In these systems, the elements (inter)act only
locally and as a result dynamically acquire or maintain a
global structure or behavior in a bottom-up style without
external control. Usually, the elements are kept relatively
simple, e.g. due to limited resources, have only partial or
even no global system knowledge, and make their decisions
solely based on local information available from their neigh-
bors in the communication topology as well as their percep-
tion of the environment. These systems thus are known for
their high flexibility, scalability, robustness, and adaptivity.

However, these systems are not known for their optimality.
In particular when solving dynamic problems, the system el-
ements tend to make 'suboptimal’ local decisions that result
in global inefficiencies. Please note that in order to make
‘optimal’ local decisions on its own, a system element would
have to be in possession of an abundance of relevant infor-
mation, including information about the environment topol-
ogy (e.g. networks, machines, customers, ...), the current
and future state of the environment, including all problem-
relevant tasks, as well as the current and future intended
behavior of other elements. This would not only force an el-
ement to quickly gather real-time information from a large
number of possibly unknown entities, but also to be able
to “look into the future”, such that a dynamically appearing
task can be assigned to the best element (with respect to the
global optimality), while other tasks are already executed.
Apparently, this would be a complex endeavor.

Thus, in order to assess the 'optimality’ of their global
solutions on their own and to change their structure or be-
havior when the assessment indicates that a better perfor-
mance is possible, the top-down principles of self-adaptive
systems [5] have to be added to self-organizing emergent
systems. However, combining the principles of self-adaptive
and self-organizing emergent systems in an appropriate sys-
tem architecture requires to take into account several princi-



pal challenges and constraints, such as considering the open-
ness and autonomy of an underlying self-organizing system,
taking into account its low observability and poor controlla-
bility, and preserving its basic self-organizing and emergent
behavior (see Subsection 2.1 on these challenges). In con-
sideration of these challenges, in [20] we have presented the
general model of the Efficiency Improvement Advisor (ETA).
The EIA is able to autonomously adapt the local behavior of
self-organizing agents in a self-adaptive manner, in order to
improve the efficiency of the global solution. Subsection 2.2
briefly reviews the functionality of the EIA approach.

Whereas the exemplary instantiation of the EIA approach
presented in [20] was able to successfully improve one par-
ticular inefficiency in a self-organizing emergent multi-agent
system (MAS) solution — grounded on infochemical-based
coordination (IBC) [10] — to Pickup and Delivery Problems
(PDPs) [17], the purpose of this paper by contrast is to
use the EIA approach for a broader set of inefficiencies as
well as a broader class of systems. Thus, in this paper we
present on the one hand a number of situations, in which
agents in environment-mediated MAS solutions [22] in gen-
eral tend to make 'suboptimal’ local decisions that result in
global inefficiencies (see Section 3). On the other hand, we
present a number of so-called exception rules, which an EIA
can employ to provide advice to misbehaving agents in these
situations and which help them to make more ’optimal’ local
decisions (see Section 4). Section 5 explains the functional-
ity of two of these exception rules in more detail, using a
case study from the domain of PDPs again, whereas Sec-
tion 6 presents conclusions and a number of open questions
to be answered by future work.

2. IMPROVING THE EFFICIENCY OF

SELF-ORGANIZING SYSTEMS

Adapting the local behavior of agents in order to improve
the efficiency of the global solution requires to integrate a
higher-level agent on top of the MAS that is equipped with
additional functionality compared to the basic agents. How-
ever, in case of self-organizing emergent MASs the appro-
priate engineering of such hierarchical system architectures
bears several challenges and constraints.

2.1 Challenges and Constraints

(1) Consider the openness and autonomy of the
underlying system: A higher level agent has to adapt the
behavior or structure of a basically open MAS autonomously
depending on current, past, and future situations, which

were potentially unexpected and unforeseeable at design time.

This process must not limit the autonomy of the underlying
system, i. e. all problem solving decisions must still be made
locally by the agents on the lower level themselves.

(2) Take into account the low observability and
poor controllability: A higher level agent will neither be
able to observe all (inter)actions of lower level agents, if ever,
nor be able to gather all relevant information at the time of
occurrence. A higher level agent furthermore will neither be
able to optimally adapt or influence the local behavior, in-
tention, or upcoming action of any lower level agent yielding
immediate effects, nor can guarantee that communication is
flawless and that every agent ’hears about’ its adaptation.

(3) Preserve the basic self-organizing and emer-
gent behavior: A higher level agent may neither limit the
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basic system’s self-organizing and emergent problem-solving
behavior, nor limit its scalability, robustness, flexibility, or
adaptivity. This implicates that the higher level agent may
not act as a central controller and thus as a bottleneck and
single point of failure. Consequently, if this agent crashes,
the agents on the lower level still have to function properly.

2.2 Efficiency Improvement Advisor

Although there exist a couple of approaches in various
fields that — similarly to the EIA approach — aim to adapt
an underlying MAS by a higher level agent (see e. g. [4, 8, 11,
15, 18]), the higher level agent in these approaches very often
either takes over central control in predefined situations, as-
sumes to be able to observe and control the underlying MAS
at every point in time, does not preserve the basic beneficial
properties, or is unable to “look into the future”. In order
to review the EIA approach, first the concept of an agent
as understood in this paper is defined and some assump-
tions regarding the problems to solve are made. For a more
detailed description of the EIA approach we refer to [20].

2.2.1 Definitions and Assumptions

A very generic definition of an agent Ag is as a 4-tuple Ag
= (Sit, Act, Dat, fag), where Sit is the set of situations the
agent can face (i.e. its possible view of the environment), Act
is the set of actions Ag can perform, Dat the set of possible
values of the agent’s internal data areas and fay : Sit X
Dat — Act the agent’s decision function, describing how
Ayg selects an action based on its current situation and the
current value of its internal data areas (i. e. its perceptions of
the world and its current knowledge status). This assumes
that there is an action for every combination of activities
the agent can do. A MAS is then a group of agents A =
{Ag1, ..., Agn} that share an environment Env.

The general structure of problems that have to be solved
by a set of agents A we focus on consists of tasks out of a
set T' that are announced to A at some times within a given
time interval Time to form a run instance for the system
A. Usually, there will be a sequence of run instances that A
has to solve. For instance, a run instance could be all the
tasks A has to solve at a particular day, whereas a sequence
of run instances are the tasks to solve over several days.

Users of a self-organizing emergent system A usually as-
sociate with a solution sol also a quality of the solution
qual(sol), which naturally depends on the application do-
main the agents in A have been designed for. Apparently, A
is expected to produce a solution of optimal quality, which
under some circumstances is easy, but under many circum-
stances is not, e. g. for NP-complete problems, in particular
if a task ta can arrive at any point in time within 1Time.
Since the agents do not know at the beginning of 1"ime what
all tasks will be, it is in most cases impossible for A to solve
a whole (dynamically developing) run instance optimally.

Furthermore, we assume the following conditions to be
fulfilled: (1) Each agent Ag is able to transmit a history of
its local behavior to the advisor at least once during or after
a run instance. (2) Each agent’s decision function fas can
be extended to deal with exception rules (stored in its inter-
nal data area). (3) A sequence of run instances must have a
(sub)set of similar tasks in (nearly) each instance of the se-
quence. While the first two conditions usually are achieved
easily, the third condition seems very restrictive at a first
glance. But in everyday life, there are many problems that



fulfill this condition, e.g. transportation companies usually
have daily recurring tasks together with one-of-a~kind tasks.

2.2.2  Architectural Overview

The EIA is able to act autonomously, i. e. it improves the
efficiency of the basic MAS without any user interaction
based on a closed feedback control loop, but in contrast to
existing approaches respects all of the challenges and con-
straints mentioned in Subsection 2.1. Basically, the EIA
therefore performs six distinct functions connected by one
data model (see Figure 1):

1. Receive local agent histories: The EIA collects the
local histories of the lower level agents, i.e. mainly
the situations they have perceived, the actions they
have performed, and information on the environment,
at least once during a run instance or at its end. This is
essential, as due to the low observability of the system
the EIA usually is neither aware of the tasks that have
to be fulfilled nor the actions executed by the agents
of the basic MAS. The EIA stores the collected local
history of each agent in its data model. The interaction
only occurs when communication is possible and does
not interfere with the fulfillment of the agents’ tasks.

2. Transform local agent histories into global his-
tory: Based on the received local agent histories the
EIA then creates the global system history (and the
system environment as far as possible). This provides
the EIA with a (nearly) global view on the past se-
quence of run instances the agents had to solve.

3. Eztract recurring tasks from global history:
Based on the global system history the ETA then iden-
tifies recurring tasks patterns. Because in general tasks
may slightly change between two or more run instances,
the EIA not only identifies tasks that are identical in all
run instances but also tasks for which similar tasks ex-
ist in all or at least most of the run instances. This set
of recurring tasks apparently constitutes a core prob-
lem that appears repeatedly in the basic MAS.

4. Optimize solution of recurring tasks: The EIA
then calculates a (nearly) optimal solution for the set
of recurring tasks by means of exact optimization al-
gorithms, heuristics, or metaheuristics. An optimiza-
tion of the solution of all tasks that occur in the run
instances is not necessary, because usually not all of
these tasks will occur in future run instances again.
By contrast, it can be supposed that at least the re-
curring tasks (or similar ones) will still occur in future.

5. Derive rules from the optimal solution: From
the calculated optimal solution for the set of recurring
tasks the EIA then derives advices in the form of ex-
ception rules, which can be of different types (see also
later Section 4), for those agents that do not behave
optimally in regard of the optimal solution. Therefore,
the EIA first identifies and extracts the solution the
emergent system has generated for this set of recurring
tasks, determines differences between the emergent so-
lution and the optimal solution, and, if applicable, cre-
ates exception rules for the misbehaving agents. Usu-
ally, exception rules are individual for each agent, while
not every agent of the basic MAS has to be adapted.
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6. Send derived rules to the agents: Finally, the
EIA transfers newly created rules to the agents the
next time it can communicate with them. From the
moment the agent has stored a new rule in its rule
base, the rule will be incorporated into the agents’
decision mechanism (usually defined by simple local
rules), which provides them in specific situations with
a limited capability to “look into the future”. However,
exception rules can be ignored by the agents, and will
be ignored, when they are not useful anymore.

Because as a result all problem solving decisions are still
locally made by the agents, the latter will continue to work,
even if the EIA fails. Thus, we obtain the benefits of a cen-
tral control but avoid the problems that are usually associ-
ated with it. For a more formal definition of the advisor’s
actions as well as an instantiation of this general architecture
to the domain of PDPs, we again refer to [20].

Advisor
Extract Optimize
recurring tasks solution of
Transform from global — recurring Derive
local agent histories history tasks rules from
into global history optimal solution
Data model
(advisor states, agent knowledge,
Receive environment knowledge, rule sets, Send
local agent intermediate results, ...) derived rules
histories to agents
+ T
istori |
| histories rules ¥

Basic MAS

Figure 1: Functional architecture of an advisor

3. SOLVING PDPS BY ENVIRONMENT-
MEDIATED MULTI-AGENT SYSTEMS

Due to the high complexity and dynamism of today’s
PDPs paired with the need for more flexibility, openness,
and autonomy of solutions, in recent years self-organizing
emergent systems became a promising solution technology.
However, their poor performance in some cases is a crucial
fact that hinders their acceptance by industry.

3.1 Pickup and Delivery Problems

The PDP is an omni-present problem that is faced each
day by thousands of companies and organizations engaged
in the transportation of goods. Roughly spoken, it concerns
the service of a set of customers in a given time period by
a set of vehicles, which are located in one (or more) depots
and perform their movements by using an appropriate road
network (even though PDPs can be extended to air, rail,
water, and pipeline networks as well). A solution of a PDP
calls for the determination of a set of routes, each performed
by a single vehicle that starts and ends at its own depot,
such that all requirements of the customers are fulfilled, all
the operational constraints are satisfied, and one or more
global optimization objectives are reached. In contrast to
static PDPs [1], where all necessary information (number of



vehicles, transportation requests, ...) is available a priori,
in dynamic PDPs [2], which we are interested in, at least
some information is revealed during the period of time in
which operations take place. In a PDP with time windows
(PDPTW), additionally a time interval is associated with
each customer, in which the goods must be pickup up re-
spectively delivered. Dynamic PDPTWSs appear in various
application domains, such as courier services, manufactur-
ing control, aircraft sharing, distribution of heating oil, or
emergency vehicle dispatching.

3.2 Environment-Mediated MAS Solutions

A MAS solution to a PDP usually consists of at least
two types of agents: vehicle agents, representing trucks or
automated guided vehicles (AGVs), and station agents, rep-
resenting pickup/delivery customers. In general, there exist
a couple of decentralized coordination mechanisms to solve
PDPs by a MAS, i.e. to assign the tasks (transportation
requests) to vehicle agents, e.g. by using market-based co-
ordination such as auctions [16] or the Contract Net Protocol
[3], token-based coordination [7], immunity-based coordina~
tion [12], field-based coordination (FBC) [21], or pollination-
inspired coordination (PIC) [9]. Since environment-mediated
MAS solutions, as exemplified by the two latter coordination
mechanisms, have shown to result in manageable solutions
with very adaptable basic qualities, we focus on this class of
self-organizing emergent MASs in the following. Although
both mechanism have a couple of concepts in common, there
also exist conceptual differences.

3.2.1 Field-based Coordination

The coordination by means of computational fields is a
well-studied domain in MAS [14]. The basic idea of field-
based solutions to dynamic PDPs is to let each idle vehicle
agent follow the gradient of a field that guides it toward a
task that has to be executed. The vehicle agents continu-
ously reconsider the situation in the environment and task
assignment is delayed until the execution of the task starts,
which benefits the flexibility of the system.

Field-based task assignment (FiTA) is achieved by the in-
teraction between vehicle agents and station agents. Both
vehicle and station agents emit fields in the local environ-
ment. Station fields attract idle vehicle agents. However, to
avoid multiple vehicle agents driving toward the same sta-
tion agent, the former emit repulsive fields. Vehicle agents
combine perceived fields and follow the gradient of the com-
bined fields, that guide them toward pickup locations of re-
quests. Fields have a certain range and contain information
about the source agent. Vehicle fields have a fixed range,
while the range of station fields is variable and depends on
the actual priority of the tasks. Fields are refreshed at reg-
ular times, according to a predefined refresh rate.

When a vehicle agent perceives fields, it stores the data
contained in these fields in a field-cache, which consists of
a number of cache entries. Each cache entry contains the
identity of the perceived field, the most recent data con-
tained in that field, and a freshness, which is a measure of
how up-to-date the cached data is. By a combination of
the perceived fields, each vehicle agent calculates for each
possible direction to move a coordination-field to decide in
which direction to drive (see [21] for a detailed description of
the calculation of the coordination-field), whereby the lower
the freshness of a cache-entry, the lower the influence of the
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associated field on the coordination-field. A vehicle agent
follows the coordination-field in the direction of the smallest
value, which can be considered as following the gradient of
the coordination-field downbhill.

3.2.2  Pollination-inspired Coordination

PIC is initially inspired by the pollination of flowers by
honey bees and based on the IBC model [10]. In the same
way as {lowers emit synomones (chemical compounds) into
the air in order to attract bees for the pickup/delivery of
pollen grains, station agents emit their digital counterparts,
which contain information on the identity of the emitter,
in order to attract vehicle agents for transportation. To
avoid multiple vehicle agents driving toward the same sta-
tion agent, vehicle agents emit digital pheromones (another
chemical compound), indicating their current target, which
keeps following agents from driving to the same target. Sim-
ilarly, if the request of a station agent has been already ful-
filled by a vehicle agent, the former emits digital allomones
(another chemical compound), in order to keep further ve-
hicle agents from visiting.

Every emitted digital infochemical holds individual infor-
mation and has a concentration value associated with it,
which decreases as a function of time and distance. In other
words, an infochemical is propagated in a certain range as
long as the concentration is higher than a given threshold
and will finally evaporate, if it is not refreshed. The info-
chemicals are stored at each location within the propagation
range. A vehicle agent combines all perceived infochemicals
stored at its current location and drives in the direction with
the highest utility, which is usually the one with the high-
est synomone concentration, assumed that no allomone or
pheromone reduces the utility of following this synomone to
zero (see [9] for a detailed description of the calculation of
the utility).

Similar to FiTA, final task assignment is delayed until a
vehicle agent actually reaches a station agent and picks up
the goods. This allows vehicle agents to adapt the assign-
ment of tasks while they drive toward goods and thus to
cope with changing circumstances that arise on their own.
In contrast to FiTA, the communication between the agents
in PIC is indirect by means of the environment storing the
infochemicals, whereas in FiTA the agents themselves store
the perceived fields. Also, in FiTA the vehicle agent fol-
low the smallest value of a coordination-field, whereas in
PIC the agents follow the highest utility value. Nonetheless,
both environment-mediated coordination mechanisms suffer
from the same inefficiencies.

3.3 Inefficiencies

Based on our experiences with environment-mediated MAS
solutions based on FiTA (see [21]) respectively PIC (see [9])
to PDPs, we have extracted and analyzed several types of
situations, in which local decisions of single agents lead to
inefficiencies in the global solution. The reasons for these
suboptimal local decisions are threefold: (1) the greediness
of the agents, (2) the reactiveness of the agents, and (3)
the absence of global knowledge. Thus, most of these situa-
tions may also appear in other, not environment-mediated,
self-organizing emergent MAS solutions, in which the agents
are greedy and/or reactive, and in which the communica-
tion between the agents does not provide every agent with
global knowledge, respectively. Please note that due to the



nature of emergence the extraction of all possible situations
exhibiting inefficiencies in self-organizing emergent solutions
in general is impossible.

In order to determine the efficiency of a solution and with
it the inefficiencies, we were interested in two different qual-
ity measures: (1) total travel costs (TTC), i.e. the distance
the vehicle agents traveled in order to fulfill all transporta-
tion requests, and (2) violation of time windows, i.e. the
time elapsed after the deadline of a transportation request.

3.3.1 Requests Handled by Inappropriate Agents

Due to their greediness, vehicle agents try to serve any
request right upon the perception of the corresponding syn-
omones (respectively attracting field in FiTA), assumed that
no allomones or pheromones (respectively repelling fields in
FiTA) hinder the agents. Because the agents in particu-
lar cannot reject or defer a request, usually, the idle vehicle
agent, which is closest to a pickup request, will try to serve
it, disregarding other requests in the vicinity and without
regard of requests that might appear at the agent’s initial
location or its vicinity in the near future (see example later in
Section 5). This results in unnecessary long routes and thus
in an increase of total travel costs, as other vehicle agents
might be in a much better position to serve the request. It
also results in a violation of time windows, as another ve-
hicle agent has to approach from a location more far off to
serve the likely future request.

3.3.2  Attraction of Multiple Vehicle Agents

Due to their greediness, in many cases, two or more vehi-
cle agents may initially start to approach the same station
agent to serve a pickup request. Even though all vehicle
agents leave a pheromone trail respectively emit a repelling
field that keeps other agents from approaching to the same
target, this trail (field) is restricted to a limited area around
the emitting agent and can therefore only be perceived by
other vehicle agents that are close by. If the vehicle agents
approach from different directions to the same station agent,
the trails (fields) have obviously only a late effect, which re-
sults in unnecessary movements and consequently increases
total travel costs as well as violates time windows.

3.3.3  Overcrowding of Pathways

Due to their greediness, in small environments or environ-
ments including bottlenecks in regard of certain pathways,
the announcement of a huge amount of transportation re-
quests within a short period of time may instigate a huge
number of vehicle agents to leave the depot immediately. In
particular if the amount of requests exceeds the amount of
vehicle agents, all agents will start to follow a different syn-
omone (attracting field), because the pheromones (repelling
fields) emitted by each agent indicate different targets. Due
to the service times at pickup stations, which depend on the
load sizes of the requests, as well as the waiting times of the
following agents, congestions emerge and the vehicle agents
stand in each others way, which results in the violation of
many time windows.

3.3.4 Oscillation of Vehicle Agents

Due to their greediness, a vehicle agent may repeatedly
shuttle between the depot and pickup stations, if the trans-
portation requests appear at these stations with an adverse
interval (see example later in Section 5). In other words, the
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period of time between the occurrence of the transportation
requests is higher than the period of time the vehicle agents
require to move from a delivery station back to the depot.
This results in an increase of total travel costs and some-
times to a violation of time windows.

3.3.5 No Consideration of Stochastic/Static Requests

Due to their reactiveness, vehicle agents will only start
to move to a station agent, if the latter has emitted appro-
priate synomones (attracting field). However, in stochastic
PDPs or PDPs with a mixture of static and dynamic re-
quests, a certain amount of requests have to be taken into
account that are already known a priori. In particular for
tasks with tight time windows, this results in a violation of
the latter, because the vehicle agents first have to spend the
time for moving to a station agent demanding the service
of a stochastic/static request, which they could have saved,
if they would have started prior to the perception of the
corresponding synomones (attracting field).

3.3.6  Undetected Requests

Due to their reactiveness, vehicle agents situated at the
depot that do not perceive any appropriate synomones (at-
tracting fields), e.g. due to a too short propagation range,
will remain in the depot, even if appropriate synomones
(fields) could be found in the immediate vicinity of the de-
pot. The same holds for vehicle agents situated out of the
depot that do not perceive any appropriate synomones (at-
tracting fields), which in such cases will (after a given period
of time) return to the depot. Thus, requests at worst may re-
main undetected, or will be detected at some remote period,
which increases travel costs and violates time windows.

3.3.7 Unserved Requests

Due to their reactiveness, vehicle agents following a syn-
omone (attracting field) to a station agent in order to serve a
pickup request, may decide to follow another perceived syn-
omone (attracting field), assumed that its utility is higher
respectively computational-field value is smaller. Thus, due
to this reconsideration of the environment, the original re-
quest may remain unserved, in particular if other vehicle
agents have already stopped following the synomones (at-
tracting field) to the original request, as they have perceived
the pheromones (repelling field) of the switching agent. This
not only results in an increase of total travel costs, but also
in a violation of time windows.

4. EXCEPTION RULES

Because all identified types of inefficiencies emerge from
the local behavior of the vehicle agents, in this section we
identify and classify different exception rules by which an
EIA can adapt the local behavior of vehicle agents in order to
improve the efficiency of the global solution. Therefore, the
underlying coordination principles of the used coordination
mechanism have to be taken into account to find the best
way to formulate the exception rules.

In general, for environment-mediated MASs we distin-
guish three classes of exception rules employable by an ETA
(see Figure 2): task-triggered rules, time-triggered rules, and
neighborhood-triggered rules. As the name implies, task-
triggered rules become activated in the rule base of an agent
by the perception of a certain task, e.g. by the perception
of a certain synomone (attracting field) referring to a trans-
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Figure 2: Exception rules to adapt the local behav-
ior of agents in environment-mediated MASs

portation request. In other words, a task must be present
first in order to activate such an exception rule. By con-
trast, time-triggered rules do not require the presence of
tasks but become activated due to the passing of a certain
point in time or after a certain period of time. Apparently,
these rules require the agents to have a common notion of
time, e.g. the time measurement may start at the begin-
ning of a day or the beginning of a run instance. Finally,
neighborhood-triggered rules become activated by the behav-
ior of the other agents acting in the same environment, i. e.
by the perception of pheromones (repelling fields).

Task-triggered exception rules can be further distinguished
into the following three types:

e Ignore rules: This rule type forces an agent to ig-
nore for a given period of time a perceived infochemical
(field) that is sufficiently similar to an abstracted info-
chemical (field). Thus, the utility of following this info-
chemical is set to zero respectively the computational-
field value of this field is set to co. When the period of
time has passed, the rule is no longer applied and the
perceived infochemical (field) is evaluated as it would
normally have been. Ignore rules are very powerful
and may be used by the EIA to deter an inappropri-
ate or superfluous agent from serving a task (see 3.3.1
and 3.3.2, respectively), or to prevent the agent from
oscillating (see 3.3.4).

e Boost rules: This rule type forces an agent to boost
for a given period of time and by a given percentage
the utility of a perceived infochemical resp. the value
of a gradient field that is sufficiently similar to an ab-
stracted infochemical (field). This increases the chance
of following this infochemical (field) compared to other
ones. If the percentage is set to a value lower than
100%, the infochemical utility resp. gradient field value
will be lowered accordingly. Consequently, ignore rules
may be considered as a subclass of boost rules, in which
the utility of an infochemical is boosted by 0% respec-
tively the value of a gradient field is boosted by oo.
When the period of time has passed, the rule is no
longer applied and the perceived infochemical (field) is
evaluated as it would normally have been. Boost rules
may be used by the EIA to guide an agent to a more
optimal task in the vicinity (see 3.3.1) or to prevent
an agent from changing its mind too often (see 3.3.7).

e Wait rules: This rule type forces an agent to wait for
the perception of an infochemical (field) that is suffi-
ciently similar to an abstracted infochemical (field). In
other words, the agent ignores all infochemicals (fields)
that are not sufficiently similar to the abstracted info-
chemical (field). However, the rule does not induce the
agent to follow the infochemical (field) it has waited
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for, but only to wait upon its perception. At this time
the agent evaluates again, which infochemical (field)
to follow. In addition, a deadline has to be given, as
otherwise the agent will wait until the end of the run
instance and will remain unproductive, if the task the
abstracted infochemical (field) refers to is not part of
the run instance. Wait rules may be used by the EIA
to deter an inappropriate agent from serving a couple
of tasks (see 3.3.1) or to prevent an agent from leaving
a location, e.g. the depot, too early (see 3.3.4).

In contrast to the EIA, an agent has no notion of a task.
Thus, an abstracted infochemical (field) has to be constructed
by the EIA as an extraction from an identified task. The
similarity between a perceived infochemical (field) and an
abstracted infochemical (field) can be determined by an ap-
propriate distance or similarity function.

Time-triggered rules', as the second class of exception
rules, can be distinguished into two types:

e Forecast rules: This rule type forces an agent to
move to an abstracted location or area, as soon as a
given point in time is reached. However, the rule does
not induce the agent to follow a specific route or to
serve a specific task, which is still up to the agent’s
decision. As soon as the agent has arrived on the ab-
stracted location, it has to wait for a given period of
time. Thus, forecast rules may be used by the EIA to
send an agent into an area, where the occurrence of
a stochastic/static request is very likely at a specific
time (see 3.3.5). Without the waiting constraint, the
effect of the rule will get lost, if the dedicated request
has not appeared yet, because the agent might then
decide to serve another request instead.

e Detection rules: This rule type forces an agent to
move according to a given strategy, if the agent does
not perceive any useful infochemical (field) for a given
period of time. A strategy may either include a cou-
ple of abstracted locations the agent has to visit or
describe a certain movement pattern. Detection rules
may be used by the EIA to let the agent search for yet
undetected requests (see 3.3.6).

Finally, neighborhood-triggered rules can be distinguished
into two types as well:

e Idle rules: This rule type forces an agent to remain
idle for a given period of time, if the perceived amount
of infochemicals, e. g. pheromones, respectively the per-
ceived strength of repelling fields exceeds a given thresh-
old. Idle rules thus can be used by the EIA to prevent
an overcrowding of pathways or to limit the number of
agents currently acting in the environment, assumed
that the agent is still in the depot (see 3.3.3).

e Path rules: This rule type forces an agent to move
according to a given strategy, which may again include

!Because the basic movement capabilities of agents acting
based on PIC or FiTA essentially require the presence of in-
fochemicals (fields) stored at locations, time-triggered rules
additionally require the presence of a global environment
map stored in each agents’ data model, along with an ap-
propriate routing algorithm that has to be incorporated by
the agents. FiTA already incorporates such a map.



a couple of abstracted locations the agent has to visit
successively or describe a certain movement pattern, if
the amount of perceived infochemicals respectively a
field strength exceeds a given threshold for a given pe-
riod of time. Path rules may be used by the EIA in sim-
ilar cases as idle rules (see 3.3.3), however, these rules
are better suited for situations in which the agents are
out of the depot. Thus, instead of idling and possibly
blocking other agents, the agent may be advised to use
an alternative path in order to avoid congestions.

Although possible, a combination of different rule types
has to be used carefully. For example, advising a vehicle
agent to search for undetected requests by a detection rule
may in turn result in an attraction of multiple vehicle agents
to the same station agent (inefficiency 3.3.2). Similarly, even
though some rule types are more or less conflict free taken by
itself, e. g. ignore rules, other rule types, in particular time-
triggered rules, or a combination of different rule types may
require some kind of deliberation. On the other hand, by
a purposeful combination of different rule types the advice
for an agent can be more specific. For example, letting an
agent ignore a certain infochemical (field) and boost the util-
ity/gradient value of another one, the reaction of an agent
may be anticipated very well.

S. CONCEPTUAL EVALUATION

In [20], we have experimentally demonstrated the flexi-
bility of an EIA, as it is able to identify crafted, random,
and changing task patterns in arbitrary PDPs; in which the
tasks are handled by inappropriate agents (see 3.3.1). We
showed that the adaptation of these agents by ignore rules
yields efficiency improvements of up to 30%. In this section,
we focus on similar situations, however, in which the adap-
tation by ignore rules yields no improvements respectively
actually worsens the global solution, and thus require the
employment of other task-triggered rules. Due to the lim-
ited space we cannot describe the conceptual evaluation of
time-triggered and neighborhood-triggered rules.

For the conceptual evaluation, we take an automated trans-
portation system employing multiple AGVs for automating
logistics services in warehouses or manufacturing facilities
as a starting point. Furthermore, we assume that the EIA
has already extracted from the local agent histories a com-
mon scenario as depicted in Figure 3. The depot is rep-
resented by the black circle with /D = 0, while the black
circles with IDs 1 to 6 represent pickup/delivery stations.
Vehicle agents can move along a connection between two
locations generating travel costs of 1 for a horizontal resp.
vertical move and v/2 for a diagonal move. Furthermore,
we assume that the EIA has also identified that the vehicle
agent Agi, initially located at the depot and having a trans-
portation capacity of 10 goods, is in charge of executing the
three tasks ta; = (3,4, 10,20, 00)?, tas = (1,2,10,20,c0),
and tas = (5,6, 10,20, 00) (nearly) every run instance, while
other agents are in charge of executing other tasks not men-
tioned here. The dashed circles indicate the propagation
range of the synomones resp. the attracting fields of the three
tasks. Apparently, in terms of total travel costs, the opti-
mal execution order for Ag; would be tas, tai, tas, yielding

2This notation of a task means that 10 goods have to be
transported from station agent 3 to 4. The tasks becomes
available at time step 20 and has no deadline specified.
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TTC of 26,38. However, without any adaptation of the local
behavior, an Ag; based on FiTA or PIC first executes tas,
because the pickup station is the closest to the depot and
thus provides the highest utility resp. lowest computational-
field value (see 3.3.1), before executing tas and finally tas,
yielding TTC of 29,56 (+12,05%).
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By usmg 1gn(?r& rules in this sffnatlon the EIA cptﬂd ad—
vice Ag1 to ignore Zaj Tfora given period of tlme, which
consequently would prompt Ag; to execute tas first, as re-
quired. However, if we assume that Ag; still ignores tai,
it would execute next tas and then return to the depot or
execute tai, if the given period of time for ignoring ta: is
already over. Thus, the ignore rule would worsen the solu-
tion by at least 22,76%. By using a boost rule instead, the
EIA advices the agent to boost the utility (field value) of
taz by a given percentage, which prompts Agi to execute
tag first, ta; second, and finally tas, which represents an
improvement of 12,05% compared to the regular solution.

If the EIA in contrast identifies task patterns that do not
become available at the same time, e. g. ta1 = (3,4, 10, 20, c0),
taz = (1,2,10,50,00), and tas = (5,6, 10,80, c0), without
any adaptation Ag; will execute these tasks in the same or-
der as they appear and in the meantime will always return
to the depot (see 3.3.4), yielding TTC of 44,87. By using
a wait rule, the ETA however could advices Ag: to wait at
the depot until the perception of tas, and only then to start
executing the tasks, still with a combination of the boost
rule described above, which yields an overall improvement
of 70,09% compared to the regular solution.

This evaluation demonstrates how the local behavior of a
self-organizing agent can be adopted by exception rules, in
order to improve the global solution.

6. CONCLUSIONS AND OUTLOOK

Based on our experiences with environment-mediated MAS
solutions based on PIC and FiTA to PDPs, in this paper we
have extracted and analyzed several types of situations, in
which local decisions of single agents lead to inefficiencies in
the global solution of the system. Usually, not all of these
situations appear every time in every solution, as parameter
settings have a significant effect. However, some of these sit-
uations may appear in other self-organizing emergent MAS
solutions as well, if the used coordination mechanism em-
ploys greedy or reactive agents having no global knowledge.

We furthermore have presented an approach, how to au-



tonomously adapt the local behavior of misbehaving agents
in these situations by exception rules, in order to improve
the global solution of the self-organizing emergent system,
regarding relevant challenges and constraints that have to
be respected in this process. We have demonstrated the
potential of two of these exception rules by a conceptual
evaluation. Because in PIC-based and FiTA-based solutions
the way the agents react to their environment is based on
the perception and evaluation of infochemicals resp. gradi-
ent fields, task-triggered exception rules that influence the
evaluation process prove to be a very good starting point
for the adaptation of environment-mediated MAS solutions.
However, in particular in regard of time windows, we expect
time-triggered rules to achieve high improvements as well.
Our next steps consist of building a joint simulation tool,
in order to evaluate the adaptation by exception rules for
various other coordination mechanisms apart from PIC and
FiTA as well as other application domains apart from PDPs.
In particular for resource (such as energy, water, or gas)
distributions networks we expect the application of the EIA
approach to be very promising. Furthermore, the evaluation
showed that due to the diversity of exception rules, an EIA
has to be capable of simulating the effects of an exception
rule (set) first, to identify the most appropriate rule (set)
to apply in a specific situation, before sending the rule (set)
to the basic agents. However, due to the characteristics of
emergent systems a single simulation might be inadequate,
which might require several simulations in a restricted time.
Although the EIA represents a promising approach to
combine the principles of self-organizing and self-adaptive
systems, some essential questions for future research remain:
What issues arise due to the fact that local autonomy of
agents is in part overruled by exception rules? How to guar-
antee that the adaptation of the local behavior is not coun-
terproductive and possibly worsens the global solution in
awkward situations? What about graceful degradation, if
one or more adapted agents fail? Will scalability in terms
of millions of agents be an issue for real-world application
domains, or can we assume to split such big problems into
several subproblems only requiring some hundreds of agents
to participate at most? Assumed that an optimal solution
to a problem can be calculated, how close can we get to this
solution by an adapted self-organizing emergent system?
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