
Automatically Generating Adaptive Logic to Balance
Non-functional Tradeoffs During Reconfiguration

Andres J. Ramirez, Betty H.C. Cheng, Philip K. McKinley, and Benjamin E. Beckmann
Michigan State University

Department of Computer Science and Engineering
3115 Engineering Building

East Lansing, MI 48823
{ramir105, chengb, mckinley, beckma24}@cse.msu.edu

ABSTRACT
Increasingly, high-assurance software systems apply self-
reconfiguration in order to satisfy changing functional and
non-functional requirements. Most self-reconfiguration ap-
proaches identify a target system configuration to provide
the desired system behavior, then apply a series of recon-
figuration instructions to reach the desired target configura-
tion. Collectively, these reconfiguration instructions define
an adaptation path. Although multiple satisfying adapta-
tion paths may exist, most self-reconfiguration approaches
select adaptation paths based on a single criterion, such as
minimizing reconfiguration cost. However, different adapta-
tion paths may represent tradeoffs between reconfiguration
costs and other criteria, such as performance and reliabil-
ity. This paper introduces an evolutionary computation-
based approach to automatically evolve adaptation paths
that safely transition an executing system from its current
configuration to its desired target configuration, while bal-
ancing tradeoffs between functional and non-functional re-
quirements. The proposed approach can be applied both at
design time to generate suites of adaptation paths, as well
as at run time to evolve safe adaptation paths to handle
changing system and environmental conditions. We demon-
strate the effectiveness of this approach by applying it to the
dynamic reconfiguration of a collection of remote data mir-
rors, with the goal of minimizing reconfiguration costs while
maximizing reconfiguration performance and reliability.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence,
Problem Solving, Control Methods, and Search

General Terms
Experimentation

Keywords
Autonomic computing, evolutionary algorithm, genetic pro-
graming, intelligent control, self-reconfiguration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’10, June 7–11, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0074-2/10/06 ...$5.00.

1. INTRODUCTION
Increasingly, high-assurance software systems reconfig-

ure themselves dynamically to satisfy functional and non-
functional requirements as system and environmental con-
ditions change [15]. A dynamically adaptive system detects
conditions warranting reconfiguration, determines which
target system configuration will provide the desired system
behavior, and then selects and applies an adaptation path to
reach the desired target configuration. An adaptation path
comprises a series of reconfiguration steps. To prevent loss of
state or introduction of erroneous results during a reconfig-
uration, a safe adaptation path preserves dependency rela-
tionships and ensures component communications are not
interrupted [13, 14, 24]. Although multiple safe adapta-
tion paths may exist for a given situation, the identifica-
tion and selection process is non-trivial, as different solu-
tions may represent tradeoffs between reconfiguration costs,
performance, and reliability. This paper introduces an evo-
lutionary computation-based approach that automatically
generates adaptation paths to safely transition an execut-
ing system to its desired target configuration, while balanc-
ing tradeoffs between functional and non-functional require-
ments.

Most traditional self-adaptive systems apply variants of
rule-based [3, 9, 24] and utility-based [2, 16, 22] tech-
niques to select applicable reconfiguration plans at run
time. These reconfiguration plans encode sequences of re-
configuration instructions that define an adaptation path.
Kramer and Magee [13] introduced an approach for dy-
namically reconfiguring distributed systems while preserv-
ing system consistency. Zhang et al. [24] extended Kramer
and Magee’s approach by generating sets of safe adaptation
paths and then selecting an adaptation path that minimized
system disruption during reconfiguration. Viable adaptation
paths, however, may represent complex tradeoffs between
reconfiguration costs, performance, and reliability. Previ-
ously, Ramirez et al. [19] introduced Plato, an evolutionary
computation-based approach for generating target system
reconfigurations at run time. Plato, however, did not spec-
ify the sequence of reconfiguration instructions required to
safely transition an executing system to a new target con-
figuration.

This paper introduces Hermes, an evolutionary
computation-based approach for automatically gener-
ating adaptation paths that safely transition an executing
system from its current configuration to its desired target
configuration. Hermes harnesses the process of evolution to

efficiently explore parts of a vast solution space comprising
all possible adaptation paths. Moreover, instead of focusing
on a single criterion when generating adaptation paths,
Hermes evolves solutions that balance competing objectives
between functional and non-functional requirements, such
as minimizing reconfiguration costs while maximizing
reconfiguration performance and reliability. Additionally,
Hermes can be applied at design time to generate alternative
adaptation paths, and at run time to generate safe adapta-
tion paths that handle changing system and environmental
conditions.

Hermes applies genetic programming to efficiently evolve
safe adaptation paths. In contrast to many other evo-
lutionary computation-based techniques, genetic program-
ming [12] generates executable programs that solve specific
and complex tasks, such as regression and robotic con-
trollers. As such, each program evolved by Hermes com-
prises executable reconfiguration instructions that specify
structural and behavioral changes a dynamically adaptive
system must perform to safely reach a target reconfigura-
tion. To facilitate the evolution of safe adaptation paths,
Hermes is initialized with a set of required reconfiguration in-
structions derived by performing a component-dependency
analysis [13, 24] between the current and target system con-
figurations; all adaptation paths must minimally have these
instructions. Hermes then uses evolutionary techniques to
gradually transform and improve an adaptation path by
adding, removing, replacing, and reordering reconfiguration
instructions to better balance competing objectives, while
safely reaching the desired target configuration.

To demonstrate the effectiveness of this approach and
leverage previous results on generating interesting target
configurations [19], we applied Hermes to the dynamic re-
configuration of a network of remote data mirrors [8, 11]
with the main objective of minimizing reconfiguration costs,
while maximizing reconfiguration performance and reliabil-
ity. Experimental results indicate that Hermes can signif-
icantly improve the overall quality of existing adaptation
paths in real-time. The remainder of this paper is orga-
nized as follows. Section 2 provides background and related
work on remote data mirroring, dynamic change manage-
ment control, and genetic programming. In Section 3 we
describe the design, implementation, and configuration of
Hermes. In Section 4 we present the results of applying
Hermes to an industrial-scale problem. We then analyze ex-
perimental results in Section 5. Lastly, we summarize our
findings and briefly discuss future work in Section 6.

2. BACKGROUND & RELATED WORK
This section first presents the concept of remote data mir-

roring. We then overview dynamic change management and
present related work. Lastly, we describe genetic program-
ming and explain how it automatically generates executable
programs.

2.1 Remote Data Mirroring
Remote data mirroring is a technique that stores copies

of data at physically distinct locations, thereby isolating im-
portant data from failures that may affect either the original
data or the duplicate copies at remote mirrors [8]. Remote
data mirroring is a complex and expensive task that should
be done only when the cost of losing data outweighs the
cost of protecting it [11]. Essentially, remote data mirroring

enables access to important data even if one copy is lost, cor-
rupted, or becomes unreachable. For example, in the event
of a failure, a remote data mirror may either reconstruct lost
data or failover to another remote data mirror that contains
the desired data. Remote data mirrors may either propa-
gate data synchronously, where secondary sites receive and
apply writes before the write completes at the primary, or
asynchronously, where updates accumulate at the primary
site and are periodically sent to secondary sites [11]. While
it is often desirable to keep data as consistent as possible be-
tween remote data mirrors, remote data mirroring designs
generally involve tradeoffs between performance, cost, and
potential for data loss.

2.2 Dynamic Change Management
Developers often design and implement adaptation paths

at design time to address specific reconfiguration scenarios
that may arise at run time [2, 3, 9, 23]. For example, Fig-
ure 1 illustrates an adaptation path for reconfiguring the un-
derlying topology in a network of remote data mirrors. In
this setting, adaptation paths comprise a series of reconfig-
uration instructions that modify the structure and behavior
of a system. Given a starting and a target system configura-
tion, developers can either hand code or automatically gen-
erate these adaptation paths. Several of these automated
approaches [21, 24] are based on Kramer and Magee’s dy-
namic change management approach for reconfiguring dis-
tributed computing systems while preserving system consis-
tency during the reconfiguration.

Starting

Configuration

Target

Configuration

Adaptation Path

passivate(c1) remove(c3)link(c1,c2) ...

remote data mirror communication linkLegend:

Figure 1: Reconfiguring a network of remote data
mirrors.

In Kramer and Magee’s dynamic change management
model [13], components reach active, passive, and quiescent
operational states in bounded time. Active components may
initiate, accept, and service requests. For instance, an ac-
tive remote data mirror may send requested data to other
remote data mirrors while also diffusing new data to be repli-
cated across the network. In contrast, passive components
may accept and service requests, but may not initiate new
requests nor be currently engaged in a transaction they ini-
tiated. A passive remote data mirror, for example, may send
requested data to other remote data mirrors, but may not
diffuse new data across the network. Quiescent components,
on the other hand, are neither engaged in a transaction nor
will they receive or initiate new requests. Thus, a quies-
cent remote data mirror will neither diffuse data across the
network nor receive data requests from other remote data
mirrors. To reach a quiescent state, however, all neighbor-
ing components must first reach a passive state that prevents
components from receiving or initializing requests during re-
configuration.

Kramer and Magee’s quiescence requirement for safe
adaptation [13] may result in significant degradation of sys-
tem performance because components not involved in an

adaptation may need to temporarily reach passive states.
Vandewoude et al. [21] introduced the concept of tranquil-
ity as a weaker but sufficient condition for preserving sys-
tem consistency during adaptation. In contrast to quies-
cence, tranquility does not require neighboring components
to reach passive states before a component undergoes a re-
configuration. Specifically, only components involved in a
reconfiguration must reach passive states, thus providing
tranquility an advantage of being less disruptive than quies-
cence. However, Vandewoude et al. also showed that reach-
ing tranquility in a bounded time is not guaranteed. For
instance, a component undergoing adaptation may receive
requests from active neighboring components at any time.
As a result, reaching tranquility is considerably influenced
not only by the order in which requests from neighboring
components arrive, but also by whether those requests over-
lap or not. Although experimental evaluations conducted
by Vandewoude et al. [21] showed this scenario to be rare,
if tranquility is not reachable in bounded time, then the
system must regress to a quiescent state.

Zhang et al. [24] further extended Kramer and Magee’s
approach by generating graphs of all possible safe adapta-
tions. Each edge in the safe adaptation graph encodes a
safe reconfiguration step. Furthermore, each reconfigura-
tion step in the graph is associated with a relative cost that
measures the approximate time required for the reconfigu-
ration step to complete. Once the safe adaptation graph is
generated, Zhang et al. apply Dijkstra’s algorithm to search
for a safe reconfiguration that minimizes system disruption.
While their approach guarantees globally optimal solutions,
the complexity of the algorithm is exponential with respect
to the number of components involved in the reconfigura-
tion. As a result, their approach may be impractical if re-
configurations involve many components.

Goldsby et al. [5, 6] applied digital evolution to evolve
suites of structural and behavioral models of adaptive sys-
tems (i.e., target configurations) that not only satisfy func-
tional requirements, but also provide different tradeoffs be-
tween non-functional properties. In addition, Ramirez et
al. [18, 19] introduced a real-time evolutionary computation-
based approach to explore system configurations that bal-
ance non-functional tradeoffs according to current system
and environmental conditions. Although both approaches
explore broader sets of target adaptive system configura-
tions, neither approach produces the sequence of reconfigu-
ration instructions required to safely transition the executing
system from one target configuration to another.

2.3 Genetic Programming
Genetic programming is a search-based technique that

generates executable programs to solve specific tasks [12].
In a genetic program, an individual encodes a candidate ex-
ecutable program in a genome comprising sets of instructions
and terminals that can be executed directly on a computer
or on a virtual environment; typically, a tree-based genome
representation is used to facilitate a hierarchical evaluation
of the program. In contrast, Hermes uses an interpreted lin-
ear genome representation (see Figure 2). Specifically, a
genome in Hermes encodes an adaptation path comprising a
vector of reconfiguration instructions. Each reconfiguration
instruction can be mapped to low-level implementation code
responsible for enacting structural and behavioral changes
throughout the adaptive system. In addition, the position

of an instruction in a linear representation explicitly deter-
mines the order in which it is executed, which may or may
not be the case with tree-based program representations [1].
This explicit ordering of instructions is critical when evalu-
ating the safety of an adaptation path.

blockOutgoing();

while(!done) {

 process();

 ...

}

notifyState(p);

linear genome
encoding

remove

c2

link

c3,c4

unlink

c1,c5

passive

c8 executable
reconfiguration

instruction

Figure 2: Linear-based program encoding.

Genetic programs examine multiple individuals in paral-
lel, storing them in a population. Fitness functions are used
to map the quality of an individual’s encoded solution to a
scalar value. A genetic program uses this fitness value to
compare the relative qualities of different individuals and
thus selects better solutions. To generate new solutions,
genetic programming applies two key operators, crossover
and mutation. The crossover operator exchanges genetic
material from two existing individuals in the population to
create two new individuals, each representing different solu-
tions. As Figure 3 illustrates, in a linear representation, two-
point crossover first randomly selects two individuals from
the population as parents, A and B. Two indices are then
randomly selected from each parent to indicate the range of
instructions that will be exchanged. These instructions are
then swapped, creating two new individuals, AB and BA.
Ideally, the crossover operator exchanges key building blocks,
or groups of instructions that have meaning in isolation, be-
tween existing individuals to generate more fit solutions as
offspring [7].

remove

c2

link

c3,c4

unlink

c1,c5

passive

c8

insert

c4

activate

c4

link

c2,c9

remove

c3

link

c2, c5

remove

c2

passive

c8

activate

c4

link

c2,c9

remove

c3

link

c3,c4

unlink

c1,c5

insert

c4

link

c2, c5

index A index Bindex A index B

Parent A
Parent B

Offspring AB Offspring BA

Figure 3: Two-point crossover in linear genetic pro-
gram.

In contrast to the crossover operator, the mutation oper-
ator explores points in the solution space that perhaps are
not currently found in the population [12]. The main ob-
jective of the mutation operator is to introduce variation
into the population by randomly inserting, removing, and
replacing instructions and terminals in randomly selected
genomes [7]. Figure 4 illustrates an individual who is se-
lected from the population and mutated. Specifically, in
Figure 4, “remove(c2)” is replaced by “insert(c4)” and “in-
sert(c3)” is inserted into the genome, thus producing A′.
Ideally, the mutation operator introduces variation into the
population that will form part of the overall solution. Ge-
netic programs typically execute until either the maximum
number of iterations or generations are exhausted, or a fit-
ness value within some specific threshold is reached.

remove

c2

link

c3,c4

unlink

c1,c5

passive

c8

Individual A

insert

c4

link

c3,c4

unlink

c1,c5

passive

c8

Individual A'

insert

c3

insertionreplacement

Mutation

Figure 4: Mutation in linear-based genetic program.

3. PROPOSED APPROACH
Hermes generates safe adaptation paths between starting

and target system configurations. Evolved solutions must
satisfy the following two constraints, while balancing mul-
tiple, potentially competing, factors affecting the system.
First, evolved adaptation paths may not reconfigure the ex-
ecuting system to configurations other than the specified
target system. Second, evolved adaptation paths may never
cause a dynamically adaptive system to reach an inconsis-
tent or erroneous state. Therefore, if an adaptive system be-
gins a reconfiguration in a consistent state, then it will also
reach the target system configuration in a consistent state.
We next describe how we applied Hermes to the dynamic
reconfiguration of a remote data mirror network with the
primary objective of minimizing reconfiguration costs while
maximizing reconfiguration performance and reliability.

The proposed approach assumes the existence of an adap-
tive infrastructure comprising elements for monitoring [4,
17], decision-making [2, 10, 18, 19], and reconfiguration [3,
20, 23, 24] to support self-adaptation with assurance at run
time. Additionally, it is assumed that the functional logic
in the dynamically adaptive system implements a dynamic
management interface that enables an adaptation driver to
query and control the operational status of components to-
wards active, passive, or quiescent states in bounded time.
With this infrastructure available, Hermes accepts monitor-
ing information, and starting and target system configura-
tions as inputs, and then produces safe adaptation paths
that balance non-functional requirements as output. As
such, developers may leverage Hermes at design time to gen-
erate suites of adaptation paths that may then be encoded
into an adaptive system. Furthermore, Hermes may also be
leveraged at run time to select and apply the best evolved
safe adaptation path based on current system conditions.

3.1 Design
The following steps describe Hermes’s design and imple-

mentation for reconfiguring networks of remote data mir-
rors. Note that Hermes may be applied to other application
domains by extending the instruction set with application-
specific reconfiguration instructions.

Instruction Set. The core instruction set that Her-
mes uses to construct safe adaptation paths is derived
from Kramer and Magee’s dynamic change management ap-
proach [13]. These instructions, comprising primitive recon-
figuration operators, are briefly described in Table 1. An
adaptation driver can issue these instructions to control the
operational status of system components and reconfigure the
application at run time. In addition, each reconfiguration
instruction in Hermes is associated with a specific cost mea-
suring the approximate amount of time required for the in-
struction to complete. For this paper, cost values reflect
approximate and relative estimates for the domain of re-
mote data mirroring. In practice, these costs may be refined

with empirical measurements gathered by the monitoring
infrastructure.

Table 1: Description of reconfiguration instructions
used by our genetic program.
Instruction Description Cost (s)

Insert Component Adds component to
the network.

10

Remove Component Removes component
from the network.

3

Link Components Establishes a commu-
nication path between
the specified compo-
nents.

3

Unlink Components Removes a communi-
cation path between
the specified compo-
nents.

2

Activate Component Sets the operational
status of a component
to active mode.

1

Passivate Component Sets the operational
status of a component
to passive mode.

5

Terminal Set. In genetic programming, a terminal set
specifies which objects are arguments of instructions. The
terminal set in Hermes comprises remote data mirrors (com-
ponents), as well as network links (connectors) that can be
established between pairs of remote data mirrors. The spe-
cific terminal set is derived at run time by analyzing struc-
tural differences between starting and target system config-
urations. Thus, for this application the terminal set only
includes remote data mirrors and network links involved in
the reconfiguration.

GP Operators. Hermes applies a two-point crossover
operator, as previously illustrated in Figure 3. In addition
to the basic insertion, removal, and replacement operators,
the mutation process in Hermes also applies a swap operator.
The swap operator randomly exchanges the locations of two
instructions in the genome and thus explores the effects of
executing reconfiguration instructions in different orders.

Selection. In evolutionary algorithms, selection is the
process by which better solutions thrive and sometimes even
dominate the population. Hermes applies tournament selec-
tion, a variation that randomly selects k individuals from
the population and then competes them against each other.
The individual with the highest fitness value survives into
the next generation where it may undergo further recombi-
nation and mutation.

Initialization. Genetic programs must be properly con-
figured for the specific task being solved. Table 2 lists several
genetic program parameters along with the specific values
used in Hermes. Although these values were effective in the
remote data mirroring case study, developers should explore
various parameters when applying Hermes to other applica-
tion domains.

In addition to the common genetic program configura-
tions, Hermes requires an additional setup step. While most
genetic programs begin execution from a “blank slate” pop-
ulation comprising random individuals, Hermes initializes
each individual’s encoded program with an initial adapta-

Table 2: Genetic program configuration.
Parameter Value

Population Size 1000
Crossover Type Two-point
Crossover Rate 20%
Mutation Rate 50%
Selection Type Tournament, k = 5
Selection Rate 30%
Max. Generations 1500

tion path comprising specific instructions required to safely
transition a system to its target configuration. These in-
structions are derived through component-dependency anal-
ysis [13, 24]. For example, if two remote data mirrors are
connected in the target configuration but not in the start-
ing configuration, then it can be deduced that somewhere
in the adaptation path, both remote data mirrors must be
linked. To preserve these required reconfiguration instruc-
tions in the population, no mutation operator in Hermes may
remove them. This additional constraint, which is not typ-
ical of genetic programming, is needed because the starting
and ending points of the evolutionary process are known;
traditional genetic programming is more open-ended, where
the objective of evolution is finding interesting endpoints.
In contrast, Hermes is looking for interesting paths to get
to known endpoints (i.e., target configuration). As a result,
Hermes may modify the initial adaptation path in any possi-
ble way as long as it safely reconfigures the adaptive system
to its target configuration.

It is important to consider the complexity of the solu-
tion space comprising all possible adaptation paths. First,
we define n to be the number of instructions required to
safely transition the system to its target configuration, as
determined by component-dependency analysis. Exactly n!
possible alternative solutions may be constructed by simply
reordering the initial genome. Given that most non-trivial
reconfigurations may comprise well over 20 instructions, the
solution space comprises over 2.43×1018 different adapta-
tion path alternatives, some of which safely transition the
system to its desired target configuration, while many others
do not. Given the vast number of combinations possible, no
current method (manual or automated, heuristic or brute-
force exhaustive) is capable of exploring all possibilities in a
reasonable amount of time.

3.2 Fitness Sub-Functions
It is often the case that multiple fitness or utility func-

tions are required to evaluate a single solution for multiple,
and often competing, objectives [2]. For example, a partic-
ular remote data mirroring design that maximizes network
performance is likely to either incur high operational costs
or provide inadequate data protection. In general, most
practical remote data mirroring solutions attempt to provide
adequate data reliability and network performance without
incurring excessive operational costs. A set of fitness sub-
functions can be used to evaluate competing objectives, each
focusing on a different concern. To this end, Hermes ap-
plies a set of fitness sub-functions derived and elaborated
from published results in remote data mirroring [8, 11] and
search-based software engineering [5, 24] domains.

Cost. The first criterion we consider in remote data mir-

roring is the cost of a reconfiguration. For this paper, we
measure reconfiguration costs as the time required to exe-
cute an adaptation path. The following fitness sub-function
measures the cost of reconfiguration:

Fcost = 100−
„

timeev − timeinit

timeinit
∗ 100

«

where timeinit and timeev measure the amount of time re-
quired for the initial and evolved adaptation paths to com-
plete, respectively. This fitness sub-function guides the se-
lection of individuals whose encoded solution reconfigures
the network of remote data mirrors in less time. While Her-
mes associates reconfiguration costs with the time required
to complete a reconfiguration, this time measurement could
also be further refined into lost profits due to system disrup-
tion.

Performance. Another important criterion in remote
data mirroring is the performance degradation caused by
a reconfiguration. For this paper, we determine the per-
formance of a reconfiguration by measuring the amount of
data produced and diffused by remote data mirrors through
the network during reconfiguration. The following two fit-
ness sub-functions measure the performance of an encoded
solution:

Fpact
= 100 ∗

„
componentsact

componentstot

«

and

Fdatasent
=

componentstotX

i=1

timeact(i) ∗ capacity(i)

where componentsact is the number of components in ac-
tive mode during reconfiguration, componentstot is the total
number of components in the system, timeact(i) measures
the time a remote data mirror i is actively diffusing data
during reconfiguration, and capacity(i) measures the data
output produced by a remote data mirror per time unit.
The first performance fitness sub-function, Fpact

, measures
the percentage of components in the system in active mode
throughout the reconfiguration. The second performance fit-
ness sub-function, Fdatasent

, measures the amount of data
diffused through the network by remote data mirrors during
reconfiguration. Together, these two fitness sub-functions
guide the genetic program towards solutions that maximize
the number of components actively diffusing data through
the network during reconfiguration.

Reliability. The third criterion we consider for remote
data mirroring is the reliability, or potential for data loss,
of a reconfiguration. For this paper, we determine the relia-
bility of a reconfiguration by measuring the amount of data
queued during reconfiguration. The following two fitness
sub-functions measure the reliability of an encoded solution:

Frpass = 100 ∗
„

componentspass

componentstot

«

and

Fdataq
=

componentstotX

i=1

timepass(i) ∗ capacity(i)

where componentspass is the number of components in pas-
sive mode during reconfiguration, componentstot and capac-
ity(i) are the same as defined above, and timepass mea-
sures the time a remote data mirror i is in passive mode

throughout the reconfiguration process. The first fitness
sub-function, Frpass , measures the percentage of passivated
remote data mirrors in the system. The second fitness sub-
function, Fdataq

, measures the amount of data produced by

remote data mirrors that is queued because the remote data
mirror was in passive mode at the time. Together, these two
fitness sub-functions guide the genetic program towards so-
lutions that create large regions of quiescence during recon-
figuration. From the perspective of data reliability, estab-
lishing large regions of quiescence throughout the system is
desirable because it implies data is better protected against
failures during reconfiguration.

In Hermes, each set of fitness sub-functions is associated
with a vector of coefficients that determines the relative pri-
ority of each design concern. By default, coefficients in this
vector are all equivalent, implying that no one competing
design objective is more significant than others. However,
system requirements and environmental conditions may im-
pose different constraints upon the type and quality of the
evolved adaptation path. For instance, if the cost of losing
data outweighs performance requirements, then the coeffi-
cient for reliability should be set to a value larger than that
of performance and cost, thus guiding the evolutionary al-
gorithms towards solutions that provide greater measures of
reliability during reconfiguration. This vector of coefficients
can also be updated at run time to address changing system
and environmental conditions. Moreover, the set of fitness
sub-functions and the vector of coefficients can be combined
into a single scalar fitness value through a linear weighted
sum, as follows:

Fitness = αcost ∗ Fcost + αperf ∗ (Fpact
+ Fdatasent

) +

αrel ∗ (Frpass + Fdataq
)− penalties

where penalties are reductions in fitness meant to punish
individuals whose encoded solution produces undesirable ef-
fects or behaviors. For instance, any evolved adaptation
path that either fails to transition the system to its desired
target configuration, or does so while violating safety con-
straints, is severely penalized. The objective of penalizing
individuals is to guide the evolutionary algorithm towards
valid and meaningful solutions by removing individuals from
the population with undesirable behaviors that do not pro-
mote safe adaptation.

4. EXPERIMENTAL RESULTS
This section presents a set of experiments conducted to

evolve safe adaptation paths that reconfigure a network of
remote data mirrors [11]. Each experiment compares the
relative fitness value of adaptation paths evolved by Her-
mes with those derived by component-dependency analy-
sis. Specifically, we compare our results with Kramer and
Magee’s dynamic change management algorithm [13]. We
selected this particular algorithm because it generates safe
adaptation paths and is scalable. While the algorithm pre-
sented by Zhang et al. [24] generates globally optimal so-
lutions that minimize system disruption, the algorithm is
not scalable for the input sizes considered in these exper-
iments. Similarly, the tranquility approach introduced by
Vandewoude et al. [21] may not be practical for this domain
as remote data mirrors frequently propagate large amounts
of data and bounded time adaptation is essential.

To compare our results, we implemented Kramer and
Magee’s dynamic change management protocol [13], which

is shown in Algorithm 1. The input for this algorithm com-
prises a set of components to be inserted (Nc) and removed
(Nr), a set of links to be created or removed (LS), and a set of
components that must be passivated (CPS). The set of com-
ponents to be passivated (CPS) comprises all components in
Nr, all components with links to any component in Nr, and
all components with a link in LS. The algorithm proceeds
by passivating all components in CPS, thereby establishing
a region of quiescence to preserve system consistency dur-
ing reconfiguration. The algorithm then removes links from
LS present in the system, followed by all components in Nr.
Next, components in Nc are inserted, followed by creating all
remaining links in LS. Finally, all inserted components, as
well as those in CPS that were not removed, are set to active
mode, thereby completing the reconfiguration process.

Algorithm 1 Reconfigure(Nc, Nr, LS, CPS)

for all i in CPS do
Passivate i

end for

for all i in LS do
if LS(i) exists then

Unlink i
LS = LS - LS(i)

end if
end for

for all i in Nr do
Remove i

end for

for all i in Nc do
Create i

end for

for all i in LS do
Link i

end for

for all i in {CPS− Nr + Nc} do
Activate i

end for

Each experiment was run on a MacBook Pro with a
2.53GHz Intel Core 2 Duo Processor and 4GB of RAM. For
each set of results presented in this section, we performed
100 trials and plot the mean along with corresponding stan-
dard error bars. Random starting and target system configu-
rations were generated for each trial. Although the following
experiments explore a wide range of possible reconfigura-
tions, including the insertion and removal of several remote
data mirrors at run time, each trial focuses mostly on recon-
figuring the network topology. This decision was based on
the observation that inserting and removing numerous re-
mote data mirrors at run time is generally impractical due
to excessive operational costs.

Finally, for the following experiments, we defined the null
hypothesis, H0, to state that adaptation paths evolved by
Hermes will show no difference in quality when compared to
adaptation paths generated through component-dependency
analysis. Furthermore, we define the alternative hypothesis,
H1, to state that Hermes will generate solutions better in

quality than those produced through component dependency-
analysis. For each experiment, the quality of two different
adaptation paths is determined by comparing the fitness val-
ues associated with each adaptation path.

4.1 Base Comparison
This experiment compares the relative quality of adap-

tation paths evolved by Hermes with those obtained from
component-dependency analysis. In this experiment we con-
sider a typical scenario where the primary objective is to
safely reconfigure the network of remote data mirrors while
minimizing reconfiguration costs and maximizing reconfigu-
ration performance and reliability, i.e., αcost = αperf = αrel
= 0.333. In addition, we explore the performance charac-
teristics of Hermes by applying our approach to networks
of varying sizes and topologies, where a larger network size
typically implies a more complex reconfiguration.

Figure 5 shows the average maximum fitness values for
adaptation paths in this experiment. In particular, adapta-
tion paths evolved by Hermes achieved greater fitness val-
ues than those produced by component-dependency anal-
ysis, with a statistical significance of p < 0.01 using a t-
test. This difference in fitness values implies that adaptation
paths generated by component-dependency analysis can be
optimized by using Hermes to provide better reconfigura-
tion performance and reliability with a minimal increase in
reconfiguration costs. Furthermore, the difference in fitness
values gradually increases as the networks and adaptation
paths grow in size and complexity (n=15 and n=25). This
observation suggests that more opportunities for balancing
competing objectives arise as the complexity of a reconfig-
uration increases. This observation also suggests that an
approach such as Hermes is capable of exploiting such op-
portunities to improve the overall quality of safe adaptation
paths.

!"# !"$# !"%#
&

#&&

$&&&

$#&&

%&&&

%#&&

'()*+,-./012+345-

6
7
8*
+'
()
*+
9
4.!
-
::

+

+

;0<=0!-!.!>-=-!?-!@A

B-1<-:

3.7!?71?+C1101

Figure 5: Comparison of adaptation path quality.

Figure 6 plots the average maximum fitness values of so-
lutions evolved by Hermes for different sized networks per
generation. This plot illustrates the rapid rate at which
Hermes builds upon and improves the quality of adaptation
paths generated by component-dependency analysis, which
are represented by the fitness value plotted at the 0 genera-
tion before Hermes modifies them (filled icon). Specifically,
Hermes achieves large boosts in fitness values within the first

600 generations (< 35 seconds), depending upon the relative
size of the network. Thereafter, Hermes continues to fine-
tune evolved adaptation paths until the maximum number
of generations are exhausted.

0 500 1000 1500

500

1000

1500

2000

2500

Generation

M
a

x
.

F
it
n

e
s
s

!"#$"%&'()*+

!"#$"%&'(),*+

!"#$"%&'()-*+

./$0/("(1!2"0"(3"(45&'()*+

./$0/("(1!2"0"(3"(45&'(),*+

./$0/("(1!2"0"(3"(45&'()-*+

617(37#3&8##/#

Figure 6: Progression of average maximum fitness
values for different network sizes.

4.2 Optimizing for performance and reconfig-
uration costs

This experiment compares the relative quality of solu-
tions evolved by Hermes with those obtained by component-
dependency analysis when the main objective is to minimize
reconfiguration costs while maximizing reconfiguration per-
formance, i.e., αcost = 0.4, αperf = 0.4, and αrel = 0.2. Such
trade-off preferences may arise in scenarios where the re-
configuration is driven by variations in system performance
rather than by failures that may threaten the functionality
of the system. For example, communication paths between
remote data mirrors may be reconfigured at run time as
environmental conditions such as throughput and loss rate
change. For all following experiments, the starting network
of remote data mirrors comprises 25 components and at least
35 communication links.

Figure 7 plots the average maximum fitness values of
adaptation paths evolved by Hermes per generation. So-
lutions evolved by Hermes achieve an approximate fitness
value of 3398. In contrast, adaptation paths generated by
component-dependency analysis achieve an approximate fit-
ness value of 1536, which is represented by the filled cir-
cle plotted at generation 0 before Hermes modifies it. In
general, Hermes evolved solutions that maximized perfor-
mance without significantly increasing reconfiguration costs
and thus improved fitness by 220%. To achieve this objec-
tive, Hermes reordered sets of reconfiguration instructions to
sequentially reconfigure small subsets of remote data mirrors
and connections at any given time, thereby enabling the ma-
jority of remote data mirrors to continue propagating data
in the meantime. On the average, Hermes increased recon-
figuration costs by approximately 12 seconds, less than a
3% increase. As such, the 220% difference in fitness values
emphasizes how reordering the initial adaptation path may
improve a reconfiguration’s performance by reducing system
disruption during reconfiguration. Lastly, as this plot illus-

trates, Hermes achieved large fitness gains within the first
500 generations (< 30 seconds), suggesting that tradeoffs
may be balanced in a reasonable amount of time within the
context of remote data mirroring.

! "!! #!!! #"!!
!

"!!

#!!!

#"!!

$!!!

$"!!

%!!!

%"!!

&!!!

&"!!

'()(*+,-.)

/
+
01
23
-,)
(
44

2

2

5(*6(427)8$"9

:.6;.)(),!<(;()=()>?27)8$"9

@,+)=+*=2A**.*

Figure 7: Progression of average fitness values when
minimizing reconfiguration costs and maximizing re-
configuration performance.

Finally, Figure 8 plots the average amount of data (in MB)
sent and queued by remote data mirrors during reconfigu-
ration. This plot is generated by analyzing evolved adapta-
tion paths to determine the time period in which a remote
data mirror is either in active or passive mode. As this plot
illustrates, Hermes gradually evolves solutions that diffuse
larger amounts of data, while queueing less data. These re-
sults confirm that adaptation paths are multi-dimensional.
Furthermore, these results also suggest the inherent trade-
off between the performance and reliability of a reconfigu-
ration. Specifically, minimizing system disruption enables
remote data mirrors to diffuse greater amounts of data, but
a single failure during reconfiguration could potentially lose
significant amounts of data.

0 500 1000 1500

1000

2000

3000

4000

5000

6000

7000

Generation

A
m

o
u

n
t

o
f

D
a

ta
 i
n

 N
e

tw
o

rk
 (

M
B

)

Data Sent

Data Queued

Standard Error

Figure 8: Performance and reliability tradeoffs in
evolved solutions.

4.3 Optimizing for Reliability
This experiment compares the relative quality of solu-

tions evolved by Hermes with those obtained by component-
dependency analysis when the main objective is to maximize
the reliability of a reconfiguration, i.e., αcost = 0.2, αperf =
0.2, and αrel = 0.6. Such trade-off preferences may arise
when the reconfiguration is driven by failures that threaten
the functionality of the system rather than by variations in
system performance. For example, the failure of either a
remote data mirror or a connection between remote data
mirrors may cause data to be permanently lost. As such,
this experiment explores scenarios where the cost of losing
data is severe.

Figure 9 plots the average maximum fitness values of
adaptation paths per generation. Solutions evolved by Her-
mes achieve an approximate fitness value of 4502, a 139% im-
provement over component-dependency analysis whose fit-
ness is represented by the filled circle plotted at generation 0,
before Hermes modifies the initial adaptation path. Hermes
achieves higher fitness values by evolving solutions different
from the initial adaptation path in two key ways. First,
Hermes adds pairs of “passivate” and “activate” instructions
not present in the initial adaptation path. Second, Hermes
reorders the sequence of reconfiguration instructions to es-
tablish large regions of quiescence throughout most of the re-
configuration. Specifically, passivate instructions are shifted
to the beginning of the adaptation path, thereby temporarily
pausing most remote data mirrors. Hermes then reconfigures
the network of remote data mirrors before finally setting
remote data mirrors back to active mode. Although this
strategy is similar to Kramer and Magee’s dynamic change
management protocol, Hermes also makes tradeoffs with fac-
tors such as performance and cost. Lastly, this plot also il-
lustrates how Hermes achieves large fitness gains within the
first 500 generations (< 30 seconds), which further reaffirm
our findings that Hermes can balance competing tradeoffs in
a reasonable amount of time within the context of remote
data mirrors.

! "!! #!!! #"!!

"!!

#!!!

#"!!

$!!!

$"!!

%!!!

%"!!

&!!!

&"!!

'()(*+,-.)

/
+
01
23
-,)
(
44

2

2

5(*6(427)8$"9

:.6;.)(),!<(;()=()>?27)8$"9

@,+)=+*=2A**.*

Figure 9: Progression of average fitness values when
maximizing reconfiguration reliability.

In contrast to the previous experiment, where minimizing
reconfiguration disruption was one of the primary concerns,
in this experiment the cost of reconfiguration increased in
order to maximize the reliability of the reconfiguration. As

Figure 10 illustrates, Hermes increased reconfiguration costs,
on the average, by approximate 33 seconds more than the
initial adaptation path, an increase of approximate 12%.
This increase in reconfiguration cost is a direct result of
the additional passivate and activate instructions inserted by
Hermes. Interestingly, these paris of additional instructions
were sometimes applied to remote data mirrors not involved
in the reconfiguration process. Were it not for these ad-
ditional instructions, these remote data mirrors would have
propagated data during the entire reconfiguration. Thus, by
passivating most remote data mirrors, Hermes provided bet-
ter data reliability at the expense of higher reconfiguration
costs.

! "!! #!!! #"!!
$"!

$%!

$&!

$'!

$(!

)!!

)#!

)$!

))!

*+,+-./01,

2
34
56
7
08
+
69
+
:
;
0-
+
<
6=
1
-6
9
+
>1
,
=04
;
-.
/01
,
6?
@+
>A

6

6

B+-8+@6?,C$"A

D18E1,+,/!F+E+,<+,>G6?,C$"A

H/.,<.-<6I--1-

Figure 10: Average time required to complete re-
configuration when maximizing reconfiguration reli-
ability.

Figure 11 plots the amount of data (in MB) sent and
queued by remote data mirrors during reconfiguration. Data
sent measures the amount of data remote data mirrors dif-
fused during reconfiguration as a result of being active. Like-
wise, data queued measures the amount of data produced
but not diffused by remote data mirrors because their op-
erational status was set to passive state. As this plot illus-
trates, Hermes gradually evolves solutions that queue larger
amounts of data than is diffused throughout the network.
Although this plot suggests greater amounts of data produc-
tion and diffusion during reconfiguration when compared to
Figure 8, this difference is a result of longer times required
for the reconfiguration to complete. The longer the recon-
figuration, the greater the amount of data produced and dif-
fused, even though fewer remote data mirrors are in active
mode. Lastly, these results also confirm the tradeoffs ob-
served in the previous experiments between the performance
and reliability of adaptation paths. Namely, maximizing re-
liability typically implies a higher level of system disruption.
While it is generally undesirable to disrupt system services
by passivating large numbers of remote data mirrors, doing
so creates a region of quiescence that better protects data
against failures during reconfiguration.

5. DISCUSSION
The experiments presented in this paper confirm that

adaptation paths are multi-dimensional and that the specific
sequence of reconfiguration instructions produce non-linear

0 500 1000 1500

1000

2000

3000

4000

5000

6000

7000

Generation

A
m

o
u

n
t

o
f

D
a

ta
 in

 N
e

tw
o

rk
 (

M
B

)

Data Sent

Data Queued

Standard Error

Figure 11: Reconfiguration and performance trade-
offs in evolved solutions.

effects upon the cost, performance, and reliability of a re-
configuration. In each experiment trial, adaptation paths
evolved by Hermes achieved a higher fitness value than those
produced by component-dependency analysis, with a signifi-
cance of p < 0.01. As a result, we reject our null hypothesis,
H0. Furthermore, we accept our alternate hypothesis, H1

and conclude that Hermes is capable of evolving higher qual-
ity adaptation paths when compared to those generated by
component-dependency analysis while also balancing multi-
dimensional tradeoffs between non-functional requirements.

In terms of execution times, Hermes terminated within 2
minutes or less. In this amount of time, Hermes evaluated
approximately 1.5 million candidate adaptation paths. Fur-
thermore, Hermes typically achieved large gains in fitness
within the first 500 generations (30 seconds). In this rela-
tively short amount of time, Hermes is able to automatically
find safe adaptation paths that balance competing objectives
better than what other techniques currently produce. More-
over, since Hermes always starts with a viable safe adapta-
tion path generated by component-dependency analysis, the
solutions produced by Hermes can only improve. As a result,
Hermes does not require a predetermined amount of execu-
tion time before a viable safe adaptation path is available.

6. CONCLUSIONS
In this paper we presented Hermes, an approach for evolv-

ing safe adaptation paths while balancing competing objec-
tives in non-functional requirements. By rescaling the rela-
tive importance of each concern, Hermes can evolve different
types of solutions in response to changing requirements and
environmental conditions. While Hermes can be applied at
design time to explore larger sets of safe adaptation paths,
it may also be applied at run-time. Future work includes
extending Hermes to exploit potential parallelism between
reconfiguration instructions, as well as exploring how differ-
ent reconfiguration instruction costs affect the quality of so-
lutions evolved by Hermes. Lastly, we plan on extending and
applying Hermes to different application domains, including
different architectures such as multi-tiered and virtual ma-
chine infrastructures.

7. ACKNOWLEDGEMENTS
This work has been supported in part by NSF grants CCF-

0541131, IIP-0700329, CCF-0750787, CCF-0820220, CNS-
0854931, CNS-0751155, CNS-0915855, Army Research Of-
fice grant W911NF-08-1-0495, Ford Motor Company, and a
Quality Fund Program grant from Michigan State Univer-
sity.

8. REFERENCES
[1] M. Brameier and W. Banzhaf. Linear Genetic

Programming. Number XVI in Genetic and
Evolutionary Computation. Springer, 2007.

[2] S. W. Cheng, D. Garlan, and B. Schmerl.
Architecture-based self-adaptation in the presence of
multiple objectives. In Proceedings of the 2006
International Workshop on Self-adaptation and
Self-Managing Systems, pages 2–8, Shanghai, China,
2006. ACM.

[3] D. Garlan, S. W. Cheng, A.-C. Huang, B. Schmerl,
and P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure.
Computer, 37(10):46–54, 2004.

[4] D. Garlan, B. Schmerl, and J. Chang. Using gauges
for architecture-based monitoring and adaptation. In
In the Proceedings of the Working Conference on
Complex and Dynamic Systems Architecture,
Brisbane, Australia, December 2001 2001.

[5] H. J. Goldsby and Betty H.C. Cheng. Automatically
generating behavioral models of adaptive systems to
address uncertainty. In Proceedings of the 11th
International Conference on Model Driven
Engineering Languages and Systems, pages 568–583
(Distinguised Paper Award), Berlin, Heidelberg, 2008.
Springer-Verlag.

[6] H. J. Goldsby, Betty H.C. Cheng, P. K. McKinley,
D. B. Knoester, and C. A. Ofria. Digital evolution of
behavioral models for autonomic systems. In
Proceedings of the Fifth IEEE International
Conference on Autonomic Computing, pages 87–96
(Best Paper Award), Chicago, Illinois, 2008. IEEE
Computer Society.

[7] J. H. Holland. Adaptation in Natural and Artificial
Systems. MIT Press, Cambridge, MA, USA, 1992.

[8] M. Ji, A. Veitch, and J. Wilkes. Seneca: Remote
mirroring done write. In USENIX 2003 Annual
Technical Conference, pages 253–268, Berkeley, CA,
USA, June 2003. USENIX Association.

[9] G. Kaiser, P. Gross, G. Kc, and J. Parekh. An
approach to autonomizing legacy systems. In
Proceedings of the First Workshop on Self-Healing,
Adaptive, and Self-MANaged Systems, 2002.

[10] E. P. Kasten and P. K. McKinley. MESO: Supporting
online decision making in autonomic computing
systems. IEEE Transactions on Knowledge and Data
Engineering, 19(4):485–499, April 2007.

[11] K. Keeton, C. Santos, D. Beyer, J. Chase, and
J. Wilkes. Designing for disasters. In Proceedings of
the 3rd USENIX Conference on File and Storage
Technologies, pages 59–62, Berkeley, CA, USA, 2004.
USENIX Association.

[12] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection (Complex Adaptive Systems). The MIT
Press, December 1992.

[13] J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. IEEE Trans.
on Soft. Eng., 16(11):1293–1306, 1990.

[14] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In Future of Software
Engineering 2007, pages 259–268, Minneapolis,
Minnesota, May 2007. IEEE Computer Society.

[15] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and
Betty H.C. Cheng. Composing adaptive software.
Computer, 37(7):56–64, 2004.

[16] M. Mikalsen, N. Paspallis, J. Floch, E. Stav, G. A.
Papadopoulos, and A. Chimaris. Distributed context
management in a mobility and adaptation enabling
middleware. In SAC’06: Proc. of the 2006 ACM
symposium on Applied Computing, pages 733–734,
New York, NY, USA, 2006. ACM.

[17] H. Newman, I. Legrand, P. Galvez, R. Voicu, and
C. Cistoiu. MonALISA: A Distributed Monitoring
Service Architecture. In Proceedings of the 2003
Conference for Computing in High Energy and
Nuclear Physics, March 2003.

[18] A. J. Ramirez and Betty H.C. Cheng. Evolving models
at run time to address functional and non-functional
adaptation requirements. In Proceedings of the Fourth
Workshop on Models at Run Time, volume 509, pages
31–40, Denver, Colorado, USA, October 2009. ACM.

[19] A. J. Ramirez, D. B. Knoester, Betty H.C. Cheng, and
P. K. McKinley. Applying genetic algorithms to
decision making in autonomic computing systems. In
Proceedings of the Sixth International Conference on
Autonomic Computing, pages 97–106 (Best Paper
Award), Barcelona, Spain, June 2009.

[20] S. M. Sadjadi and P. K. McKinley. ACT: An adaptive
CORBA template to support unanticipated
adaptation. In Proceedings of the IEEE International
Conference on Distributed Computing Systems, pages
74–83, 2004.

[21] Y. Vandewoude and P. Ebraert. Tranquillity: A low
disruptive alternative to quiescence for ensuring safe
dynamic updates. IEEE Transactions on Software
Engineering, 33(12):856–868, December 2007.

[22] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das.
Utility functions in autonomic systems. In Proceedings
of the First IEEE International Conference on
Autonomic Computing, pages 70–77, New York, NY,
USA, 2004. IEEE Computer Society.

[23] J. Zhang and Betty H.C. Cheng. Model-based
development of dynamically adaptive software. In
Proceedings of the 28th International Conference on
Software Engineering, pages 371–380, New York, NY,
USA, 2006. ACM (Distinguished Paper Award).

[24] J. Zhang, Betty H.C. Cheng, Z. Yang, and P. K.
McKinley. Enabling safe dynamic component-based
software adaptation, volume 3549 of Lecture Notes in
Computer Science, pages 194–211. Springer Berlin /
Heidelberg, 2005.

