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ABSTRACT
Medical devices historically have been monolithic units – devel-
oped, validated, and approved by regulatory authorities as stand-
alone entities. Despite the fact that modern medical devices in-
creasingly incorporate connectivity mechanisms that enable device
data to be streamed to electronic health records and displays that
aggregate data from multiple devices, connectivity is not being
leveraged to allow an integrated collection of devices to work to-
gether as a single system to automate clinical work flows. This
is due, in part, to current regulatory policies which prohibit such
interactions due to safety concerns.

In previous work, we proposed an open source middleware frame-
work and an accompanying model-based development environment
that could be used to quickly implement medical device coordina-
tion applications – enabling a “systems of systems” paradigm for
medical devices. Such a paradigm shows great promise for sup-
porting many applications that increase both the safety and effec-
tiveness of medical care as well as the efficiency of clinical work-
flows. In this paper, we report on our experience using our Medical
Device Coordination Framework (MDCF) to carry out a rapid pro-
totyping of one such application – a multi-device medical system
that uses closed loop physiologic control to a affect better patient
outcomes for Patient Controlled Anelgesic (PCA) pumps.

1 Introduction
Historically, medical devices have been developed as monolithic
stand-alone units. The perception and realization of a device as unit
operating without cooperation from other devices, is reenforced by
the fact that the US Food and Drug Administrations (FDA) regula-
tory regimes are designed to approve single stand-alone devices.

In the past 5-10 years, medical devices have increasingly incor-
porated communication interfaces to provide connectivity includ-
ing serial ports, Ethernet, 802.11 or Bluetooth wireless. Until re-
cently, device connectivity has been used primarily to run diag-
nositics, dump diagnostic or configuration data to external output
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devices for audits, install software/firmware updates, and retrieve
dosing information from internet databases.

Presently, new products for leveraging device connectivity are
emerging from companies such as Cerner, Philipps, GE, CareFX,
etc.These products take the form of middleware that allow (a) de-
vices to be connected to a common network and (b) device infor-
mation to be streamed to electronic health record (EHR) databases
and large “heads up” displays that aggregate device data at a sin-
gle point by a patient’s bedside or at a central monitoring station
overseen by nursing staff. These products are improving quality of
care by reducing time to enter device readings into patient records,
reducing mental overhead associated with gathering information
from multiple devices scattered across patient rooms, forwarding
alarms along with waveforms and other descriptions of physiolog-
ical parameters that caused those alarms to physician cell phones
and PDAs, and providing more precise collections of device read-
ings that can be assessed after adverse events.

Despite these advances, there is much greater opportunity for
leveraging device connectivity and interoperability – opportunity
that is not being exploited currently. Though it is often not fully
recognized nor acknowledged, devices in a clinical context are ac-
tually operating in the context of a “system of care” in which mul-
tiple devices and health information databases each play a part in
a monitoring, surgical, or treatment task/workflow. However, even
modern EHR-integrated devices are not “aware” of their context
nor of the role they are playing in the larger system. Devices
are still controlled manually through caregiver workflows involv-
ing complex sequences of manual interactions with devices. This
lack of awareness and absence of a notion of systems of cooperating
devices stems primarily from current Food and Drug Administra-
tion (FDA) regulations that, for safety reasons, restrict data flows to
be unidirectional from devices (which can be viewed as producers
of data) to displays or medical databases (which can be viewed as
consumers of data). In some simple cases such as with Cerner’s
CareAware, simple patient data (e.g., name, patient ID, etc.) is
allowed to flow from the EHR to a device to seed the display of
patient information. To avoid a true unmonitored backflow of in-
formation from the EHR into devices, the clinician must confirm
the accuracy of the data at the device display before the informa-
tion actually populates the device data fields.

Further relaxing the “unidirectional” restriction can allow de-
vices to be context-aware and to work together in an automated way
to accomplish a system task or workflow. Allowing devices to be
data/control consumers without human intervention/confirmation
substantially increases risks but can provide tremendous benefits
including increased precision, removal of the potential of human
error in tedious and repetitive tasks, reduction of time in time-
sensitive tasks, and cost reductions.



The Medical Device Plug and Play Interoperability Program (MDPnP)
from the Center for Integration of Medicine and Technology1 has
played a leading role in forming a vision and supporting standards
for an Integrated Clinical Environment (ICE) that allows devices to
be networked and their activities to be safely coordinated by a cen-
tral automated controller [2]. ICE envisions device coordination
applications that execute in the controller to automate troublesome
and error-prone workflows, implement smart alarms that base their
alerts on information from multiple devices, and provide safety
interlocks that prevent potential harmful interactions between de-
vices.

The present version of the ICE standard provides a high-level
architecture description – it does not provide a description of mid-
dleware requirements for integrating devices nor a programming
model for the development of coordination applications. Of course,
there may be other viable strategies for device integration and co-
ordination that do not follow the ICE architecture. More broadly,
there are no guidelines in place at present for how the industry
might bring to market a framework that provides new and exten-
sible clinical functionality (in essence, creating “virtual devices”)
by utilizing an open system of cooperating medical device compo-
nents from different vendors. This is driven by uncertainty regard-
ing how one might regulate device collections when the full suite
of device-device interactions is not fully known a priori.

Previously [15] we identified the following questions that we be-
lieve it will be necessary to answer for the full vision of workflow
automation through medical device coordination to be achieved.

• Which middleware and integration architectures are candi-
dates to support device integration across multiple interac-
tion scenarios?

• Which programming models are suitable for rapid develop-
ment, validation, and certification of systems of interacting
medical devices?

• What V & V techniques are appropriate for compositional
verification of envisioned medical systems, and how can the
effectiveness of the techniques be demonstrated so as to en-
courage adoption among commercial vendors?

• Can existing regulatory guidelines and device approval pro-
cesses that target single devices be (a) extended to accommo-
date component-wise approval of integrated systems and (b)
established in a manner that encourages innovation and rapid
transition of new technologies into the market while uphold-
ing a mandate of approving safe and effective technologies?

• What interoperability and security standards are necessary to
encourage development of commodity markets for devices,
displays, EHR databases, and infrastructure that can support
low cost deployment of integrated systems and enable flexi-
ble technology refresh?

To facilitate industry, academic, and government exploration of
these issues, we are developing an open Medical Device Coordi-
nation Framework (MDCF) (reported on in ICSE 2009 [15]) for
designing, implementing, verifying, and certifying systems of in-
tegrated medical devices. This work involves collaboration with
MDPnP researchers and clinicians to provide input to further evolve
ICE standards related to middleware and programming models. As
part of our effort to engage industry, we used this framework to
rapidly prototype a device coordination application for closed-loop
physiologic control of Patient Controlled Anelgesic (PCA) pumps
that involves both real (physical) and simulated devices, and we
presented a demo of this application at the Cerner Health Confer-
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ence (CHC) in October, 2009. CHC 2 is a trade show focusing
on health information technology from Cerner and its partners and
included over 2000 clinicians, health IT staff, medical device and
health information system manufacturers and users as participants.
The demonstration events included bringing together Cerner exec-
utives, academic researchers, clinical researchers from the CIMIT
MDPnP program, and US Food and Drug Administrative (FDA)
representatives to discuss opportunities and challenges in the area
of device coordination.3

This paper reports on our experience of building the PCA demo
of using MDCF and presenting it at the Cerner Health Conference.

• We explain current clinical problems involving the use of
PCA pumps, and how closed loop physiologic control lever-
aging existing sensors could mitigate some of these prob-
lems.

• We summarize the key capabilities of the publish-subscribe
medically oriented middleware component of the MDCF that
was used to provision the PCA prototype.

• We give a brief, high-level, overview of the programming
model and development environment that was used to rapidly
prototype and then synthesize the various software compo-
nents of the prototype.

• We qualititatively describe the experience of rapidly engi-
neering the demo and explain how the MDCF allowed us to
concentrate on building a more polished system as opposed
to writing and debugging highly concurrent communications
code.

• We report on feedback and discussions at the CHC and present
software engineering issues that should be addressed to en-
sure the viability of device coordination as a safe and effec-
tive health care technology.

The MDCF infrastructure is available for public download at
[23].

2 Device Coordination Examples
Moving forward with the vision of device coordination requires (a)
communicating the benefits of the paradigm to clinicians and re-
qulators and (b) developing use-cases to drive the design of a coor-
dination framework. To address these issues, the MDPnP program
has worked with clinicians to document over 50 situations in which
device coordination can be beneficial. We list a few of the sim-
plest cases below. Others can be found in the appendix of the ICE
architecture standard [2] (available on the MDPnP website).

Cardio-pulmonary Bypass: Patients undergoing a cardio-pulmonary
bypass operation are typically have their breathing supported by
anethesia machine ventilator during preparation for surgery, then
during the actual operation are switched to a cardio-pulmonary by-
pass machine which oxygenates their blood directly, and then are
switched back to a ventilator (after bypass). Incidents have oc-
cured [5] in which the anestheiologist forgot to resume ventilation
from after separation from cariopulmonary bypass. In at least one
case documented in [5], “...the delayed detection of apnea was at-
tributed to the fact that the audible alarms from the pulse oximeter

2http://www.cerner.com/public/Cerner_3.asp?
id=30617
3Cerner, headquartered in Kansas City, Mo. is a global supplier
of healthcare solutions with more than 8000 clients worldwide.
Kansas State University is the largest supplier of employees for
Cerner, and the CHC demonstration described in this paper is part
of a broader Cerner/KSU Health Information Technology educa-
tion/research collaboration.



and capnograph had not been disabled during bypass and had not
been reactived. [The patient] sustained permanent brain damage.”

Note that in this situation, an error occured because the following
very system invariant was violated: either the anethesia machine or
the cardiopulmonary bypass machine must be connected to the pa-
tient. It is straightforward to use a medical device coordination
framework with a connected anesthesia machine and bypass ma-
chine to detect this invariant violation and to raise an appropriate
alarm.

Laser surgery safety interlock: Modern trachea or larynx surgery
often utilizes a laser to remove cancers or non-malignant lesions
and a tracheal tube to supply oxygen to the patient during the op-
eration. A potential hazard is the accidental slicing of the oxygen
tube by the laser, which can produce an intense fire. Typically, the
oxygen saturation level in the tracheal tube is reduced to e.g., 25%
when the laser is in use to help reduce the chance of a fire in case
of a slice. There have been a number of injuries and even deaths
reported due to fires caused by a laser cutting the tube.

Again, the potential system error in this scenario can be miti-
gated by coordination of the laser and ventilator system. Specifi-
cally, the device coordination logic can implement a simple safety
interlock that disables the laser if the oxygen saturation is greater
than a configured level (e.g., 25%). An alarm can be programmed
using information from multiple devices (both the ventilator and
laser) so that an alert is raised if there is an attempt to engage the
laser when the oxygen level exceeds the configured maxium level.

X-ray / ventilator coordination: A simple example of automat-
ing clinician workflows via cooperating devices addresses prob-
lems in acquiring accurate chest x-ray images for patients on ven-
tilators during surgery [17]. To keep the lungs’ movements from
blurring the image, doctors must manually turn off the ventilator
for a few seconds while they acquire the x-ray image, but there are
risks in inadvertently leaving the ventilator off for too long. For ex-
ample, Lofsky [21] documents a case where a patient death resulted
when an anestheseologist forgot to turn the ventilator back on due
to a distraction in the operating room associated with dropped x-ray
film and a jammed operating table.

These risks can be minimized by automatically coordinating the
actions of the x-ray imaging device and the ventilator. Specifically,
a centralized automated coordinator running a pre-programmed co-
ordination script can use device data from the ventilator over the
period of a few respiratory cycles to identify a target image acqui-
sition point where the lungs will be at full inhalation or exhalation
(and thus experiencing minimal motion). At the image acquistion
point, the controller can pause the ventilator, activate the x-ray ma-
chine to acquire the image, and then signal the ventilator to “un-
pause” and continue the respiration [10].

Note that each of these cases above involves very simple forms
of coordination logic that can significantly improve the safety or
the effectiveness of treatment for the patient. In our experience,
once the concept of device coordination is explained to a surgical
clinician, they can almost always come up with an scenario that
they have encountered where device coordination would be benefi-
cial. In the following section, we give a detailed description of the
scenario that we considered in our case study.

3 Patient Controlled Analgesia Use Case
3.1 PCA Pump Concepts

The use of Patient Controlled Analgesia (PCA) infusion pumps has
emerged as the premier process for meeting the goals of pain man-
agement. Figure 1 shows a typical PCA pump. The computerized
pump is loaded with an analgesic drug such as morphine, fentanyl,

Figure 1: Typical PCA pump with bolus trigger

or hydromorphone and programmed with a background, or basal,
infusion rate as well as a bolus dose. The basal infusion rate is
delivered constantly and is selected to be sufficient to control the
patient’s normal pain level. The bolus dose is an additional quan-
tity of drug that is delivered only when the patient requests it by
pressing a button. The pumps are also programmed with dose lim-
its that are set for the specific patient, e.g., only allowing one dose
to be delivered within a certain time frame. In addition to the drug
delivery mechanism itself, components of the PCA process include
appropriate patient selection, proper patient education, frequent pa-
tient assessment, and collaboration among the prescriber, pharma-
cist and nursing staff.

Patient controlled analgesia provides consistent control of pain
by allowing patients to self-administer doses of a drug. Evidence
from systematic reviews of randomized controlled clinical trials in-
dicate that the use of IV PCA leads to better pain relief, improved
patient outcomes (e.g., reduction in pulmonary complications) and
increased patient satisfaction compared with conventional nurse-
administered parenteral opioids [14]. The ability of patients to
maintain some control over their care appears to be a strong con-
tributor to PCA associated improvements in patient satisfaction.

One of the major opioid side effects is respiratory depression.
Opioids have a direct effect on the respiratory center in the medulla
[3]. Maximum respiratory depression occurs within 5-10 minutes
of IV administration. Respiratory depression increases progres-
sively with dose. The use of background infusions in some patients
may provide increased pain relief however this increases the risk
of respiratory depression and has led to a general recommenda-
tion of eliminating background infusions. Symptoms of respiratory
depression include increasing sedation, decreased respiratory rate,
decreased oxygen saturation and increased end tidal carbon dioxide
[16]. Breathing may become irregular and periodic.

To address these issues, current nursing standards of care for
monitoring patients during PCA administration include assessment
of pain and sedation, along with heart rate, blood pressure and res-
piration rate every four hours. Pulse oximetry (SpO2) is used to



monitor falling arterial oxygen saturation. Capnography is increas-
ingly being used in addition to pulse oximetry [9]. Capnography
measures end-tidal carbon dioxide. Increasing levels of carbon
dioxide is a more reliable indicator of respiratory depression.

3.2 PCA Hazards

Despite these positive outcomes, PCA pumps are also associated
with a large number of adverse events [13, 8]. The most common
type of adverse event is oversedation [22]. An excessive dose of the
analgesic can cause neurologic depression which may lead to res-
piratory depression and eventually respiratory distress. In extreme
cases the patient may not be able to breathe adequately, leading to
death. Overdoses may have many causes including programming
errors [11], the use of the wrong concentration of drug, drug inter-
actions, and PCA-by-proxy.

Programming errors may be caused by confusing drug names,
e.g., hydromorphone and morphine or morphine and meperidine
[13], by making a mistake in dose or drug concentration calcula-
tions [25, 13] or entering the wrong values for bolus dose size,
infusion rate, or lockout interval. A common source of error is en-
tering a value that is off by a power of 10 or using the wrong units.
For example, entering 5 mL / minute instead of 5 mG / minute or
programming a pump with a drug concentration of 1 mG/mL when
it is actually 10 mG/mL [13]. [25] discusses a number of cases
where patients were fatally overdosed because of an improperly
programmed drug concentration.

When someone other than the patient presses the button to re-
quest a bolus dose, it is called PCA-by-proxy. Normally if the
patient is oversedated they are unable to press the button to get
another bolus dose. If someone else presses the button, this safe-
guard is bypassed and an overdose may occur. In 2004 the Joint
Commission made PCA-by-proxy their 33rd sentinel-event. Sen-
tinel events are occurrences that must be reported and investigated
to their root cause or the facility risks losing their accreditation [7].
Healthcare facilities that have completed staff education programs
and incorporated a warning about PCA-by-proxy into their patient
education have seen lower overall rates of oversedation [8].

An analysis of reports to the MAUDE database maintained by
the Food and Drug Administration (FDA)’s Center for Devices and
Radiological Health (CDRH) from 1984 to 1989 found that 67%
of problems associated with PCA pumps were caused by operator
error [4]. This early study took place before the 1990 change in
Federal Reporting Guidelines that requires reporting of incidents
involving ’device malfunctions and serious injuries or deaths’ to
FDA. A later study [12] found that nearly 80% of the 2009 re-
ported incidents in 2002 and 2003 were blamed on device malfunc-
tions and that nearly 65% of these suspected device malfunctions
were confirmed by the device manufacturers. The human factors
of pump interface design are an important means of reducing use
errors [19, 20]. Respiratory depression associated with PCA varies
between 0.3% and 6% depending on the patient population and how
respiratory depression is defined [24]. Most cases of respiratory
depression do not lead to permanent harm to the patient, but these
still represent serious incidents with the potential to harm or kill
patients.

The Institute for Safe Medicine maintains a voluntary database
of medication errors. This MedMarx database contains 9500 PCA
related errors in the span 2000 - 2004 [13]. These account for
only 1% of the medication errors submitted to the database, but this
1% accounts for 6.5% of harmful outcomes. This almost certainly
under-reports the actual number of occurrences, since the voluntary
database can only track the rate of reporting, not the rates of errors
or adverse events [18].

Adequate pain control provides benefits including improved pa-
tient satisfaction, lower rates of complication, reduced length of
hospital stays, and lower rates of litigation [13]. Some biomedi-
cal engineers take the attitude that the only safe medical device is
one that’s never taken out of the box, but discontinuing use of PCA
pumps is simply not an option. While providing inadequate levels
of medication would indeed reduce the chance of overdose, pain
management is an essential part of the care of these patients.

As noted earlier, patients receiving PCA therapy are usually also
connected to a patient monitor that records their vital signs. These
monitors typically measure at least heart rate, blood pressure, respi-
ratory rate, and oxygen saturation (SpO2). The monitor has simple
alarms which sound when the vital signs go outside of some pre-
set limits. If the patient receives an overdose, their vital signs will
eventually go outside of the limits and the alarms will sound, sum-
moning a caregiver to the bedside.

However, by the time their vital signs drop far enough to cause
the alarm to sound, damage may have already been done. Care-
givers are desensitized by frequent false positive alarms, and they
may not respond as quickly as would be optimal. Furthermore, the
infusion pump continues running until it is manually stopped by a
caregiver, which may not happen immediately on their arrival at the
bedside.

3.3 Improving patient outcomes through device coordination

An automatic system that could detect oversedation and the onset
of respiratory depression and discontinue the flow of pain killer
on that event could add an additional safeguard to the system and
would help to protect the many patients who are not adequately pro-
tected by existing systems and procedures. Figure 2 illustrates such
a closed loop control system in which a ’supervisor’ system contin-
ually analyzes the patient’s physiologic data and then disables the
PCA pump if the patient vitals indicate repiratory depression.

Previous work has been done towards implementing a proto-
type of closed-loop physiologic PCA control [1] as an example of
how an instance of a MDPnP system might be built. The previous
prototype uses a specialized time triggered communications plat-
form for inter-device communications. This paper focuses primar-
ily on the development of a new prototype that leverages Health
IT technologies for inter-device communication. Such technolo-
gies (e.g.Medically Oriented Middleware) are similiar at a low level
to what is currently provided by companies like Cerner, Philipps,
GE, CareFX. While the middleware we describe has additional fea-
tures designed to manage explicit coordination activities, we expect
that the similiarities could accelerate the adoption of interoperating
medical device systems by healthcare providers.

4 Medically Oriented Middlware
To quickly implement a prototype closed-loop PCA pump con-
trol system, we used our Medical Device Coordination Framework
(MDCF)[15]. The MDCF is a software infrastructure which in-
cludes a Medically Oriented Middleware (MOM) runtime compo-
nent and associated development tools that enable researchers to
rapidly implement coordination/integration systems. In this sec-
tion we give a brief overview of the MOM and section 5 provides a
brief overview of the MDCF development tools.

4.1 Java Message System Foundation

The design of our core architecture is driven by practical realities of
the broader clinical device integration context. In this broad con-
text device integration and coordination doesn’t just mean closed
loop control, it also describes more loosely coupled systems such as
automatically updating electronic health records (EHRs) or alarm
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Figure 2: PCA pump coordinating with other discrete devices
to provide closed-loop physiologic control and increase patient
safety via the Medical Device Coordination Framework.

aggregation centers. Therefore the MDCF architecture has been
designed to support features such as: (a) flexible, dynamic informa-
tion flow (frequently needing privacy), (b) heterogeneous systems,
mechanisms, and needs, (c) many listeners, and many sources, and
(d) time-critical, scalable performance. A message-oriented, publish-
subscribe architecture with decentralized hubs, dynamic queuing,
reliable message passing, and enterprise-grade deployment fits these
criteria nicely. To address these requirements, we engineered our
message-oriented-middleware (MOM) around the Java Message Ser-
vice (JMS) standard. JMS satisfies the criteria (a-d) above, while
providing low-cost, open-source implementations for low barriers
to entry and easy integration into research environments. In addi-
tion, there are multiple commercial enterprise-quality JMS imple-
mentations such as those found in IBM’s WebSphere and Oracle’s
AQ products . JMS supports point-to-point or publish/subscribe
topologies , reliable or unreliable message delivery , and high per-
formance . It enables distributed communication which is “loosely
coupled, reliable, and asynchronous.” In our application environ-
ment, its ability to pass simple data types as well as complex objects
enables a clean integration with structured text standards such as
HL7, as well as complex objects for seamless framework control.

When a client wishes to originate a connection with a JMS provider,
it uses the Java Naming and Directory Interface (JNDI) to locate a
Connection Factory that encapsulates a set of connection-configuration
parameters for the provider. The client then uses the Connection
Factory to create an active Connection to the provider (typically
represented as an open TCP/IP socket between the client and the
provider’s service daemon). In our architecture, clients will do all
of their messaging with a single Connection. A Connection sup-
ports an Exception Listener that will be called when an connection
fails (which we will use to handle situations in which a device un-
expectedly disconnects in the middle of an activity). Once a con-
nection is established, a client uses the connection to create a JMS
Session.

Figure 4 illustrates that a JMS destination is an abstract entity
to/from which a client publishes or receives a message. Destina-
tions are located/retrieved via JNDI calls. A session serves as a
factory for creating MessageProducers or MessageConsumers for
a particular destination. To send a message, a client requests a ses-
sion to create an empty message (of a particular type supported by
JMS), the message contents are filled in, and a MessageProducer is
called to send the message. To receive messages asynchronously
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Figure 4: JMS destinations

(which is the method we will use in our framework), the client
creates an object (a handler) that implements the MessageListener
interface and sets that object as the listener for a particular Mes-
sageConsumer.

A session is a single-threaded context designed for serial use by
one thread at a time. It conceptually provides a thread for sending
and delivering messages for all message producers/consumers cre-
ated from it, and it serializes delivery of all messages to all of its
consumers.

Figure 5 illustrates that the abstract structure of a JMS mes-
sage is divided into three parts: a header containing values used
by both clients and providers to identify and route messages, a
properties section containing application-defined or JMS-provider-
defined key-value pairs that provide additional metadata about the
message, and the payload of the message. A number of these fields
such as Destination, DeliveryMode, MessageID, Timestamp, and
Redelivered are not set by the client but by the infrastructure layer
as a message is transmitted. We use the Timestamp field to gather
performance information reported on in previous work[15]. Other
fields such as CorrelationID and ReplyTo are set by the client to
guide responses to messages. We use CorrelationID to support the
situation where we have multiple integration scenarios running on
the same server. There are a few base administrative destinations
(communication channels) that are shared among all running sce-



Figure 5: JMS message format
narios; each scenario sets a unique correlationID and watches for
responses from the scenario administrator using the same ID.

Property values are set by the client prior to sending a message.
When constructing a message consumer, a client can specify a filter
expression that references fields in message headers and properties;
only messages that pass the filter are delivered to clients. Thus, the
primary purpose of message properties is to expose attributes for
filtering. We currently use filtering only on header fields, but the
property mechanism provides significant flexibility for enhanced
functionality moving forward.

JMS provides a number of different formats for message pay-
loads. We primarily use text messages (e.g., HL7 and most other
data) and object messages (e.g., for DICOM images).

4.2 MDCF Modules

We believe that simply exposing raw topics and datastreams to the
scenario developer is inconvenient at best. It is likely that device
coordination or integration scenarios will be formulated by a team
consisting of medical systems engineers, software engineers, and
clinicians. In this context, it is more natural to simply reason about
medical devices, patient health records, and software control as log-
ical components and the data the flows between them. The MDCF
infrastructure is specifically designed to provide services that ab-
stract the lower level details of the publish-subscribe system and
provide a notion of virtual channels that may be established be-
tween logical (software or physical) coordination scenario compo-
nents. This section briefly describes the runtime components of the
infrastructure that provides this abstraction, while Section 5 specif-
ically describes this abstract programming model and the tool we
built to assist the developer with modeling coordination scenarios.
The following modules together comprise the MDCF layer of the
MDCF runtime stack (refer to Figure 3), and are organized accord-
ing to their general function in Figure 4.2.

4.3 Message Bus Modules

The modules in Figure 4.2 are grouped according to their general
functionality. The JMS message bus (JMS Provider) and device
relavent extensions (Topic Management Modules) provide an ab-
straction of the JMS topic management interface and abstract ac-
cess to the JNDI. As mentioned in Section 4.1, JMS provides a
publish subscribe framework where JMS clients either publish to or
subscribe to ’global topics.’ The Topic Management Modules hide
the global nature of JMS publish / subscribe and instead expose the
notion of virtual inter-component channels . A MDCF coordina-
tion scenario component then only communicates to other scenario
components via these virtual channels. There are 2 main benefits
to this approach: 1) Human and automated reasoning about infor-
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Figure 6: High Level MDCF architectural diagram

mation flows at the scenario level are greatly simplified as men-
tioned previously, and 2) the MDCF can take advantage of the per-
formance features present in the underlying JMS provider (e.g. if
many different clinician terminals are running a scenario that ren-
ders data from the same device then the MDCF will automatically
tap those terminals into the same underlying global topic for infor-
mation from that device instead of generating a message for each
terminal.)

The Topic Management Module manages two classes of JMS
topics; management topics and medical data topics. The manage-
ment topics are used by the various MDCF modules to communi-
cate with devices and operator consoles. Management topics are
never used to transport medical data. Medical data topics take on
the opposite role; they are exclusively used to communicate med-
ical data between devices. This explicit partitioning is in place to
support the MDCF programming model (where the scenario de-
veloper should not be concerned with low level connection man-
agement and component lifecycle) and possible future efforts to-
wards automatic verification of integration scenarios (A fully cer-
tified system for closed cloop critical care should require formal
evidence that data flows correctly in the underlying infrastructure;
this explicit bifurcation of message types will simplify the genera-
tion of this evidence.)

4.4 Console Services Modules

The Admin Console Service and Clinician Console Service provide
the actual business logic for the various remote operator consoles.
Each service manages the authentication of operators at remote
consoles and the interactions of those operators with the other mod-
ules of the MDCF.

The console at the bottom of Figure 4.2 could represent either
Clinician or Adminstrative consoles. These consoles are simply
a remote graphical frontend to the logic provided by the console
services. A Clinician Console permits a medical practitioner to re-
quest that a given integration scenario be instantiated with an oper-
ator specfied set of devices. If specified by the scenario, the console
may display data output by that scenario.

The Adminstrative Console allows IT staff to configure, install
and maintain different aspects of the MDCF. The MDCF requires
that devices are registered by administrative/IT staff (in the De-
vice DB) before they can connect. Likewise, scenarios and soft-



ware components must be installed into the MDCF prior to use. A
burden is placed on the staff to ensure that only appropriate and
approved devices are registered in the system. The Adminstrative
Console acts as a graphical frontend to the Adminstrative Console
Service. These two modules act in concert to provide sanity checks
on the various tasks an administrator may perform (verifying ver-
sion compatibility between the components and scenarios via type
checking, as well as validating digital signatures). The Adminstra-
tive Console also provides some monitoring facilities which allow
adminstrative staff to observe the health and activity of the running
coordination scenarios.

4.5 Coordination / Integration Management Modules

The Device Manager manages the lifecyle of connected and con-
necting devices. To simplify lower-level protocols and to facili-
tate the construction of mock devices, we assume that each de-
vice runs a JVM with a JMS client. Real devices that do not in-
clude an onboard JVM can be incorporated by attaching them to a
JVM-capable adapter device.4 The Device Manager uses the man-
agement topics to communicate with devices that are connected or
connecting. During this communication the Device Manager will
query the remote device for accounting information (e.g. what type
of device?) and periodically ’ping’ the remote device to determine
the health of the device’s connection. The Device Manager also
provides information about the state of connected devices to the
rest of the MDCF (e.g. Is device x connected? or Is the device y
responding to pings?) The Device Manager uses information in the
Device DB to determine if a given device is allowed to connect to
the MDCF and what sort of security level the device has.

The Scenario Manager is responsible for instantiating and track-
ing integration scenarios. The Scenario Manager uses scenario
specifications stored in the Scenario DB to determine what type of
devices and components are required for a given scenario and then
communicating the necessary information via the management top-
ics to the requisite devices.

Scenarios can include purely software components in their spec-
ification (such as an alarm generator). Software components are
instantiated per-scenario (each scenario gets its own copy of a com-
ponent). If the Scenario Manager determines that a software com-
ponent is required in a given scenario, then the Component Man-
ager will retrieve the component bytecode from the Component
DB, instantiate it, and connect it to the JMS. When a scenario is
finished, the Component Manager is responsible for disposing of
the component and tearing down any connections to the JMS that
component had via the topic management modules.

5 Programming Model
We anticipate that device integration scenarios will be implemented
either by developers at a company that supplies an integration frame-
work (who would find it advantageous to build up a collection of
reuseable components or product lines to serve multiple customers)
or by on-site clinical engineers (who may not be familiar with un-
derlying middleware and network concepts). Thus, we have devel-
oped a component-based programming model that abstracts away
the details of the lower-level infrastructure and facilitates rapid as-
sembly of integration scenarios from reusable components.

The component model supports typed input/output event (asyn-
chronous) ports with multiple categories of components, including
data producers such as devices, data transformers that filter, coa-
lesce or transform data streams, and data consumers that represent
displays or data repositories. Some components may be both data

4Frameworks by Cerner and Philips/Emergin use similar adapters.

producers and consumers, such as devices that may be controlled
by others or health information databases.

The MD PnP Integrated Clinical Environment (ICE) standard
provides foundational requirements describing the safe interaction
of dynamically-assembled components (in keeping with the plug-
and-play motif), clearly defining a set of roles within medical sys-
tems [26]. Each device provides a device description to the ICE-
compliant infrastructure, detailing the type and frequency of the
data and services being provided, and QoS desired. The MDCF
complements the ICE standard in several respects – providing a
standards-based middleware to support the ICE, proposing a com-
ponent model for programming device coordination behaviors, and
development of a model-based programming environment for rapid
assembly of device coordination scripts – while providing a less-
developed device model and no support for registering totally new
device types at runtime into the system.

While implementing a more general component model than the
ICE provides, our component model also provides a natural inter-
action with systems conforming to the ICE standard. For exam-
ple, elements from a broader MDCF environment can map easily
onto the MEDICAL DEVICE, ICE SUPERVISOR, and ICE NET-
WORK CONTROLLER components while providing a more de-
tailed view of the medical device ecosystem. Furthermore, MDCF
can reduce significantly the overhead of producing compatible, cor-
rect systems through extensive code generation capabilities.

We have built an integration scenario development environment
in our Cadena framework [6]. Cadena provides component-based
meta-modeling that enables us to define a domain-specific language
of components for building device integration scenarios. Given a
meta-model of the component language, Cadena generates a com-
ponent interface editor that allows one to define component types
and a system scenario editor that allows one to allocate and connect
component instances to form an executable system. Cadena’s rich
type system allows one to define different type languages for com-
ponent ports that capture specific properties of data communicated
between components. Cadena provides a notion of “active typing”
that continuously checks for type correctnesss as a system scenario
is constructed in the graphical scenario editor.

Figure 8 shows the PCA use case device integration scenario
built in Cadena’s scenario editor. Components corresponding to
the pulse oximeter and simulated respiratory rate monitor appear
as blocks on the right hand side of the visualization.

Given a Cadena type signature for an MDCF component, au-
tocoding facilities generate a Java skeleton/container for the com-
ponent. The skeleton contains all logic required by the framework
to enable the component implementation to connect to the frame-
work as a framework component (this includes automatically gen-
erating the logic for subscription assignment and publishing logic).
The component developer then only needs to implement the “busi-
ness logic” – the code that processes medical information (such as
a data transformer or rendering routine) or device access logic (in-
teraction with actual device sensor hardware).

Similar in spirit to the Corba Component Model’s deployment
and configuration infrastructure, the plugin can also analyze a Ca-
dena coordination scenario model and generate a MDCF specifi-
cation file. The MDCF specification file consists of XML that de-
scribes the named component graph and any associated meta-data
(such as scenario version number and author). The logical name of
each component instance and the type of the component is present,
as well as what inter-component connections exist. This informa-
tion is used by the MDCF to locate the appropriate MDCF compo-
nent class files and instantiate the coordination scenario.

We believe that the use of sophisticated architectural types and



component encapsulation can help in constructing assurance cases
for integration scenarios. Use of component technology helps pre-
vent unanticipated interference between components by insuring
that components only interact through explicitly declared ports.
The strong typing in the Cadena modeling environment reduces the
possibility of programming errors.

5.1 MDCF Meta-Language
As mentioned in section 4 and section 5 the MDCF extends JMS
with the notion of abstract inter-scenario component channels. The
MDCF meta-language encapsulates the features of this abstraction
in a way that allows scenario developers to design both coordi-
nation components and scenarios composed of those components
within the Cadena MDCF programming environment. The meta-
language defines the programming model of the MDCF. What fol-
lows is an informal description of the MDCF meta-language.

• JMSMessage - An ’abstract’ message type that can be trans-
mitted over JMS. (i.e. this is an ’umbrella’ type for the TextMes-
sages, ObjectMessages, ByteMessages.

• JMSChannel - An interface type. A message transport be-
tween exactly two end points: a message publisher and a
message consumer. The JMSChannel exclusively transports
JMSMessages.

• JMSPublishPort - Describes a ’publication port’ which can
be associated with MDCF components. Data can only leave
a component via a JMSPublishPort and never enter the com-
ponent.

• JMSSubscribePort - Describes a ’subscription port’ which
can be associated with MDCF components. Data can enter
a component via a subscription port, but will never leave a
component via one.

• DriverProfile - Components of this kind represent medical
devices. DriverProfiless can have any number of subscrip-
tion and publication ports. In the future we anticipate placing
a restriction on the types of messages a DriverProfile com-
ponent may subscribe to (e.g. device commands.)

• DataTransformer - Components of this kind represent soft-
ware components that could be used in a coordination sce-
nario. Components of this kind also allow any number of
input and output ports.

• DataSink - A DataSink component only permits subscription
ports. Typically components of this kind would be heads up
displays or health informatics systems. Restricting this kind
to only allow subscription ports permits lightweight analysis
of scenario descriptions to determine what class of regulatory
oversight a given scenario may fall under.

5.2 Cadena MDCF Module Editor
The Cadena MDCF meta-language defines the kinds (type families)
of scenario components that the scenaro developer is permitted to
build. The Cadena MDCF uses the meta-language to generate a
MDCF specific module editor. MDCF component developers use
the module editor to define the type-signature for a MDCF mod-
ule. (Figure 8 is a screen shot of the module editor with several
MDCF components. One of the software components used to pro-
vide closed loop PCA control is open exposing its type signature in
terms of its publish and subscribe ports and what types of messages
those ports will accept.)

Component developers refine the component kinds from the meta-
language by naming a component signature, explicity specifying
what ports that component signature will have, the names of those
ports, and the types of interface those ports will use. Constraints on
the number and types of ports present in the meta-language are ac-
tively enforced by the module editor (i.e. a component type based
off of the DataSink kind cannot have any ports where data is pub-
lished.)

5.3 Cadena MDCF Scenario Editor
The Scenario Editor allows developers to combine modules defined
in the module editor into cohesive coordination scenarios by con-
necting ports on module instances via channel instances. The re-
sulting inter-component graph becomes a formal specification of
the dataflows between the devices and software components be-
ing integrated. The plugin actively type checks scenarios as they
are being constructed in the scenario editor. For example, devel-
opers will not be able to connect two publication ports together or
two subscription ports together. Constraints defined in the meta-
language and module editor are actively enforced by the scenario
editor.

6 Prototype Development
We produced a prototype system for the PCA use case using the
MDCF software infrastructure. We had several requirements for
our prototype:

1. Safety - If the coordination system, MDCF MOM, or depen-
dent devices malfunction then the patient is in no more dan-
ger than if no coordination is present.

2. Flexibility - Be able to reconfigure and implement new con-
trol algorithms rapidly without affecting the rest of the sys-
tem. Also, the we want to support many different device
brands with a minimum of effort.

3. Portable - We want to use this prototype as a demonstration.
Many medical devices are too unweildy/expensive to take
out of the lab and transport (ventilators, capnography equip-
ment, etc). Thus, the system needs to support hybrid physi-
cal/virtual coordination scenarios (Involving real devices and
some software simulated devices at the same time.)

We designed the prototype around two physical devices and two
virtual devices. The physical devices were:

1. Nellcore Pulse Oximeter - a device that measures pulse and
blood oxygen concentration via a fingertip light sensor. New
data is published at 2Hz.

2. Pulse Oximeter simulator - a programmable device which
generates a simulated oximetry waveform. Connected to the
light sensor of the pulse oximeter in lieu of a real patient.

We did not have access to the following components, which had
to be simulated in software:

1. IV PCA pump A generic infusion pump for PCA. The pump
is delivering continuously delivering a basal dose of painkiller
to our simulated patient. The PCA trigger is represented
as a button in an on screen GUI. The GUI also displays
whether the pump is enabled or not. When the virtual trig-
ger is pressed the pump notifies the simulated patient of the
dose increase. If the pump is disabled nothing happens. The
pump also exposes a command API to the device driver (ex-
plained in section. . . ). The command API requires the pump



Figure 7: MDCF development environment component type
editor. The five PCA use case components are present (details
for PumpGuardLogic are expanded) as well as other MDCF
components used in other integration scenarios

to recieve a ticket before the pump enables. The ticket lasts
1 second. If the ticket expires and no new ticket is received
the pump disables itself.

2. Respiratory Rate Monitor(such as capnography) - The virtual
respiratory rate monitor communicates reads the patient’s res-
piratory rate directly from the simulated patient via a Java
API call. New data is published at 10Hz.

Finally, we implemented a simulated patient in Java. The sim-
ulator tracked the amount of opiod in the virtual patient’s system.
This amount of medication was used to compute how much the
respiratory rate, heart rate, and SpO2 should be depressed. The
simulator exposed an API that allowed the virtual PCA pump to
‘deliver‘ a dose of opiod, and the virtual respiratory rate monitor to
sense the patient’s respiratory rate. If no virtual opiod is delivered,
the simulator logarithmically decreased the amount of opiod in the
patient. The simulator also communicates the patient’s heart rate
and SpO2 levels to the pulse oximeter simulator. The pulse oxime-
tery simulator then generated a realistic pleph waveform that drove
the physical pulse oximeter.

6.1 Prototype modeling - components
The first step taken to develop the demo was to model the five log-
ical components of the PCA use case in the MDCF development
environment. The logical component kinds are described in section
5.1. Each MDCF component has some number of publish and/or
subscribe ports. These components were:

1. PulseOximeter - A DriverProfile representing the pulse oxime-
ter. It publishes 3 data streams: SpO2, Heart Rate, and any
alarm events the device emits.

2. RespiratoryRateMonitor - A DriverProfiler representing the

Figure 8: MDCF development environment with PCA proto-
type model

simulated respiratory rate monitor. It publishes 1 data stream;
the patient’s respiratory rate.

3. PCAPump - A DriverProfile representing the PCA pump.
This component type can publish alarm events, and can sub-
scribe to command (such as pump disable/enable) events.

4. PumpGuardLogic - A DataTransformer which subscribes to
the available physiologic data (SpO2, heart rate, respiratory
rate). If the physiologic parameters fall outside of a specified
range, then this component will cease to publish the tickets
required by the PCA pump to remain enabled.

5. VitalsDisplay - A DataSink which subscribes to physiologic
data streams. Typical business logic for this component will
render an on screen realtime graph of the patient data.

6.2 Prototype modeling - integration scenario

An executable scenario was created by using the MDCF Scenario
Editor to wire appropriate appropriate publish ports to the desired
subscribing ports. Figure 8 is a screen capture from the model-
ing tool. Green coloring indicates publishing ports and red col-
oring indicates subscribing ports. Each port to port connection be-
comes a sort of virtual channel. The Scenario Editor provided basic
type checking to ensure that ports with incompitable types were not
connected. In the PCA use case, the PumpGuardLogic and Vitals-
Display subscribed to all of the published physiologic signals pro-
vided by the PulseOximeter and RespiratoryRateMonitor except
the alarm events. The PCAPump was wired into the scenario such
that the commands generated by the PumpGuardLogic component
was the only data source subscribed to.

6.3 Prototype implementation - component business logic

After each component type was defined the Java code skeleton for
each was auto-generated by the MDCF PDE. Each generated Java
code skeleton contained all the logic required to connect the com-
ponent to the runtime MDCF stack, the appropriate serialization
and deserialization logic for each datastream the component sub-
scribes to or publishes. By default, each generated component is
passive, or has no explicity defined threads. Any business logic
defined by the developer is invoked by the underlying framework
when new data arrives.

This is advantageous because the scenario developer does not
have to spend much time if any debugging concurrency issues such
as deadlock, livelock, or missed messages. There are certain situ-
ations, however, where the developer must define local threads in
the component explicitly, such as when the component must access
data that is not provided by the framework. This particular situ-
ation commonly manifests itself in the DriverProfile components,
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MDCF components

public class PumpGuardLogic extends BaseMachine implements TransformerComponent{
...
private PumpGuardLogicState pgls = new PumpGuardLogicState();
...
public PumpGuardLogic(){

... 
}

...
...
protected void init(){

...
}

private void reviewStateAndMsgPCA(){
...

}
...

class PulseOx_PulseRateListener implements MessageListener{
public void onMessage(Message message){

TextMessage txtMsg = (TextMessage)message;
try {

String msgTxt = txtMsg.getText();
int PulseOx_PulseRate = Integer.parseInt(msgTxt);
synchronized(pgls){

pgls.PulseOx_PulseRate = PulseOx_PulseRate;
}
reviewStateAndMsgPCA();

} catch (JMSException e) {
e.printStackTrace();

}
}

}
...

Class skeleton and necessary message bus code 
Is auto-coded by the MDCF development environment.

Developer implements the business logic / “reaction”
code. 

PDE automatically creates internal listener classes
which wait for new data and deserialize data to
the appropriate type. The new data is automatically
passed to the business logic.

Figure 10: Source code excerpt from the PumpGuardLogic
component of the PCA prototype. Annotations indicate what
sections where autocoded and what was hand written.
where the driver must poll a memory location in the physical sen-
sor hardware to extract data values. Figure 9 illustrates how threads
and concurrency are typically defined in MDCF components. Be-
cause each component is implemented in Java, it is possible for a
component developer to explicity define local threads, breaking the
passive nature of the component. For the PCA control prototype,
an additional active thread was hand-coded into the DriverProfile
components for the PulseOximeter and RespiratoryRateMonitor.
These threads were used to poll the sensors of the devices, pack-
age the sensor data into MDCF messages, and then publish those
messages to the MDCF. The sensor polling thread in the Respirato-
ryRateMonitor component simply queried the simulated patient via
a Java method call. The polling thread in the PulseOximeter used
the Java serial communications API to capture serial line data via a
RS-232 cable connected to the pulse oximeter’s digital communi-
cations port.

The PumpGuardLogic component implemented the closed loop
controller as a purely software component. For the purposes of the
demo 3 different versions of this component were implemented,
each utilizing the multiple vital signals differently. Each Pump-
GuardLogic subscribed to each physiologic signal present in the
scenario (SpO2, Heart Rate, Respiratory Rate). When a new piece
of data arrived from any of the respective datastreams that data-
point was stored in the component’s local state and the business

logic was invoked. The business logic for each version varied some-
what:

1. Component Version 1 - Basic Control: Ceased to generate
’PCA enable’ tickets when any of the vital signs falls out of
a pre-configured range.

2. Component Version 2 - Basic Control + Alarm: Similiar to
version 1 except that device alarms are also analyzed. If the
pulse oximeter or respiratory rate monitor publish an alarm
event PCA was halted.

3. Component Version 3 - Conservative Pump Disable: Com-
pared each vital sign in the scenario against a pre-configured
threshold. The component will only ceased to produce ’PCA
enable’ tickets if data streams from each device fall out of
the specified range at the same time. This could be useful
in a clinical context where one of the devices is a poor indi-
cator of oversedation (e.g. pulse oximeter finger clip falling
off of a patient or the fluorescent lighting interfering with the
sensor.)

Figure 10 shows the code skeleton of the PumpGuardLogic, il-
lustrating how the MDCF PDE enabled us to implement the logic
of the controller without concerning ourselves with network code
or concurrency issues.

7 Assessment
Utilization of the MDCF allowed us to rapidly implement a pro-
totype system that provides closed-loop physiologic control for in-
travenous PCA pumps. The prototype we produced met our orig-
inal requirements defined in Section 6 of (a) Safety, (b) Flexibility
and (c) Portability. Because the underlying framework managed
all of the network communication we did not have to spend any ef-
fort writing network communications code and we did not have to
worry about concurrency issues that may have to be dealt with in
bespoke or one-off implementations. The MDCF PDE’s (Program-
mer’s Development Environment) modeling tools allowed us to de-
sign and implement the prototype top down, ensuring that compo-
nents were guranteed to interoperate and leaving us with a library
of both design and implementation artifacts that could provide a
solid foundation for more advanced and comphrehensive versions
of PCA control.

Interestingly, one aspect of this overall approach became unex-
pectadly beneficial during the CHC. Because of the active type
checking the PDE provides we were able to rapidly re-configure
the prototype’s specification on the conference floor and immedi-
ately provision the new configuration on the MDCF in a matter of
minutes. This helped us engage the many clinicians and health IT
professionals that were present at the CHC and allowed us to il-
lustrate the flexibility that using a health IT infrastructure (MoM)
similiar to what is commercially available permits. (E.g. we rapidly
provisioned different coordination scenarios using the different ver-
sions of the PumpGuardLogic transformer component.)

7.1 Future Work
While the current version of the MDCF has not been rigoursly an-
alyzed for reliability arguably it is possible to build a closed loop
control system for PCA that is safe (if the MDCF or network fails,
the pump simply turns off.) This sort of safe fallback behavior may
not be appropriate or even possible for other coordination scenarios
(I.e. closed loop blood sugar management for diabetic patients.) In
order for the MDCF to be widely applicable in clinical trials, effort
must be directed towards building a safety case of both the infras-
tructure’s reliability and security. There are several key areas where



safety properties must be formally developed and validated against
the MDCF infrastructure:

• Timing Constraints - The underlying MoM must make a
gurantee about the timing of message delivery, specifically,
that time critical messages are always delivered before a dead-
line expires

• Reliable Delivery - The underlying MoM must not drop or
fail to deliver critical messages.

• Security - Since the MoM is potentially managing many
physiologic datastreams from many patients and EHRs, the
MoM should enforce secure access to those datastreams. Data
should be secure from external actors and from internal com-
ponents which do not have the appropriate access rights.

In addition, the MDCF tool chain should facilitate the generation
of safety evidence that can be used for regulatory purposes:

• Scenario Safety Specifications - The scenario model, asso-
ciated safety specification, and the formal proof of compli-
ance is a critical part of the safety case.

• Component Contracts - Component developers should be
able to specify non-trivial constraints on the scenario com-
ponents themselves. The PDE should then aid the developer
(i.e. acting automatically or as a proof assistant) in generat-
ing formal evidence that a given component implementation
complies with its contract.

Thus validated components combined with a scenario specifica-
tion and its safety property create horizontal compositional safety
evidence. Composed vertically with the safety case for the infras-
tructure, a safety case for the full system could be produced.
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