
Role-Based Access Control (RBAC) in Java via Proxy
Objects using Annotations

Jeff Zarnett
jzarnett@uwaterloo.ca

Mahesh Tripunitara
tripunit@uwaterloo.ca

Patrick Lam
p.lam@ece.uwaterloo.ca

Department of Electrical & Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada

ABSTRACT
We propose a new approach for applying Role-Based Access
Control (RBAC) to methods in objects in the Java program-
ming language. In our approach, a policy implementer (usu-
ally a developer) annotates methods, interfaces, and classes
with roles. Our system automatically creates proxy objects
which only contain methods to which a client is authorized
access based on the role specifications. Potentially untrusted
clients that use Remote Method Invocation (RMI) then re-
ceive proxy objects rather than the originals.

We discuss the method annotation process, the semantics
of annotations, how we derive proxy objects based on anno-
tations, and how RMI clients invoke methods via proxy ob-
jects. We present the advantages to our approach, and dis-
tinguish it from existing approaches to method-granularity
access control in Java. We demonstrate empirical evidence
of the effectiveness of our approach by discussing its appli-
cation to software projects that range from thousands to
hundreds of thousands of lines of code.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Access Controls; K.6.5 [Management of Computing and
Information Systems]: Security and Protection; C.2.4
[Computer-Communication Networks]: Distributed Sy-
stems—Distributed Applications

General Terms
Security, Management

Keywords
Access Control, Java, RMI, Proxy Objects, RBAC

1. INTRODUCTION
Access control regulates accesses to resources by princi-

pals. It is one of the most important aspects of the secu-
rity of a system. A protection state or policy contains all
information needed by a reference monitor to enforce ac-
cess control. The syntax used to represent a policy is called

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’10, June 9–11, 2010, Pittsburgh, Pennsylvania, USA.
Copyright 2010 ACM 978-1-4503-0049-0/10/06 ...$10.00.

an access control model. Over the past decade and a half,
Role-Based Access Control (RBAC) [1] has emerged as the
dominant access control model in enterprise settings.

In RBAC, principals are called users. Users get permis-
sions to access resources via membership in roles. We present
a new way to realize RBAC in Java. Java is a widely-used
programming language, and therefore is an important con-
text in which to realize RBAC. We are not the first to make
this observation (see, for example, [2]); however, our ap-
proach has several advantages over previous approaches.

Java is an object-oriented programming language. A pro-
grammer declares and implements classes; objects are in-
stances of classes. Classes comprise methods and data. A
good programming practice is to ensure that all accesses to
an object are via methods it exposes, thereby respecting the
principles of encapsulation and information hiding.

We provide a mechanism for access control to methods in
Java objects. There are built-in mechanisms for program
structuring in Java that resemble access control. For ex-
ample, it is possible to specify that only some methods are
public, while others are private. Private methods may be
invoked only by other methods within the class. Note that
access control based on method visibility is not secure: Java
Reflection can circumvent the method visibility rules.

Method visibility mechanisms are coarse-grained: for in-
stance, any class and method may invoke methods that are
denoted as public. Several other proposed approaches aug-
ment the basic access control features in Java. (See Section 6
for a more comprehensive discussion of related work.) Stack
inspection [3], for example, can be used to provide method-
specific access control, but does not cope well with remote
clients.

We focus on clients that use Remote Method Invocation
(RMI). Our approach works as follows. (See Section 2 for de-
tails.) We use Java annotations [4] in our approach. Annota-
tions enable developers to associate arbitrary metadata—in
our case, access control metadata—with code. In particu-
lar, developers annotate methods, interfaces, and classes in
the Java source code with roles from the developer-specified
RBAC policy. We test for the presence of annotations after
the source code is compiled.

At compile-time, our system builds interfaces according to
the specified policy. At run-time, we create proxies matching
these interfaces and give them to clients instead of granting
them access to the original objects.

Our approach provides more fine-grained access control
than previous approaches: a proxy object exposes only those
methods to which the client is authorized. Consequently, an

RMI client is unaware of the existence of other methods in
the class. This has an additional efficiency side benefit: we
preclude the client from even invoking a method to which
it is not authorized, and thus, large arguments need not be
sent over the network. Other approaches, such as bytecode
editing [5], check at the server whether the call is authorized
after the client has invoked the method and the arguments
have been transmitted.

Furthermore, we bind clients to roles, and clients have
access to only those methods whose roles correspond with
the ones to which they are authorized. This is a significant
improvement over our previous, preliminary work [6], which
only supported coarse-grained “accessible” or “not accessi-
ble” annotations for methods, interfaces and classes.

The contributions of this paper include:

• the idea of using proxy objects for Role-Based Access
Control in Java applications with RMI;

• the use of Java annotations for specifying RBAC poli-
cies directly in the code of Java implementations;

• formal semantics for our annotations; and

• our experience using our system to annotate three Java
applications.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a simple example and describes our system in
prose and using First Order Logic. Section 3 contains the im-
plementation details of our system. We present an overview
of the performance analysis in Section 4 and present a case
study of three sample programs in Section 4.1. We present
future enhancements in Section 5, related work in Section 6,
and conclude in Section 7.

2. OUR APPROACH
In this section, we first present an example, and then dis-

cuss our approach to realizing RBAC in Java. We discuss
the specification of RBAC policies in our approach and how
annotations denote roles. We discuss also the security ben-
efits from using our approach. In Section 2.2, we present
precise semantics of our approach in first-order logic.

In our approach, we build proxy objects from the real ob-
jects, and allow partially-trusted users to directly access the
proxies only. For each role, we derive a proxy object. A
client may be bound to more than one role, and may suc-
cessfully request the proxies that are associated with every
role to which the client is bound. A proxy implements only
those methods to which the role with which it is associated
is authorized. Whether a role is authorized to a method or
not is inferred from annotations in the source code.

Annotations in Java are metadata regarding the code they
accompany. In the context of this paper, an annotation in-
dicates a role. Annotations may be associated with an in-
terface, a class, or a method (within an interface or a class).
We first discuss how we derive the effective annotation on a
method informally, and more precisely in Section 2.2. The
only clients to which a method is authorized are those that
are members of roles in the method’s effective annotation.

We also provide a mechanism for specifying the roles to
be used in annotations. Developers may associate roles with
one another in a role hierarchy [1]. A role hierarchy, denoted
as RH , is a partial ordering of the roles. If 〈r1, r2〉 ∈ RH ,

then we say that r1 subsumes r2. The consequence is that if
r2 is in the effective annotation of a method m, and a client
is authorized to r1, then the client is authorized to m.

Example.
We present an example of an RBAC policy, and a discus-

sion of its use in a snippet of Java code. In this scenario, we
wish to assign some rights to one set of users, and different
rights to another set of users.

Figure 1 presents a role hierarchy. We have five roles,
IT Management, Accounting, IT Employees, Human
Resources and Everyone. The arrows indicate role sub-
sumption. That is, everyone in IT Management is an
IT Employee (and therefore in IT Employees), and ev-
ery member of Accounting, IT Employees and Human
Resources is a member of Everyone. (We use the term
“subsumption” rather than “inheritance” as is customary in
RBAC. We reserve the term “inheritance” for Java’s notion
of inheritance.)

!""#$%&'%()*+,-./#0112

)*+34%4(1-1%&

5$-4%+
612#$7"12

,8170#%1

Figure 1: Roles in the Separation of Privilege Sce-
nario. Arrows indicate a subsumption relationship.

The Java code we intend to protect follows.

struct Item {

String name;

double quantity;

String unit;

double price;

}

class Order {

// Constructor

Order(List<Items> items) { ... }

void approve() { ... }

}

The code includes a class Order, which has two methods,
Order() and approve(). (Following convention, we write
method names with parentheses.) The method Order() is
called a constructor, and executes upon creation of an object
of the class Order. The method approve() is invoked by a
client that wants to approve an order that exists.

We require that only members of ITEmployees may cre-
ate orders, and only members of the role Accounting may
approve orders. We assume that an object of type Order on
which all clients operate resides on a server, and all clients
invoke methods on it via RMI. We next discuss how our
system supports and enforces this policy.

Effective annotation.
As we mention above, we allow a method, interface or class

to be associated with an annotation. We infer the effective
annotation on a method as follows. We have adopted the
approach of “most specific annotation applies” in how we
infer the effective annotation on a method. We present these
rules precisely in Section 2.2.

If a method has an explicit annotation when it is defined
in a class, then that explicit annotation is the effective an-
notation of the method. If a method is inherited from a
superclass, but is not explicitly defined in the subclass, then
the annotation in the superclass is its effective annotation.
The reason is that in Java, when a method that is defined
only in the superclass is invoked on an object of the subclass,
it is the method from the superclass that is invoked.

If a method is defined in a class but has no annotation
on it, and the class has an annotation, then the effective
annotation on the method is the annotation on the class.
We point out that a class may have no annotation. In this
case, we do not infer its annotation from a superclass, if that
class indeed inherits another class. The reason is that, as a
design choice, we have chosen to disassociate the semantics
of security from the intended semantics of class inheritance.

We allow interfaces to be annotated as well. An interface
as a whole may be annotated, as may individual methods
that are declared within it. If the interface is annotated,
then that annotation affects methods declared within the
interface only if a method does not have an annotation of
its own within the interface. Annotations on an interface do
not carry over to subinterfaces. If a method is re-declared in
a subinterface, then its annotation in the subinterface affects
classes that implement the subinterface.

Annotations on interfaces have different semantics than
annotations on classes and methods within classes. Because
Java interfaces constrain the contents of classes which choose
to implement them, we decided to interpret annotations on
interfaces as constraints on annotations for methods defined
within classes that implement those interfaces.

Suppose we infer an effective annotation of the set of roles
R on a method m that is defined in class c. Suppose also
that we infer an annotation R′ on all interfaces that c imple-
ments that declare m. Then, we require that every role in
R′ subsumes some role in R. Consequently, a client that is
authorized to a role in R′ has access to the method. R may
include other roles, and consequently authorize other clients
as well; R′ is a lower bound on the clients that may access
the method. We impose this constraint at compile-time—if
some role in R′ does not subsume any role in R, then we
declare a compile-time error.

Security.
As we mention in Section 1, we target our access con-

trol approach to RMI-accessible objects only. There exist
some design approaches that allow granularity at the level
of instances of the class, but in our design, all instances of
a class are treated equally. Our threat agents are remote
clients. We assume that the potential attacker is a client in
a different Java Virtual Machine (JVM) [7] whose only way
of accessing objects is via RMI. It is possible to adapt our
approach to local clients to provide more limited access con-
trol. However, other approaches such as stack inspection [3]
combined with resistance to code-modification may be more
effective in thwarting local attackers.

By default, our policy is “deny all.” Annotations can be
seen as selective“allow”rules. As only the methods to which
a client is authorized are implemented in the proxy’s inter-
face (see the next section for details), our approach hides
even the existence of other methods in an object. We see
this as both a security and a performance benefit. From the
standpoint of security, we have some measure of confiden-
tiality in addition to access control. From the standpoint of
performance, the server needs no run-time check to verify
whether a client’s method invocation is authorized.

We point out also that our solution is impervious to at-
tacks that use Java reflection. Reflection allows a program
to observe and modify its own state at run-time, and can
be used to bypass security features (e.g., to read the inter-
nal state of an object). With reflection, methods marked
private are discoverable and invocable, and an attacker may
manipulate the internal state of objects.

To justify our assertion, we consider a proxy object that
is accessed remotely using RMI. Although the proxy object
keeps a reference to the original, the original remains inac-
cessible from the standpoint of reflection, because reflection
cannot be used on remote objects [7]. RMI hides all fields
of the object at the server from remote clients; fields do not
appear on the client-side stub. As we mention above, proxies
implement only those methods to which a role is authorized.
As long as a client is able to access only the proxies that are
associated with roles to which it is authorized, it is unable to
glean information even about the existence of other methods
or fields using reflection.

2.1 Annotations
In this section, we discuss how the developer defines roles

and the role hierarchy, and how developers insert annota-
tions into the program’s code.

Roles and role hierarchy.
We declare a role using what we call a meta-annotation.

The following code illustrates how to declare the role ITEm-
ployees from Figure 1.

@Role

@Retention(RetentionPolicy.RUNTIME)

public @interface ITEmployees { }

This code segment is an example of a basic role annota-
tion. @Role is a standard Java annotation, used as metadata.
Annotations are syntactically denoted by the @ symbol, and
thus the first line applies the Role annotation to the cur-
rent class. The second line is an annotation we add for the
compiler that specifies that the ITEmployees annotation’s
presence should be observable at run-time, and the com-
piler will therefore propagate that annotation to the output
class file. Thus, when executing, the program could check if
this annotation is present on a method or class. Finally, the
syntax for declaring an empty annotation appears on line
three. Empty annotations serve solely as markers attached
to a method, interface, or class.

We choose to annotate a role declaration with the roles
it subsumes as our method of declaring the subsumption
relationships. This method is simple and concise, and at
compile-time, we can automatically compute the role hier-
archy based on the subsumption annotations. The following
snippet of code expresses how we declare a role subsump-
tion relationship; ITManagement subsumes ITEmploy-

ees. This means a user in IT management has all of the
rights of a user in IT employees. Note that the following
annotation declares a new role and re-uses an existing role
in a subsumption relationship.

@Role

@ITEmployees

public @interface ITManagement { }

To declare that two roles r1 and r2 subsume r3, we anno-
tate the declarations of r1 and r2 with r3—we write “@r3”
above “public @interface r1 { }” and above “public @inter-
face r2 { }”. To declare that r4 subsumes r5 and r6, we write
@r5 @r6” above “public @interface r4 { }”. Subsumption is
transitive, so in a system where r7 subsumes r8 and r9, and
a role r10 is introduced which should subsume roles r7, r8,
and r9, it suffices to declare that r10 subsumes r7.

Annotations on classes, methods and interfaces.
The following snippet of code illustrates how we anno-

tate the class Order and its method approve(). Order is
annotated with the role ITEmployees and approve() is
annotated with the role Accounting. We refer the reader
to our earlier discussion under “Effective annotation” and
the following section for the semantics of such annotations.

@ITEmployees

public class Order {

// Constructor

Order(List<Items> items) { ... }

@Accounting

void approve() { ... }

}

It is possible to annotate a class or method with more than
one role. Simply list the names of the roles in sequence, each
preceded by @, above the definition for the class or method.

As we mention above under “Effective annotation,” we
may annotate interfaces and method declarations within in-
terfaces as well. The following snippets show an example
of a method, getSalary(), that is declared within an in-
terface IHiringRequest, annotated with the role Human-
Resources. We show also a class, HiringRequest, that
implements IHiringRequest. As we clarify in our earlier
discussions under “Effective annotation,” and more precisely
in the following section, we require, at compile-time, the ef-
fective annotation on getSalary() to include HumanRe-
sources. In this example, we meet this requirement by ex-
plicitly annotating getSalary() in its definition in the class
HiringRequest with HumanResources.

interface IHiringRequest {

@HumanResources

public Money getSalary();

...

}

class HiringRequest implements IHiringRequest {

@HumanResources

public Money getSalary() { ... }

...

}

The expected annotation on HiringRequest.getSalary()

is @HumanResources; that is, users who are members of the
human resources group must be able to invoke getSalary().
The annotation’s presence on the interface’s method defini-
tion implies that any implementations of getSalary() must
also be annotated with @HumanResources or any role that
@HumanResources subsumes; if any implementation is not
so annotated, that is a compile-time error.

2.2 Semantics
To express the semantics of our approach precisely, we use

First Order Logic [8].

Annotations in class and interface definitions.
Our annotation inference rules use the following predi-

cates: (1) effectiveAnnotation(m, c, r) is used to express that
the role r is in the effective annotation of method m in class
c; (2) subsumes(r1, r2) is used to express that the role r1
subsumes r2. We note that the subsumption predicate is
reflexive, so subsumes(r1, r1) is always true. (3) The pred-
icate annotatedCorI(ci, r) is used to express that the class
or interface ci is annotated with r—the annotation may be
explicit or inferred; (4) annotatedMethod(m, ci, r) is used to
express that the method m is explicitly annotated with the
role r in the class or interface ci; (5) definedIn(ci,m) is used
to express that the method m is defined or declared in the
class or interface ci respectively; and (6) extends(ci2, ci1) is
used to express that the class or interface ci2 extends (or
inherits) the class or interface ci1.

Note that our predicate definedIn(ci,m) is true for at most
one ci per m. For example, consider a scenario where c3
extends c2 and c2 in turn extends c1; both c1 and c2 define
method m. We say that definedIn(c3,m) is false because m
is not explicitly defined in c3. definedIn(c2, c3.m) is true, as
there is an explicit definition for m in that class; however,
definedIn(c1, c3.m) is false. This follows the Java language
semantics; a call to c3.m() results in an effective invocation
of the method c2.m() and not c1.m().

Having defined the predicates, we next use them to state
the rules defining effective annotations.

subsumes(r3, r1)← subsumes(r3, r2) ∧ subsumes(r2, r1) (1)

annotatedCorI(ci, r)← annotatedCorI
(
ci, r

′) ∧ subsumes
(
r, r

′)
(2)

effectiveAnnotation(m, ci, r)← annotatedMethod(m, ci, r) (3)

effectiveAnnotation(m, ci, r)←

effectiveAnnotation
(
m, ci, r

′) ∧ subsumes
(
r, r

′)
(4)

(effectiveAnnotation(m, ci, r)← annotatedCorI(ci, r))←
definedIn(ci,m) ∧ ∀r¬annotatedMethod(m, ci, r) (5)

effectiveAnnotation(m, ci2, r)←−
¬definedIn(ci2,m) ∧ effectiveAnnotation(m, ci1, r)

∧ extends(ci2, ci1) (6)

Rule (1) expresses that role subsumption is transitive.
Rule (2) implements the role subsumption relation on class
and interface annotations: if r subsumes r′ and a class or
interface ci is annotated with r′, then we infer that ci is
annotated with r as well. Rule (3) ensures that explicit an-
notations are also effective annotations: role r is in the ef-
fective annotation of method m in class c if it is an explicit
annotation on m’s definition in c. Rule (4) implements role
subsumption for effective annotations: if r subsumes r′ and
r′ is in the effective annotation of m in c, then so is r. Rule

(5) causes class annotations to affect unannotated contained
methods: if a method m, defined in class c, has no annota-
tions, then the annotations on c are the effective annotation
on m. Finally, Rule (6) computes effective annotations for
inherited methods: if method m is not defined in class or
interface ci2, but has an effective annotation in a class or in-
terface ci1 that ci2 extends (or inherits), then that effective
annotation is also an effective annotation for m in ci2.

Constraints from interfaces.
As mentioned earlier, annotations on an interface and on

method declarations in interfaces constrain the effective an-
notations on their implementing methods in classes. We
specify the rule pertaining to annotations on interfaces be-
low. We introduce the predicate expectedAnnotation(c,m, r)
to express the constraint that r is required to be in the
effective annotation of m in c. We adopt the predicate
implements(c, i) to express that class c implements inter-
face i.

expectedAnnotation(c,m, r)←
implements(c, i) ∧ effectiveAnnotation(m, i, r) (7)

The rule expresses that if r is in the effective annotation
of method m in interface i, and class c implements i, then
r is required to be in the effective annotation of m in c.
Note that m has an effective annotation in i only if (1) m
is defined in i, or (2) i extends an interface that defines
m. Also, because c implements i and m is defined in i,
Java ensures that m must exist in c as a method, either by
inheritance or by explicit definition.

Model.
Rules (1)–(7) have a well-founded semantics [9]. We use

negation; however, the negation is stratified.
For a semantics, we specify a model, M, and an environ-

ment or look-up table, l [8]. The set of concrete values, A,
that we associate withM is A = Ai ∪Ac ∪Am ∪Ar, where
Ai is the set of interfaces, Ac is the set of classes, Am is the
set of methods and Ar is the set of roles. We assume that
the sets Ai, Ac, Am and Ar are disjoint. We consider only
those environments in which our variables have the following
mappings: the variables r, r′, r1, r2 and r3 map to elements
of Ar, ci, ci1 and ci2 map to elements of Ac ∪Ai, c maps to
an element of Ac, i maps to an element of Ai and m maps
to an element of Am.

To compute M, we begin with a bare model M0, with
A as its universe of concrete values. We populate the bare
modelM0 with relations that make our predicates concrete,
by extracting values directly from the Java code. For exam-
ple, when the class or interface ci2 extends (in the Java code)
ci1, we add 〈ci2, ci1〉 to extendsM0 . Similarly, we instantiate
annotatedMethodM0 to those 〈m, ci, r〉 tuples such that the
method m has the annotation r in its definition in the class
or interface ci.

We define M to be the least fixed point from apply-
ing Rules (1)–(7) starting with M0. The following algo-
rithm α computesM. First, populate the sets definedInM0 ,
subsumesM0 , annotatedMethodM0 , annotatedCorIM0 and
extendsM0 from the Java code. Observe that definedInM0 =
definedInM and annotatedMethodM0 = annotatedMethodM.

Apply Rule (1) repeatedly to compute the transitive clo-
sure of subsumesM0 , which gives subsumesM. Then, repeat-
edly apply Rule (2) to get annotatedCorIM. Next, repeatedly
apply Rules (3) and (5), followed by Rule (6). Finally, com-
pute effectiveAnnotationM by repeatedly applying Rule (4)
and expectedAnnotationM by repeatedly applying Rule (7).

We assert that α indeed computes the least fixed point.
This is because it exploits a topological ordering of the in-
ference rules. The algorithm α runs in worst-case time
quadratic in the input size, which is the number of classes,
interfaces, methods and roles.

Consistency and correctness.
The next definition states the consistency property that

we enforce at compile-time.

Definition 1. Our system is consistent if

expectedAnnotationM ⊆ effectiveAnnotationM.

As we discuss in Section 2.1, annotations on interfaces
impose constraints on the effective annotations on methods
defined in classes. If the effective set of annotations on a
method in an interface i is Ei, and the effective set of an-
notations on the corresponding method in a class c that
implements i is Ec, the consistency property requires that
Ei is a lower bound for Ec, that is, Ei ⊆ Ec.

We assert via the following proposition thatM is correct.
Correctness is characterized relative to M0; M0 expresses
exactly what is specified in the Java code. A method in a
class has in its effective annotation every role that it should
(completeness) and no roles that it should not (soundness).

Proposition 1. (m, c, r) ∈ effectiveAnnotationM if and
only if exactly one of the following three cases is true. Fur-
thermore, if (m, c, r1) and (m, c, r2) are two elements of
effectiveAnnotationM, then the same case is true for both
elements.

1. If m is defined in c, then:

(a) m is annotated with some role r′ in its definition
such that r subsumes r′; or,

(b) m has no annotations in its definition, and c is
annotated with r′, where r subsumes r′.

2. Otherwise, let c1, c2, . . . cn be the superclasses of c, and
let ci be the superclass which explicitly defines m. Then
m is annotated with r in its definition in ci via one the
above cases.

Zarnett [10] provides a proof for this proposition.

Semantics of Invocation.
We express our semantics of invocation via the following

rules. The predicate invokes(m1, c1,m2, c2) indicates that
method m1 in class c1 invokes method m2 in c2. The pred-
icate canInvoke(m, c, u) indicates that the user u is allowed
to invoke method m in class c, and member(u, r) indicates
that u is a member of the role r.

The predicate canInvoke is not restricted to the methods
that a user is directly authorized to invoke; it includes meth-
ods invoked transitively. Thus, canInvoke includes all meth-
ods the user can effectively run. Consider a scenario where
role r is not authorized to invoke b(), but may invoke a(),

and a() invokes b(). Users who are members of r can invoke
a(), but our semantics also reflect that members of r can,
in effect, invoke b().

invokes(m1, c1,m3, c3)←
invokes(m1, c1,m2, c2) ∧ invokes(m2, c2,m3, c3) (8)

canInvoke(m, c, u)← effectiveAnnotation(m, c, r) ∧ member(u, r) (9)

canInvoke(m2, c2, u)←
canInvoke(m1, c1, u) ∧ invokes(m1, c1,m2, c2) (10)

Rule (8) indicates that invokes is transitive: if m1 invokes
m2 and m2 invokes m3, then m1 invokes m3. Rule (9) indi-
cates that a user is allowed to invoke a method to which he
is authorized via his role memberships. When we say “user,”
we mean the customary RBAC meaning of a user [11]; in
our context, an RMI client maps to a user.

Finally, Rule (10) indicates that if a user may invoke a
method m1, and m1 invokes m2, then the user can (indi-
rectly) invoke m2 as well.

As the rules above express, a client may of course invoke a
method to which it is authorized. In addition, a client may
invoke other methods, but only via methods to which he is
authorized. That is, if a client is authorized to invoke m1,
and in its execution, m1 invokesm2, then this is allowed even
if the client is not authorized to m2 via annotations. The
reason we allow this is that we assume that m1’s invocation
of m2 is controlled—the client cannot directly control the
parameters and the manner in which m2 is invoked.

3. IMPLEMENTATION
In this section, we discuss the implementation aspects of

our approach. We separate our discussions into a compile-
time (Section 3.1) and a run-time component (Section 3.2).

Bytecode generation and modification are at the heart
of our implementation. We modify RMI-enabled classes at
compile-time and generate class files (compiled output) for
interfaces we derive. Our routine for building interfaces is
based on prior work [6]. We use a compile-time prepara-
tion step that takes place between compiling the source files
and running the RMI Compiler (rmic). In this step, we
employ an interface builder (see Section 3.1), which exam-
ines classes, derives an interface, and modifies that interface
according to the RBAC policy the developer has specified.

3.1 Compile-Time Component
Our program, the Proxy Object RBAC Compiler (porc)

automatically performs all the compile-time work. It first
builds the role hierarchy, based on the role annotations (see
Section 2 under “Roles and role hierarchy”). It then expands
annotations according to the inference rules (e.g., associates
class annotations with contained methods). Next, it exam-
ines the classes that implement the interfaces. It reports
an error if an implementation lacks an annotation that an
interface implies it should have. Finally, it infers the anno-
tations on method implementations from the annotations on
the classes in which they are defined.

Once the information about roles and annotations is com-
puted, porc searches the code base and finds RMI-accessible
objects, examines each of these objects and derives its re-
mote interface. This derived interface enforces the rules de-
scribed by the annotations (by hiding inaccessible methods).
porc saves the interface as a new class file, and modifies the

original object’s class file to implement the derived inter-
face. At run-time, the server simply enters a dynamically-
created proxy object of the correct type into the RMI server.
No modifications to the Java compiler or the RMI compiler
(rmic) are necessary.

Figure 2 depicts this process on a sample class Order,
in a version of our example from Section 2. We show se-
lected roles from Figure 1 in Figure 2. In the figure, javac,
porc and rmic are the three stages of compilation. The files
Accounting.java, Accounting.class, ITEmployees.java,
and ITEmployees.class are the roles, before and after com-
pilation. All other boxes are files that contain source code
or an intermediate representation. In the figure, we show
only new output files and modified input files; unchanged
input files do not appear as output of the processing steps.

In Figure 2, we assume that a developer has written the
Order.java file, and compiled it and the roles into a class
file using javac. The porc examines all the roles in our
system and defines the role hierarchy. Next, porc identifies
Order as being a remotely-accessible object, and processes
it further by deriving interfaces corresponding to each role.
In the figure, we show processing of the Order class for the
roles of ITEmployees and Accounting only.

Each generated interface (e.g., IOrder_Accounting) con-
tains only the methods authorized to its role. The porc

modifies Order.class to implement each generated inter-
face. It also outputs to roles.txt a summary of the role
hierarchy from in the given application. In addition, if there
are any RMI-accessible classes without any annotations, the
porc produces a warning to help the developer ensure that
he or she has applied the security policy to all classes.

Once our modifications are complete, we invoke rmic on
the resultant class files using the our provided common inter-
mediary interface Intermediary.class, and the RMI com-
piler produces the intermediary stub classes
Order_ITEmployees_Intermediary_Stub.class and
Order_Accounting_Intermediary_Stub.class.

3.2 Run-Time Component
Our authentication mechanism uses the Java Authentica-

tion and Authorization Service. JAAS enables developers
to specify their own methods for authentication, such as
password-based authentication. Upon successful authenti-
cation, we issue credentials to the client that describe the
client’s role(s) in the system. These credentials will be used
later when the client attempts to access a proxy. We note
that we are not interested in the mapping of clients to roles,
as there are many administrative models for doing so. The
important information (for us) in the credentials is the list
of roles that the client may access.

Authorization relies on the credentials the server has is-
sued to the client. To request a proxy object, the client
presents the credentials to the server. Once the server veri-
fies these credentials, it grants access to the proxy object.

To access the proxy, the client performs an RMI lookup of
an intermediary object. Intermediary objects are accessible
to everyone using RMI; they guard the proxy objects that
correspond to roles, by only making proxies available upon
receipt of credentials. Intermediaries are necessary because
it is not possible to require authentication for access to RMI
objects. RMI predates JAAS and has not been updated to
enforce the JAAS capabilities [12].

!"#"$
%&'()*+,
-!"#"$.

/,&01$
234+56$
789%$
%&'()*+,
-%&'$.

2,:+,;4"#" 2,:+,;5*"<<

2,:+,;5*"<<$
-=&:)>)+:.

?2,:+,@955&AB6)BC;5*"<<$
-D+B+,"6+:$?B6+,>"5+.

7=?$
%&'()*+,
-'()$.

2,:+,@955&AB6)BC@?B6+,'+:)",1@E6A3;5*"<<$
-7=?$E6A3.

?FG'(*&1++<;4"#"

955&AB6)BC;4"#"

?FG'(*&1++<;5*"<<

955&AB6)BC;5*"<<

?2,:+,@?FG'(*&1++<;5*"<<$
-D+B+,"6+:$?B6+,>"5+.

2,:+,@?FG'(*&1++<@?B6+,'+:)",1@E6A3;5*"<<$
-7=?$E6A3. 2,:+,@955&AB6)BC@?B6+,'+:)",1;5*"<<$

-D+B+,"6+:$?B6+,'+:)",1.

2,:+,@?FG'(*&1++<@?B6+,'+:)",1;5*"<<$
-D+B+,"6+:$?B6+,'+:)",1.

7&*+<;606

?B6+,'+:)",1;5*"<<$
-?B6+,'+:)",1$?B6+,>"5+.

Figure 2: Proxy Object Compiler Processing the Order class. The Java Compiler, Proxy Object RBAC
Compiler, and RMI Compiler boxes are processing programs; the boxes labelled ITEmployees.java/class and
Accounting.java/class are role files. The other boxes are files. Arrows represent input/output from processing
steps.

public interface Order_Accounting_Intermediary

extends java.rmi.Remote {

public Order_Accounting login

(Credentials credentials)

throws LoginException, java.rmi.RemoteException;

}

Consider a simple example of a client that connects to a
server. The server has an object that can be used to verify its
identity [13]. The server’s signed identity object is available
via RMI. Figure 3 shows the sequence of events starting from
when a client wishes to use the first object.

!"#$

%$&'$&

()"$*+

,-./,$0"1+&2

34

5 6

7 8

9 :

Figure 3: Communication Flow for a Client Access-
ing the First Proxy Object. Arrows correspond to
messages and time proceeds from left to right.

A directed edge in Figure 3 depicts an interaction between
two elements of the system, and these edges are numbered
from left to right. Before client-server communication be-
gins, the server instantiates the authentication object as well
as any proxy objects, and registers these objects so that they

are available via RMI (not shown). When a client wishes to
access a proxy object, the steps are:

1. The client requests the server’s authentication object
from the RMI registry.

2. The RMI registry returns to the client a reference to
the server’s authentication object.

3. The client may verify the authentication object using
the server’s public key. If the verification of the server’s
identity succeeds, the client sends login information
(using JAAS) to the server.

4. If the server accepts the client’s attempt to log in, it
returns to the client the set of credentials to which the
client is entitled (according to the user-to-role map-
pings of the system).

5. When the client wants to access an object, it asks the
RMI server for the location of the intermediary.

6. The RMI server returns that location to the client.

7. The client presents the server-issued credentials to the
intermediary.

8. If the credentials are valid, the intermediary returns to
the client a reference to the proxy object appropriate
to the request.

A proxy object is an instance of the Proxy class. This
class handles (in the sense of a Java Invocation Handler)
all method invocations on the proxy object. If the method
exists in the interface associated with a specific role, then
the proxy passes the invocation on to the original object.

The original object executes the method as requested. If a
method is not permitted for that role, it does not appear in
the interface, and hence is not available for invocation over
RMI. Therefore, only the methods that are allowed for a
given role may be invoked by users with that role.

4. EMPIRICAL ASSESSMENT
In this section, we present a brief analysis of the perfor-

mance of our system. The run-time principles of operation
of our system are practically identical to those in [6], and
the performance is therefore comparable.

To create an instance of a proxy of an object with no
defined methods, except those inherited from Object, takes
less than a millisecond, on average [6]. Thereafter, each
method to be processed adds a small penalty. The penalty
is roughly constant, so we observe linear behaviour with the
number of methods.

Deriving an interface is a significant component of the
run-time performance analysis in [6]; however, we instead
shift all the interface derivation work to compile-time and
need not derive any interfaces at run-time.

Invoking a proxy in place of the original has negligible
overhead. Creation of a proxy object takes an order of mag-
nitude less than the RMI lookup. Deriving the interface is
on the same order as the RMI lookup.

4.1 Case Study
We have applied our technique to three sample programs

that range from almost 9 000 to nearly 300 000 lines of code
(LoC). Our approach is applicable to programs that allow
clients to use RMI to invoke methods on objects. Many
software systems are suitable, possibly after some restruc-
turing. Any Model-Value-Controller (MVC) system is a
candidate, if the communication between the model and
view/controller are made to use RMI. When the program is
structured around persistent domain objects (objects repre-
senting program entities), the domain objects can be server-
side objects and accessed remotely by the client. A more
general scenario is remote administration. In remote ad-
ministration, the management objects (objects exposing ad-
ministrative functions) are published via RMI.

There is a performance penalty when developers convert
a program from entirely local execution to involving RMI.
However, the benchmarks in [6] indicate that our technique
adds no significant additional cost over the base penalty for
using Java RMI. If the intent is to convert the application
to use RMI, then a performance penalty is expected. Our
approach allows the application to operate via RMI where it
may not have been feasible before, because we offer security.

Our three sample programs are: JBoss-Messaging, a
Java Message Service (JMS) implementation that ships with
the JBoss application server; jGnash2, a personal finance
application; and Hospital RMS, a medical record man-
agement system that was a course project for one author.
For each program, we developed a role hierarchy intended
to represent a possible real-world security policy. Figure 4
shows the roles in the case studies and the subsumption re-
lationships between these roles.

We applied these role hierarchies to their respective pro-
grams and examined the process of annotation to evaluate
the applicability of our approach to real-world software. We
summarize our results in Table 1 (in which “Ann.” is the
total number of annotations we inserted into the code).

Program LoC Roles Relations Ann.
JBoss-M. 294 388 5 6 144
jGnash2 69 555 2 1 149

HospitalRMS 8 965 6 5 20

Table 1: Case Study Results for Sample Programs

JBoss-Messaging has many software components; we fo-
cus on the “core” package, and more specifically, the server
management components. The server management objects
are used for administrative functions in JMS, such as cre-
ation of topics and queues, setting the dead letter queue,
and monitoring the system. The management interface is a
relatively small subset of the program, but controlling ac-
cess to it is vital to maintaining program security. Consider
the following example of an annotation we apply in JBoss-
Messaging.

@QueueAdministrator

public void setDeadLetterAddress

(final String deadLetterAddress)

throws Exception { ... }

The Queue Administrator and the Server Administrator
(by subsumption) now have rights to invoke this method
when published via RMI. If the queue control object were
published without protection, anyone in the system could set
the dead letter address (the place where undeliverable mes-
sages end up). In that case, an attacker could then receive
messages intended for other users.

In the case of jGnash2, we apply our policy to the domain
objects (e.g., Transaction) and can therefore implement our
policy with a relatively small number of annotations, when
compared to the size of the code base. Controlling access
to the domain objects prevents an unauthorized user from
making changes to the data stored in the system. We may
then publish the domain objects via RMI. There are only two
roles in this system (read-only and full access) and only a few
domain objects, so the number of annotations to implement
the security policy is small.

The Hospital RMS application uses a strict model-view-
controller (MVC) architecture; we apply our security policy
by enforcing access control on the models. Accordingly, us-
ing role subsumption, we need only 20 annotations to enforce
the basic security policy of the system. This is because each
model (e.g., patient record model) is wholly accessible (all
methods available) or inaccessible (no methods available) to
various roles.

Overall, we can see that the number of lines of code in
the program do not necessarily indicate the number of an-
notations required to implement the security policy, nor do
more roles mean more annotations to insert. Instead, what
matters most is the design pattern of the application (e.g.,
MVC) and the security policy to be implemented. The se-
curity policy can often be succinctly stated, so that few an-
notations are needed to implement the policy. Finally, a
program typically has only a small number of objects that
are intended to be accessible via RMI. Consequently, the
total number of classes to annotate is small. As the proxy
object compiler issues a warning if there are RMI objects
without any annotation, it is easy to ensure all classes that
should have a security policy have annotations.

Modifying the code to insert the annotations is easy and
requires minimal time. We were able to annotate each of

!"##$
%&&'((

)'*+,
-.#/

0'12'1
%+34.

5'6$
%+34.

7894&$
%+34.

:"'"'$
%+34.

;8.4681

%+34.

<8&681

06*==

>*64'.6

?'@*#

!4.*.&'

AB8((,;'((*@4.@ CD.*(EF G8(946*#$);0

Figure 4: Role Hierarchies for Sample Applications. Boxes denote roles and arrows indicate subsumption
relationships.

the sample applications in less than a day. As properly
applying the security policy to all RMI-accessible objects
ensures the enforcement of that policy, a developer need
only locate all RMI-accessible objects, which is easy to do.
He or she can then apply annotations to specify the desired
security policy. Our system enables developers to succinctly
and rapidly encode RBAC security policies without having
to enforce them manually.

5. FUTURE WORK
To complement the concept of role-based security, we may

wish to introduce logging to our system, to track invocations.
If implemented, we could output a log indicating the role
that invoked a certain method at a particular time. Such
an audit log could be used to catch instances of a System
Administrator user performing an Order.create() and an
Order.approve() on the same Order, in violation of separa-
tion of privilege principles. Such information could also be
used for other purposes, such as gathering usage statistics.

Role Administration is a related area that has received
much attention in conjunction with role-based access con-
trol systems. Our administration procedure, described in
the implementation, is configured only at compile time. Al-
though configuration (addition and removal of annotations)
is simple enough that a security administrator who is not a
programmer could do it, code manipulation is still required.
In the future, we could improve role administration to be
outside of the code base of the system being protected.

6. RELATED WORK
Our solution is related to numerous areas in Java secu-

rity. We discuss bytecode editing, stack inspection, inter-
face derivation, proxy object generation, and, of course, role-
based access controls.

While type safety obviates many security concerns, ac-
cess control remains a key issue. Pandey and Hashii [5]
investigate bytecode editing to enforce access controls, but

do not discuss RMI. Wallach et al [14] enforce access con-
trols using Abadi, Burrows, Lampson, and Plotkin (ABLP)
Logic, where authorization is granted or denied on the basis
of a statement from a principal allowing or denying access.
However, their approach does not work with RMI, and, as
acknowledged by the authors, does not handle a dynamic
system with classloading well. Although Li, Mitchell, and
Tong [13] provide a technique for securing a Java RMI ap-
plication, their work does not use roles.

Giuri began with a basic overview of Role-Based Access
Control [2] and extended this work to a Web context [15].
This work is foundational in Java Role-Based Access Con-
trol, and we build upon it by involving RMI and dynamic
object generation from proxy objects. Ahn and Hu [16]
implemented a system for generating code from language-
independent security models; their approach enables sepa-
rate consistency verification for the model. Like many code
generation approaches, however, their system does not sup-
port round-tripping and therefore cannot smoothly support
concurrent changes to code and model, unlike our system,
which weaves the security policy directly into the code, help-
ing ensure that the code and the policy both remain up-to-
date.

Stack inspection can provide effective access control, but
in an RMI context, the client call stack is unavailable to
the server; even if it were available, it would be untrust-
worthy. A stack inspection scheme would therefore have to
consider all remote accesses untrusted, whereas proxies can
differentiate between trusted and untrusted RMI calls. Fur-
thermore, the time to perform a stack inspection increases
linearly with the depth of the stack [14], while the proxy
object overhead is constant. Stack inspection suffers from
difficulties with results returned by untrusted code, inheri-
tance, and side effects [3]. Proxy objects are more resistant
to these difficulties, because they do not trust any results
from untrusted code, are designed with inheritance in mind,
and are intended as a tool to avoid harmful side effects.
Proxy objects and stack inspection have different principles

of trust. In proxies, a caller is trusted if it receives a refer-
ence to the original object. In stack inspection, the callee
verifies its caller and all transitive callers.

Interface derivation is already in use in practice. For in-
stance, Bryce and Razafimahefa [17] generate dynamic prox-
ies to go between objects, and restrict access to methods.
We permit role-based access controls rather than partition-
ing into trusted and untrusted clients.

Myers et al created JIF (Java Information Flow) [18] to
restrict the leakage of information between objects within
a Java program. We focus on method invocation by vari-
ous roles, and do not assign ownership of data to particular
principals. Finally, our system makes no changes to the Java
language, meaning all semantics of the language remain con-
sistent with the Java language specification.

7. CONCLUSIONS
We have presented a technique for method-level role-based

access control for RMI-using Java programs. This work ex-
pands on previous work implementing method-level access
control using only safe and unsafe annotations. Our tech-
nique computes the access rights to a given method based
on program annotations. We have described the semantics
of our system using First Order Logic. To investigate the
behaviour of our system, we implemented a proxy object
RBAC compiler. Using this compiler, we conducted a case
study, which demonstrated the viability of our system in real
software applications of various sizes.

8. REFERENCES
[1] Sandhu, R., Coyne, E., Feinstein H., and Youman, C.,

“Role-Based Access Control Models,” Computer,
vol. 29, pp. 38–47, Feb 1996.

[2] Giuri, L., “Role-Based Access Control in Java,”
Proceedings of the third ACM workshop on Role-based
access control, pp. 91–100, 1998.

[3] Fournet, C. and Gordon, A., “Stack Inspection:
Theory and Variants,” ACM Transactions on
Programming Languages and Systems (TOPLAS),
vol. 25, pp. 360–399, May 2003.

[4] Gosling, J., Joy, B., Steele, G., and Bracha, G., Java
Language Specification, 3rd Edition. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2005.

[5] Pandey, R. and Hashii, B., “Providing Fine-Grained
Access Control for Java Programs,” Proceedings of the
13th European Conference on Object-Oriented
Programming, vol. LNCS 1628, pp. 449–473, 1999.

[6] Zarnett, J., Lam, P., and Tripunitara, M.,
“Method-Specific Java Access Control via Proxy
Objects using Annotations (Short Paper),” Proceedings
of the 5th International Conference on Information
Systems Security, vol. LNCS 5905, pp. 301–309, 2009.

[7] Richmond, M. and Noble, J., “Reflections on Remote
Reflection,” Proceedings of the 24th Australasian
Conference on Computer Science, vol. 11,
pp. 163–170, 2001.

[8] Hugh, M. and Ryan, M., Logic in Computer Science.
Cambridge, UK: Cambridge University Press, 2nd ed.,
2004.

[9] A. V. Gelder, K. A. Ross, and J. S. Schlipf, “The
well-founded semantics for general logic programs,”
Journal of the ACM, vol. 38, pp. 620–650, July 1991.

[10] Jeff Zarnett, “Method-Specific Access Control in Java
via Proxy Objects using Annotations,” Master’s thesis,
University of Waterloo, 2010.

[11] Ferraiolo, D.F., Kuhn, D.R., and Chandramouli, R.,
Role-Based Access Control. Norwood, MA, USA:
Artech House, 2007.

[12] Kumar, P., J2EE Security for Servlets, EJBs and Web
Services: Applying Theory and Standards to Practice.
Upper Saddle River, NJ, USA: Prentice Hall, 2003.

[13] Li, N., Mitchell, J. C., and Tong, D., “Securing Java
RMI-Based Distributed Applications,” Proceedings of
the 20th Annual Computer Security Applications
Conference, pp. 262–271, 2004.

[14] Wallach, D., Appel, A., and Felten, E., “SAFKASI: A
Security Mechanism for Language-based Systems,”
ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 9, pp. 341–378, 2000.

[15] Giuri, L., “Role-based access control on the Web using
Java,” Proceedings of the fourth ACM workshop on
Role-based access control, pp. 11–18, 1999.

[16] Ahn, G-J and Hu, H., “Towards realizing a formal
RBAC model in real systems,” Proceedings of the 12th
ACM Symposium on Access Control Models and
Technologies (SACMAT), pp. 215–224, 2007.

[17] Bryce, C. and Razafimahefa, C., “An Approach to
Safe Object Sharing,” Proceedings of the 15th ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pp. 367–381, 2000.

[18] Myers, A. C., Nystrom, N., Zheng, L., and Zdancewic,
S., “Jif: Java information flow,” July 2001. Software
release. http://www.cs.cornell.edu/jif.

