
Role Updating for Assignments

Jinwei Hu†‡, Yan Zhang‡, Ruixuan Li†∗, and Zhengding Lu†

†Intelligent and Distributing Computing Laboratory, School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan 430074, China
‡Intelligent Systems Laboratory, School of Computing and Mathematics

University of Western Sydney, Sydney 1797, Australia
{jwhu,rxli,zdlu}@hust.edu.cn yan@scm.uws.edu.au

ABSTRACT
The role-based access control (RBAC) has significantly simplified
the management of users and permissions in computing systems.
In dynamic environments, systems are usually undergoing changes,
whereas the associated user-role, role-role and role-permission re-
lations need to be updated accordingly in order to reflect thesys-
tems’ evolutions. However, such updating process is generally
complicated as the resulting system state is expected to meet neces-
sary constraints. This paper presents an approach for assisting ad-
ministrators with the update task: using this approach, it is possible
to check, in an automatic way, whether a required update is achiev-
able or not, and if so, a reference model will be produced. In light
of this model, administrators could fulfill the changes to RBAC
systems. We propose a formalization of the update approach,in-
vestigate its properties, and develop an updating algorithm based
on model checking techniques. Our experimental results demon-
strate the effectiveness of our approach.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Management, Security, Verification, Performance

Keywords
RBAC, Role Updating, Role Engineering, Model Checking

1. INTRODUCTION
Role-based access control (RBAC) is an effective mechanismfor

simplifying the administration of users and permissions incomput-
ing systems [11, 26]. In RBAC systems, users are associated with
roles such asmanager andemployee, and a role in turn is defined

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’10,June 9–11, 2010, Pittsburgh, Pennsylvania, USA.
Copyright 2010 ACM 978-1-4503-0049-0/10/06 ...$10.00.

as a set of permissions; users acquire permissions via roles. Essen-
tially, an RBAC system manages three relations: user-role relation,
role-role relation, and role-permission relation. Owing to RBAC’s
advantages (e.g., being policy-neutral and the ability to support a
wide range of access control requirements) it is widely supported
in commercial operating systems and database systems.

However, the administration of large RBAC systems is a com-
plex and challenging task. As organizations undergo changes, the
definition of roles (in terms of permissions) may need updating to
reflect those changes. We refer to the updating of user-role,role-
role, and role-permission relations asrole updating. Role updating
is a key component of role maintenance in role life-cycle [16], and
takes a great proportion of the total cost of role maintenance [22].

Despite many convenient RBAC administration models (e.g.,[8,
18, 25]) at our disposition, role updating is generally difficult and
error-prone, because usually the resulting state is expected to meet
various constraints. For example, updating is supposed notto un-
expectedly change users’ role set or permission set and thushinder
tasks being performed in the system; nor should it assign astu-
dent role to a user who is a professor in real-life, even though her
permission set remains the same.

Given a high-level update request, the trial-and-error approach is
work-intensive, inefficient and, when the request is not achievable
at all, very frustrating. An updating strategy, if exists, may involve
several administrative actions. The situation becomes worse as the
RBAC systems grow large. Hence, a tool facilitating role updating
is desired, as is also motivated by the following scenarios.
Repairing. Misconfigurations in access control systems can result
in severe consequences [3]. As such, correcting misconfigurations
is essential to systems’ usability and security. It consists of two
parts: identifying misconfigurations and changing access control
policies. While the former has been studied, how to change access
control policies is still an open problem, even though it maybe clear
who should implement the changes. As stated in [3]: “How the user
elects to modify the policy is orthogonal to our work; it could en-
tail changing an access-control list on a server or ...” Therefore,
role updating might be needed under the circumstance that miscon-
figurations in RBAC systems are detected.
User-permission assignments.In task-based systems, each task is
associated with a set of permissions [13].1 The set of permissions
should be assigned to a set of users so that the associated task could
be accomplished. In systems where RBAC is deployed, the user-
permission assignments are achieved via roles [2]. Considering the
variety of tasks, it is likely that any combinations of rolesfail to
enable exactly the needed user-permission assignments fora task.
In this case, to support the task, one may be willing to changethe

1Permissions for tasks may be augmented with temporal con-
straints. One essential problem is to assign permissions.

current RBAC state, to some extent such as with the constraint that
previous task assignments are not affected. Furthermore, the per-
missions required by users and tasks are not static. For one thing,
modern enterprises and organizations need to adapt to constantly
changing environments and requirements [22]. For another,it could
happen that a groupU of users are performing a task with a setP of
permissions, and that it turns out that an extra permissionp0 6∈ P

is a must at the late stage of the task; or the administrator may rec-
ognize thatP contains more privileges than strictly necessary for
the task, she may try to revoke redundant permissions fromU [13].

To help system security officers (SSOs) understand and manage
RBAC policies, various RBAC policy analysis tools have beenin-
vented [3, 14, 15, 19, 28, 31, 32, 36]. However, little efforthas been
devoted to answering what if the current RBAC state fails to meet
a requirement. One may consider role updating as an unpleasant
experience and thus avoid it. Also, it is because the updating is not
straightforward, an automated assistant tool has some appeal.

In this paper, we investigate the role updating problem (RUP),
with a bias on the update of role-permission relation, and provide
an automated role updatetool (Route). Note thatRoute is not
designed to automatically change RBAC policies, but to, given a
high-level update request, check whether the request is achievable
and, if so, present a reference model, in light of which SSOs could
implement changes to RBAC systems. Specifically, we make the
following contributions:

• We formally define a basic version ofRUP and a notion of
update constraint schema, which is able to express a wide
range of constraints on updates. We show the intractability
of RUP.

• We present a set of reductions ofRUP. The reductions can
not only be used byRoute, but also simplifyRUP itself.

• We devise an automated toolRoute for RUP based on model
checking techniques, for which there exist mature tools that
have been proven to work well in practice.

• Finally, we undertake a set of experiments, which illustrate
the effectiveness and efficiency ofRoute, considering the
use-pattern and frequency of role updating.

The remaining of the paper is organized as follows. Section 2
gives the preliminaries of the RBAC model used in this paper.A
motivation example is presented in Section 3. In Section 4, we de-
fine RUP, show its complexity, and give the basic approach. The
reductions ofRUP are presented in Section 5. Experiment results
are reported in Section 6. Related work is discussed in Section 7.
We conclude in Section 8. In this paper, we write SSOs and ad-
ministrators interchangeably; and a singleton set{s} is sometimes
written ass. Except for Theorem 2, proofs are given in [12].

2. PRELIMINARIES
The RBAC model used in this paper is defined as follows. An

RBAC stateγ is a tuple〈γ.U, γ.R, γ.P, γ.UA, γ.PA〉, whereγ.U
is a set of users,γ.R is a set of roles,γ.P is a set of permissions,
γ.UA ⊆ γ.U × γ.R is user-role relation, andγ.PA ⊆ γ.R× γ.P
is role-permission relation.

Given a stateγ, we define several convenient functions. Function
usersγ : 2γ.R ∪ 2γ.P 7→ 2γ.U gives the set of users that roles
and permissions are associated with: Forx ⊆ γ.R, usersγ [x] =S

r∈x

˘
u ∈ γ.U | (u, r) ∈ γ.UA

¯
; for x ⊆ γ.P , usersγ [x] =

usersγ [rolesγ [x]].
Functionrolesγ : 2γ.U ∪ 2γ.P 7→ 2γ.R returns the set of roles

that are related to users and permissions: forx ⊆ γ.U , rolesγ [x] =

u1 u2 u3 u4

r1 r2 r3 r4 r5 r6

p1 p2 p3 p4 p5 p6 p7 p8 p9

Figure 1: A running example RBAC stateγex. Users are in el-
lipses, roles in circles, and permissions in rectangles. The user-
role relation γex.UA is represented by dashed arrows and the
role-permission relationγex.PA by solid arrows.

S
u∈x

˘
r ∈ γ.R | u ∈ usersγ [r]

¯
; for x ⊆ γ.P , rolesγ [x] =S

p∈x

˘
r ∈ γ.R | (r, p) ∈ γ.PA]

¯
.

Finally, functionpermsγ : 2γ.U ∪ 2γ.R 7→ 2γ.P maps the users
and roles to their related permissions: forx ⊆ γ.U , permsγ [x] =S

u∈x

˘
p ∈ γ.P | u ∈ usersγ [p]

¯
; for x ⊆ γ.R, permsγ [x] =S

r∈x

˘
p ∈ γ.P | r ∈ rolesγ [p]

¯
.

Given a set of usersU , a set of rolesR, and a set
of permissionsP , we define a set of RBAC statesΓ =
{〈γ.U, γ.R, γ.P, γ.UA, γ.PA〉 | γ.U = U, γ.R = R, γ.P =
P, γ.UA ⊆ U × R,γ.PA ⊆ R × P}. We sayΓ is theRBAC
state space of(U,R, P), denoted asspace(U, R, P). Givenγ =
〈γ.U, γ.R, γ.P, γ.UA, γ.PA〉 ∈ space(U,R, P), we denoteγ as
〈γ.UA, γ.PA〉 without explicitly enumeratingγ.U , γ.R, andγ.P .
We denote the RBAC space thatγ resides in asspace(γ), where
space(γ) = space(γ.U, γ.R, γ.P).

3. A MOTIVATION EXAMPLE
Figure 1 shows an example RBAC stateγex. Suppose that an

SSO needs to updateγex in response to the following requests.
Repairing. Suppose that a misconfiguration that the useru2 should
have been able to performp2 is detected. The SSO is informed of
this problem and asked to take measures to grantu2 the permission
p2. The question is how the SSO may accomplish this, while keep-
ing other users’ role sets and permission sets unchanged? Itseems
overreacting to assignp2 with r1 or with r3, because that would
incidentally grantp2 to u1 or u3.
Permission assignments.Suppose that a taskt requires the per-
missionsPt = {p5, p8, p9}. Currently inγex, there does not exist
a set of roles whose permission set is exactlyPt. If t is important
and all permissions inPt are indispensable, an update request, that
Pt be assigned via roles but with users’ role sets and permission
sets unchanged, may be issued in hope of enabling taskt.

This type of requests could also happen in the context ofinter-
domain role mappings: a set of permissions (e.g.,{p5, p8, p9}) are
to be shared via roles, but the underlying state could not enable the
exact set of permissions [4, 9, 29, 30, 35, 38].

In both cases, the SSO needs to either find a satisfactory update
or determine the request is not satisfiable at all. However, even with
this toy example, it is not straightforward to make decisions.

4. PROBLEM DEFINITION

4.1 Constraints on updates
Given the current stateγ, consider an update request that a set

P of permissions be assigned to users via roles. If new roles can
be defined forP , this question becomes trivial. Hence, we look
at more difficult role updating problem in RBAC systems whereno
new roles can be created. We believe this is more common; because
new roles should be introduced with discretion, but not merely in
response to such permission assignment requests. For any stateχ

obtained after updatingγ, we may want to impose this constraint:

χ.R = γ.R. (1)

The effects of an update should be confined to a certain setU
of users. In other words, updates are supposed to be transparent to
users outsideU in the sense that their permission sets inχ remain as
in γ. In this way, the tasks that are being performed in the system
would not be interfered by updating. Put formally, the constraint
is:2

permsχ[u] = permsγ [u], for all u ∈ γ.U\U. (2)

Additionally, to make updates rational, the following constraint
seems necessary.

rolesχ[u] = rolesγ [u] for all u ∈ γ.U\U. (3)

Constraint (3) keeps users’ role sets unchanged. This is moti-
vated by the following observations: (1) User-role assignments are
business-driven; users’ role memberships are determined by their
attributes, jobs, titles, and etc. (2) From the user-experience view-
point, a staff in a university may be reluctant to take astudent
role even though she is entitled to the same privileges. Further, a
user often activates only a subset of her roles for a task; it would
be obtrusive for aprofessor to activate both thestudent role and
thesecretary role to finish what she can do with aprofessor role
before, had an update adjusted her role assignments.

Motivated by these observations, we define a notion ofUpdate
Constraint Schema, which generalizes constraints (1), (2) and (3).

Definition 1. (Update Constraint Schema -UCS) Given a state
γ, aUCS of γ is a tupleπγ = 〈πγ .U, πγ .th〉, where

1. πγ .U ⊆ γ.U , and

2. πγ .th : πγ .U 7→ 2γ.P such that, for anyu ∈ π.U ,
πγ .th[u] ⊆ permsγ [u] (th is short forthreshold).

Whenγ is clear from context, we omit the supscriptγ.

When SSOs are specifyingπ, π.U often contains those users for
whom the SSOs are not responsible so that the SSOs have to en-
sure that the potential update does not affect those users (by setting
π.th[u] = permsγ [u]), and/or those users whose permissions are
designated by the SSOs and vary within a range (i.e., the lower
bound isπ.th[u] and the upper bound ispermsγ [u]). The set
γ.U\π.U is a set of users whose current role sets and permission
sets inγ are neglected by updates; updates may change their role-
assignments and permission-assignments.

Definition 2. (π-compatibility) Givenγ, π, and an RBAC state
χ ∈ space(γ), we sayχ is π-compatibleif the following condi-
tions are met.

COND-U-R for anyu ∈ π.U , rolesχ[u] = rolesγ [u], and
2Given two setsA andB, A\B = {a ∈ A | a 6∈ B}.

COND-U-P for any u ∈ π.U , π.th[u] ⊆ permsχ[u] ⊆
permsγ [u].

Note that only RBAC states inspace(γ) are considered. That
means, we assume that no changes are made to the user set, role
set, and permission set. Condition COND-U-R requires that the
role assignments of anyu ∈ π.U in χ remain as inγ, i.e.,χ.UA∩
(π.U × χ.R) = γ.UA ∩ (π.U × γ.R). This is exactly the same
as (3). COND-U-R also indicates that we focus on the update of
role-permission assignments. In accordance with COND-U-P, any
u ∈ π.U must satisfy:u’s permission set varies fromπ.th[u] to
permsγ [u], both inclusively. This is a generalization of (2). At
least, by lettingπ.th[u] = permsγ [u] so that users permission sets
remain the same, SSOs guarantee that tasks assigned to usersin
π.U progress smoothly after update.

Definition 3. An update requestto γ, req〈γ,P , π, T 〉, com-
prises the current RBAC stateγ, a set of permissionsP ⊆ γ.P ,
a UCS π of γ, and a set of rolesT ⊆ γ.R.

Definition 4. Given Q = req〈γ,P , π, T 〉, we sayχ is an up-
date ofQ, if χ is π-compatible and there exists a setR ⊆ T
such thatpermsχ[R] = P . Denote the set of updates ofQ as
upd〈γ,P , π,T 〉. We sayQ is satisfiable, if upd〈γ,P , π, T 〉 6= ∅.

Definition 5. (Role Updating Problem -RUP) The RUP is to,
givenreq〈γ,P , π, T 〉, check whetherupd〈γ,P , π, T 〉 6= ∅ and, if
so, to find oneχ ∈ upd〈γ,P , π, T 〉.

SSOs express update requests by specifyingreq〈γ,P , π,T 〉. If
it turns out thatupd〈γ,P , π, T 〉 = ∅, that means the update re-
quest cannot be fulfilled without violatingπ-compatibility. Other-
wise, supposingχ ∈ upd〈γ,P , π, T 〉 is found, SSOs can make
changes toγ in light of χ.

Route might be used when the RBAC state is migrating to an
ideal state suggested by role mining techniques; the ideal state
may be fine-tuned usingRoute to adjust assignments. More im-
portantly,Route is able to assist SSOs with administrative works,
especially when assigning (or adjusting) permissions to users.

Satisfiability is defined based onπ. One most important restric-
tion thatπ puts is that, only a limited set of permissions may be as-
signed with a role. Givenreq〈γ,P , π, T 〉, r ∈ γ.R andR ⊆ γ.R,
let

max-perms〈γ,π〉[r] =
\

u∈(usersγ [r]∩π.U)

permsγ [u],

andmax-perms〈γ,π〉[R] =
S

r∈R max-perms〈γ,π〉[r]. If 〈γ, π〉

is clear from context, we omit the subscript〈γ, π〉. max-perms[r]
(resp.,max-perms[R]) is the maximal set of permissions thatr
(resp.,R) could possibly be assigned with inχ.

PROPOSITION 1. Givenreq〈γ,P , π, T 〉, if χ is π-compatible,
then, for all(r, p) ∈ χ.PA, p ∈ max-perms[r].

Supposingχ ∈ upd〈γ,P , π,T 〉, π-compatibility is to restrict
the difference betweenγ andχ, which is measured as below.

Definition 6. Given γ and χ such that χ ∈ space(γ),
the differencebetweenγ and χ is defined asdiff(γ, χ) =
(γ.PA\χ.PA) ∪ (χ.PA\γ.PA). Note that diff(χ, γ) =
diff(γ, χ).

4.2 RUP is intractable

THEOREM 2. Given an update requestreq〈γ,P , π, T 〉, it is
NP-complete to decide its satisfiability.

PROOF. Since elements inQ = req〈γ,P , π, T 〉 are finitely
fixed and, for anyχ ∈ space(γ), it takes polynomial time to check
if χ ∈ upd〈γ,P , π, T 〉, a non-deterministic Turing machine can
guess an updateχ and verify if χ ∈ upd〈γ,P , π,T 〉. Hence, the
problem is in NP. To show its NP-hardness, we reduce the known
NP-complete problemMonotone SAT to our problem.

Monotone SAT: Given a setX of boolean variables and a col-
lectionC of clauses overX where each clause contains either only
positive literals or only negative literals, is there a truth assignment
of X so that

V
C is true? We call a clause with only positive literals

a positive clause, denoted asc+ and otherwise anegative clause,
denoted asc−.

Given amonotone SAT instance, construct areq〈γ,P , π, T 〉
as follows. First we constructγ. For each clausec+ ∈ C, create a
permissionpc+ ; for eachc− ∈ C, create a permissionpc− . Denote
P+ = {pc+ | c+ ∈ C} and P− = {pc− | c− ∈ C}. Let
γ.P = P+∪P−. For eachx ∈ X, create a corresponding rolerx.
Let (rx, pc+) ∈ γ.PA if and only if c+ contains the literalx and
(rx, pc−) ∈ γ.PA if and only if c− contains the literal¬x. For
eachc−, create a useruc− and let(uc− , rx) ∈ γ.UA if and only
if c− contains¬x. For eachrx create a userux and let(ux, rx) ∈
γ.UA. LetP = P+. Now we configureπ by letting

• π.U = γ.U , T = γ.R,

• for eachuc− , π.th[uc−] = permsγ [uc−], and

• for eachux, π.th[ux] = permsγ [rx] ∩ P .3

We now show thatmonotone SAT is satisfiable if and only if
upd〈γ,P , π, T 〉 6= ∅.

Suppose thatτ is a truth assignment that makes
V

C true. Then
an update ofreq〈γ,P , π,T 〉 consists of: removing all(rx, p)
whereτ (x) = 1 andp ∈ P−. Note thatP = P+. Since

V
C

is true, allc+ is true. As a result, for anyp ∈ P , there exists
at least onex such thatτ (x) = 1 and (rx, p) ∈ γ.PA. Then
{rx | τ (x) = 1} in the updating state is a role set whose permis-
sion set is exactlyP . Since themonotone SAT formula is satisfied
by τ , each positive clausec+ is true underτ ; for eachp ∈ P , there
must exist at least onerx such that(rx, p) ∈ γ.PA andτ (x) = 1;
hence after removing all permissions ofrx which are also outside
P , p can be assigned to users viarx in the update.π-compatibility
is established as follows. For any useru, if any permissionp ∈ P+

belongs topermsγ [u], since the update does not involve permis-
sions inP+, u still acquires that permission in the update. Simi-
larly, conditions regarding any userux are also satisfied. For any
useruc− , consider anypc− ∈ permsγ [uc−]. Sincec− is true un-
der τ , there exists at least onex in c− with τ (x) = 0. From the
construction of the update, the update does not affectrx; therefore,
it holds thatpc− ∈ permsχ[rx], namely,uc− is still associated
with pc− via rx.

On the other hand, suppose thatχ ∈ upd〈γ,P , π, T 〉. Con-
struct a truth assignmentτ over X: τ (x) = 1 if and only if
permsχ[rx] ⊆ P , and otherwise,τ (x) = 0. Thenτ can make
the formula true for the following reasons. Recall thatP = P+.
Suppose thatc+ = x1∨· · ·∨xn is false underτ ; that is,τ (xℓ) = 0
for 1 ≤ ℓ ≤ n. In light of the definition ofτ , it holds that
permsχ[rxℓ

] 6⊆ P , for 1 ≤ ℓ ≤ n. Hence, from the fact thatχ ∈
upd〈γ,P , π, T 〉, there existsr ∈ χ.R such thatpc+ ∈ permsχ[r],
permsχ[r] ⊆ P , and r 6∈ {rx1

, · · · , rxn}. However, sinceχ
is π-compatible, particularly the effects of usersux, it must hold

3This means that, for each role, only permissions outsideP could
be removed.

that diff(χ, γ) ⊆ γ.R × P−. But pc+ 6∈ permsγ [r] because
r 6∈ {rx1

, · · · , rxn}; as a result,(r, pc+) ∈ diff(χ, γ). Thus,
we reach a contradiction. Suppose thatc− = ¬x1 ∨ · · · ∨ ¬xn is
false underτ ; that is,τ (xℓ) = 1 for 1 ≤ ℓ ≤ n. Then according
to the definition ofτ , permsχ[rxℓ

] ⊆ P for 1 ≤ ℓ ≤ n. Since
uc− is only assigned with roles{rx1

, · · · , rxn} andpc− 6∈ P , it
holds thatpc− 6∈ permsχ[uc−]. However,pc− ∈ permsγ [uc−],
a contradiction withπ-compatibility (in terms of COND-U-P for
uc−).

4.3 A model checking approach
Route leverages model checking techniques [6] forRUP. The

basic idea is as follows. Givenreq〈γ,P , π, T 〉, let φ denote the
statement that a (witness) user could acquireP via roles inT ; we
ask if¬φ is always true in allπ-compatible reachable states from
γ. If a positive answer is returned, that means one cannot fulfill
req〈γ,P , π, T 〉 without violating the constraints on updates spec-
ified by π. Otherwise, model checkers would generate a counter-
example, from whichRoute constructs an update.

4.3.1 Formalization
The model checking techniques thatRoute uses works with

computational tree logic (CTL)andKripke structures[6]. We first
introduce these notions and theModel Checking Problem (MCP)
considered in this paper; and then translateRUP to MCP.

Let AP be a set of atomic propositions. AKripke structureM
is a tuple(S,σ, L) where

1. S is a finite set of states,4

2. σ is a binary relation onS (i.e.,σ ⊆ S × S) which defines
the transitions between states, and

3. L : S 7→ 2AP associates each states ∈ S with a set of
propositions inAP .

A path in M starting from s is denoted as H =
[s0, s1, · · · , si, si+1, · · ·], wheres0 = s and(si, si+1) ∈ σ holds
for all i ≥ 0.

The syntax of CTL is given as: Every atomic propositionap ∈
AP is a CTL formula; and ifϕ1 andϕ2 are CTL formulas, then so
are¬ϕ1, ϕ1 ∧ϕ2, ϕ1∨ϕ2, andAGϕ1.5 The formulaAGϕ means
that on every computation pathϕ holds at every state. The seman-
tics of CTL formulas is usually defined with respect to a Kripke
structure. LetM = (S, σ, L) be a Kripke structure for CTL. Given
any s ∈ S, denote a CTL formulaϕ holds in M at states as
(M, s) |= ϕ. The relation|= is defined by structural induction
on CTL formulas:

• (M, s) |= ap iff ap ∈ L(s).

• (M, s) |= ¬ϕ iff (M, s) 6|= ϕ.

• (M, s) |= ϕ1 ∧ ϕ2 iff (M, s) |= ϕ1 and(M, s) |= ϕ2.

• (M, s) |= ϕ1 ∨ ϕ2 iff (M, s) |= ϕ1 or (M, s) |= ϕ2.

• (M, s) |= AGϕ iff for all paths H = [s0, s1, s2, · · · ,]
wheres0 = s and for alli ≥ 0 (M, si) |= ϕ.

An MCP can be abstracted as follows [5]. Given(M, φ, I),
whereM is a Kripke structure,φ is a CTL formula, andI ⊆ S

4Note that these are not RBAC states.
5This definition is not complete; but we only use the formula
AGϕ1.

is a set of initial states, the problem is to determine whether
I ⊆ {s ∈ S | (M, s) |= ϕ}.

We now connectRUP with MCP. GivenQ = req〈γ,P , π, T 〉,
we define a set of propositionsprop(Q) = Pr1 ∪ Pr2, where

• Pr1 = {x-u-r | u ∈ γ.U ∧ r ∈ γ.R} ∪ {x-r-p | r ∈
γ.R ∧ p ∈ γ.P}, and

• Pr2 = {x-wu-r | r ∈ T }.

The propositionx-r-p is meant to represent the assignment ofp
to r: x-r-p = 1 meansr is assigned withp, and otherwise not.
The propositions inPr1 is used to model the user-role and role-
permission assignments in RBAC states. The propositions inPr2

denote whether or not a witness userwu is assigned with the roles
in T .

Given Q, we construct a Kripke structureMQ = (S, σ, L) as
follows.

• S = {sA | A ⊆ prop(Q)},

• L is defined asL(sA) = {ap ∈ prop(Q) | ap ∈ A},

• To defineσ, we define a mappingg : S 7→ space(γ):
g(sA) = γA = 〈γA.U, γA.R, γA.P, γA.UA, γA.PA〉 if
and only if

– γA.U = γ.U , γA.R = γ.R, γA.P = γ.P ,

– (u, r) ∈ γA.UA if and only if x-u-r ∈ A, and

– (r, p) ∈ γA.PA if and only if x-r-p ∈ A.

Then for anysA, sB ∈ S, (sA, sB) ∈ σ if and only if both
g(sA) andg(sB) areπ-compatible.

To define the initial states of Kripke structure, for any RBAC
stateγ′, let Kstates(γ′) = {sA ∈ S | g(sA) = γ′}. We letIQ =
Kstates(γ) so that the initial states correspond to the requested
RBAC stateγ in Q.

Finally, we defineφ of MCP (MQ , φ, IQ), i.e., the property
that we want to check. Assume thatT = {r1, · · · , rt}, P =
{p1, · · · , pm} and γ.P\P = {pm+1, · · · , pn}. We let φ be
AG¬(φ1 ∧ φ2), where

• φ1 = X-wu-p1 ∧ · · · ∧ X-wu-pm, and

• φ2 = ¬ (X-wu-pm+1 ∨ · · · ∨ X-wu-pn) .

In turn, for1 ≤ ℓ ≤ n, X-wu-pℓ is defined as

(x-wu-r1∧x-r1-pℓ)∨(x-wu-r2∧x-r2-pℓ)∨· · ·∨(x-wu-rt∧x-rt-pℓ).

Intuitively, eachX-wu-pℓ is testing if the witness userwu has the
permissionpℓ. Thenφ1 models if (a)wu can have all permissions
in P , whereasφ2 is used to test if (b)wu has no permission in
γ.P\P . As a result,AG¬(φ1 ∧ φ2) is asking if there is no reach-
able state from the initial states that satisfies both (a) and(b). For-
mally, we have the following result.

THEOREM 3. upd〈γ,P , π,T 〉 = ∅ if and only ifIQ ⊆ {s ∈
S | (MQ , s) |= AG¬(φ1 ∧ φ2)}.

If AG¬(φ1∧φ2) is checked to be true, then there is no reachable
state satisfying the requirements (a) and (b); otherwise, NuSMV
would generate a counterexample. The counterexample here is a
statesA; then the RBAC stateg(sA) is a desired update forQ.

4.3.2 Implementation in NuSMV
Particularly,Route embeds the model checker NuSMV [5] to

search for updates. NuSMV is a modern symbolic model checker,
supporting various useful features such as theTRANS constraints.
A TRANS constraint defines which next states that the current state
may transit into. Namely, the model of the constraint is a setof
current/next state pairs. MultipleTRANS constraints are treated as
the conjunction of allTRANS constraints. We refer readers to [5]
for details of NuSMV.
Encoding states. Recall the condition COND-U-R of π-
compatibility, that users’ role assignments remain duringupdates;
hence, we do not need to encode the user-role assignments. A set
of boolean variables are defined to describe the role-permission as-
signments. According to Proposition 1, only a vector of variables
for {r} × max-perms[r] are defined for eachr ∈ γ.R.
Encoding π. The UCS π mainly defines the set of result-
ing states thatγ may evolve into. Recall that, for aπ-
compatible RBAC stateχ, the condition COND-U-P requires that
π.th[u] ⊆ permsχ[u] ⊆ permsγ [u]. Since permsχ[u] =
permsχ[rolesχ[u]] and rolesχ[u] = rolesγ [u], this requirement
actually puts restrictions on the variables for{r}×max-perms[r],
for eachr ∈ rolesγ [u].

Route translates this requirement intoTRANS constraints in
NuSMV. For eachπ.th[u] ⊆ permsχ[rolesγ [u]] ⊆ permsγ [u],
Route constructs twoTRANS constraints. Theπ.th[u] ⊆
permsχ[rolesγ [u]] part requires that, for eachp ∈ π.th[u], there
exists at least oner ∈ rolesγ [u] such that(r, p) ∈ χ.PA.
Thus, supposing thatπ.th[u] = {p1, · · · , pn} and rolesγ [u] =
{r1, · · · , rm}, the following NuSMV constraint is needed.

TRANS next
`
(x-r1-p1| · · · |x-rm-p1)& · · ·

&(x-rm-pn| · · · |x-rm-pn)
´
;

For permsχ[rolesγ [u]] ⊆ permsγ [u] part, first ob-
serve thatpermsχ[rolesγ [u]] ⊆ permsγ [u] if and only if
permsχ[rolesγ [u]] ∩ (max-perms[rolesγ [u]]\permsγ [u]) =
∅. Hence, assumingmax-perms[rolesγ [u]]\permsγ [u] =
{q1, · · · , qt}, it is required that eachx-ri-qj be 0 constantly if
qj ∈ max-perms[ri], for 1 ≤ i ≤ m and1 ≤ j ≤ t.

The encoding ofAG¬(φ1 ∧φ2) is straightforward. Appendix A
provides a counterexample for an example update.

4.4 Example usage of role updating
This section presents several example configurations of

req〈γ,P , π, T 〉 that SSOs can specify to achieve different update
objectives, with respect toγex in Figure 1.
Adjusting role sets and permission sets. To repair γex so
that u2 can havep2, the SSO could issue a requestQ1 =
req〈γex,P , π, T 〉:

• P = permsγex
[u2] ∪ {p2} = {p1, p2, p3, p4, p5},

• π.U = γex.U\{u2} = {u1, u3, u4} and, for anyu ∈ π.U ,
π.th[u] = permsγex

[u], and

• T = γex.R = {r1, r2, r3, r4, r5, r6}.

Running with Q1, Route would suggest a sequence of ac-
tions: s1 = 〈 revoke(p6, r2); assign(r1, wu); assign(r2,wu);
assign(r3,wu); 〉, wherewu is the witness user not belonging to
γ. Then the SSO can follows1 to make changes toγex: revokep6

from r2 and associate{r1, r2, r3} with u2.
For another example, suppose that the SSO wants to shrinku3’s

permission set to{p1, p5, p7} and revoker3 from u3. ThenQ2 =
req〈γex,P , π, T 〉 models this request:

• P = {p1, p5, p7},

• π.U = γex.U\{u3} = {u1, u2, u4} and, for anyu ∈ π.U ,
π.th[u] = permsγex

[u],

• T = rolesγ [u3]\{r3} = {r4, r5},

Route would return a sequence of actions:s2 = 〈 assign(p5, r5);
revoke(p6, r4); revoke(p8, r4); assign(p8, r6); assign(r4,wu);
assign(r5,wu) 〉.

If the SSO requests to remover3 from u2 (i.e., assign onlyr1

with u2) but retainu2’s current permission set:{p1, p3, p4, p5},
Route would report that the request is not achievable.
Permission assignments. To update for enabling the exact set
of permissionsPt = {p5, p8, p9}, the SSO could setQ3 =
req〈γex,P , π, T 〉 as follows:

• P = Pt,

• π.U = γex.U = {u1, u2, u3, u4} and, for anyu ∈ π.U ,
π.th[u] = permsγex

[u], and

• T = γex.R = {r1, r2, r3, r4, r5, r6}.

Given Q3, Route returns the sequence of administrative ac-
tions: s3 = 〈 assign(p5, r6); assign(p8, r6); revoke(p6, r6);
assign(r6,wu); 〉.

5. REDUCTIONS
Section 4.3 describes the idea of applying model checking tech-

niques toRUP. However, the execution of the NuSMV program
directly transformed fromreq〈γ,P , π, T 〉 quickly leads to state
exploration (and memory crash). In this section, we presenta set of
reductions forRUP. These reductions are not exclusive toRoute
but could also benefit other approaches toRUP.

Consider two requestsQ1 = req〈γ1,P , π1, T 〉 and Q2 =
req〈γ2,P , π2, T 〉, which share the sameP andT . If it holds that
upd〈γ1,P , π1, T 〉 6= ∅ if and only if upd〈γ2,P , π2, T 〉 6= ∅, then
Q1 is satisfiable if and only if so isQ2. On the other hand, if
upd〈γ1,P , π1, T 〉 ⊆ upd〈γ2,P , π2, T 〉, then when we find an
updateχ for Q1, we also obtain an update forQ2. Put together, we
have the following definition.

Definition 7. Given a requestQ = req〈γ,P , π, T 〉 and a set of
requestsQset = {req〈γ1,P , π1, T 〉, · · · , req〈γm,P , πm, T 〉},
we sayQ →֒ Qset if the following two conditions are satisfied.

1.
S

1≤ℓ≤m upd〈γℓ,P , πℓ, T 〉 6= ∅ iff upd〈γ,P , π, T 〉 6= ∅.

2.
S

1≤ℓ≤m upd〈γℓ,P , πℓ, T 〉 ⊆ upd〈γ,P , π, T 〉.

It can be seen that ifQ →֒ Qset, then we can work with the set
Qset instead ofQ; we need to find aQset that is easier to tackle.

5.1 Reduction on core

Observation 1.For π-compatibility, changes can only happen
around roles that are related to the permissions inP .

Given Q = req〈γ,P , π, T 〉, we denote the set of roles
rolesγ [usersγ [P]] as core(γ,P) and call it thecore setfor Q.
The reductions center aroundcore(γ,P). The intuition is that: ac-
cording toπ, only users inusersγ [P] can have permissions inP
and thus only their roles may be assigned with permissions inP .

Definition 8. Given a stateγ andR ⊂ γ.R, we sayγ⌈R⌉ is a fil-
tered state ofγ by R, whereγ⌈R⌉.U = usersγ [R], γ⌈R⌉.R =
rolesγ [γ⌈R⌉.U], γ⌈R⌉.P = permsγ [γ⌈R⌉.R], γ⌈R⌉.UA =
γ.UA∩ (γ⌈R⌉.U × γ⌈R⌉.R), andγ⌈R⌉.PA = γ.UA∩ (γ⌈R⌉.R×
γ⌈R⌉.P).

Given req〈γ,P , π, T 〉, denote the stateγ⌈core(γ,P)⌉ ascore-γ.
While γ is filtered with respect tocore(γ,P), a newUCS on up-
dates ofcore-γ is to be constructed as well in a way that those
updates tocore-γ can be seen as updates toγ. Not surprisingly,
this newUCS stems fromπ.

Definition 9. (Refinement ofπ) Given req〈γ,P , π, T 〉 and a
stateγ′ obtained by filteringγ with some role set, define aUCS
π⌈γ′⌉ by letting:

1. π⌈γ′⌉.U = π.U ∩ γ′.U , and

2. for any u ∈ π⌈γ′⌉.U , π⌈γ′⌉.th[u] =
π.th[u]\permsγ [rolesγ [u]\γ′.R].

The UCS π⌈γ′⌉ is a confinement ofπ to γ′. π⌈γ′⌉ only allows
changes toγ′, which is a filtered state ofγ. Hence, all updates
allowed byπ⌈γ′⌉ would not influence users inπ.U\γ′.U ; the first
clause refines the user set. Sinceπ⌈γ′⌉ only allows changes to roles
in γ′.R, the permission set of any role inγ.R\γ′.R would not be
changed by any update ofγ′, and, therefore, nor is the permission
set of any role inrolesγ [u]\γ′.R, for eachu ∈ π⌈γ′⌉.U .

Let Qcore = req〈core-γ,P , π⌈core-γ⌉, T 〉. Proposition 4 corre-
sponds to Observation 1.

PROPOSITION 4. Q →֒ Qcore.

5.2 Decomposition

Observation 2.It is sometimes useful to decomposeQ =
req〈γ,P , π, T 〉 into sub-problems that can be solved separatively.

A collectionCde ⊂ 2γ.R is adecompositionof Q if

1. for anyS, S′ ∈ Cde, P ⊂ permsγ [S], and eitherS = S′ or
S 6⊂ S′;

2. for anyR ⊆ γ.R, if R 6∈ Cde, then eitherP 6⊂ permsγ [R]
or there existsS ∈ Cde such thatR ⊆ S.

Given S ∈ Cde, let bS = rolesγ [usersγ [S]] and denote the state
γ⌈bS⌉ asdeS(γ). One may decomposeQ into a set of requests:

Qde = {req〈deS(γ),P , π⌈deS(γ)⌉, T 〉 | S ∈ Cde}.

Proposition 5 formalizes Observation 2.

PROPOSITION 5. Q →֒ Qde.

Proposition 5 does not reduce the complexity ofRUP the-
oretically. It is likely that there existsS ∈ Cde such that
bS = core(γ,P)—-in this case, we may still have to work
with Q. However, the benefits lie in practice. For one thing,
when upd〈γ,P , π, T 〉 6= ∅, we may figure out oneχ ∈
upd〈deS(γ),P , π⌈deS(γ)⌉, T 〉 with smaller S, which could be
more efficient than working withQ; for another, the incurred
changes could be more restricted, forS ⊆ rolesγ [P].

DefineCmin
de =

˘
S ⊆ rolesγ [P] | permsγ [S] ⊃ P∧

∀S
′ ⊂ S : permsγ [S′] 6⊃ P

¯
.

Cmin
de is a decomposition ofQ. Cmin

de features that eachM ∈ Cde
is a minimal role set whose permission set containsP . Hence,
evaluatingreq〈deM (γ),P , π⌈deM (γ)⌉, T 〉 for M ∈ Cmin

de might
be easier. Unfortunately, computingCmin

de is NP-hard.
In our prototype ofRoute, priority is given to the linear comput-

ing runtime of a decompositionCapprox

de , while keeping each mem-
ber as minimal as possible. Practical systems may use specialized
algorithms forCmin

de , which is beyond the scope of this paper.

5.3 Removing ignorable roles

Observation 3.For a roler such thatpermsγ [r] ∩ P = ∅, if
its permission assignments could not be changed due toπ, r would
not help withreq〈γ,P , π, T 〉 and thus can be ignored by updates.

Given r ∈ γ.R, we sayr is ignorable if r 6∈ rolesγ [P] and
permsγ [r] = max-perms[r]. That is,r is ignorable if it cannot
accept any permission assignments other than those that arealready
assigned with it inγ.

Denote the set ofnon-ignorableroles asRnig and the state
obtained by filteringγ with Rnig (i.e., γ⌈Rnig⌉) as nig(γ). Let
Q = req〈γ,P , π, T 〉 andQnig = upd〈nig(γ),P , π⌈nig(γ)⌉, T 〉.
Proposition 6 corresponds to Observation 3.

PROPOSITION 6. Q →֒ Qnig.

5.4 Propagating requested permissions

Observation 4.If complying with π, we may associate permis-
sions inP with as many roles as possible. In addition, there ex-
ists an update that does not remove any assignment(r, p) such that
p ∈ P , should there exist an arbitrary update.

Given χ ∈ upd〈γ,P , π, T 〉, p ∈ P , and r ∈ γ.R such that
permsχ[r] 6⊆ P and (r, p) 6∈ χ.PA, if allowed by π, making
(r, p) ∈ χ.PA would retainχ being an update. Namely, we can
propagate permissions inP among roles and only change the role-
permission assignments whose permissions reside outsideP .

Define a stateptP(γ) by letting

• ptP (γ).U = γ.U , ptP(γ).R = γ.R, ptP (γ).P = γ.P ,
ptP (γ).UA = γ.UA, and

• ptP (γ).PA = γ.PA ∪ {(r, p) | r ∈ γ.R ∧ p ∈ (P ∩
max-perms[r])}.

PROPOSITION 7. req〈γ,P , π, T 〉 →֒ req〈ptP(γ),P , π, T 〉.

PROPOSITION 8. If χ1 ∈ upd〈ptP(γ),P , π,T 〉, then there
existsχ2 ∈ upd〈ptP (γ),P , π, T 〉 such thatdiff(ptP (γ), χ2) ∩
{(r, p) | p ∈ P} = ∅.

Proposition 8 means that we can just fix the assignment(r, p)
constantly, ifp ∈ P . Together with Proposition 7, we would not
miss an update if there exists one.

6. EXPERIMENTS
Figure 2 depicts the prototype ofRoute. The interface receives

SSO’s update requests and forwards them to the back-end. Al-
gorithm 1 presents the pseudo code of the back-end. Function
TransNuSMV translates the request into NuSMV programs; it ex-
plores some further simplifications of the problem. The basic in-
tuition is to reduce the number of variables in NuSMV programs
in accordance withπ-compatibility.TransNuSMV also groups to-
gether those permissions that can be treated likewise (i.e., either
revoke all of them from one role or assign all of them with one
role) and retain only one of them.

I n t e r f a c eT r a n s l a t o rN u S M V U p d a t eC o n s t r u c t o r
r e q u e s t sN u S M Vp r o g r a m s c o u n t e re x a m p l e u p d a t eB a c k e n d

S S O s ’ u p d a t e r e q u e s t s
Figure 2: Route prototype.

Algorithm 1 : Algorithm of the back-end.

Input : req〈γ,P , π, T 〉
Output : eitherupd〈γ,P , π,T 〉 = ∅ or χ ∈ upd〈γ,P , π, T 〉.
begin1

Computecore-γ, π⌈core-γ⌉, and the setCapprox

de ;2

foreachS ∈ Capprox

de do3

Apply the reductions of “decomposition”, “Removing4

ignorable roles” and “Propagating requested
permissions” tocore-γ andπ⌈core-γ⌉ in sequence;
Denote the obtained state andUCS asγ′ andπ′,
respectively;
TransNuSMV(req〈γ′,P , π′, T 〉);5

Execute the resulting NuSMV program;6

if a counterexample is returnedthen7

Constructχ according to the counterexample;8

return diff(χ, γ);9

return upd〈γ,P , π, T 〉 = ∅;10

end11

6.1 Experiments
Experiment Cases. The prototype ofRoute is implemented in
JAVA. A requestQexp = req〈γ,P , π, T 〉 is randomly generated.
In all tests, we letT = γ.R and setπ by letting π.U = γ.U
and, for allu ∈ π.U , π.th[u] = permsγ [u]. The reductions
are performed in sequence as shown in Algorithm 1. For each
S ∈ Capprox

de , we generate a file for the corresponding NuSMV pro-
gram (denoted asprog(S)) and a file for NuSMV commands. Then
for each NuSMV program, we fork a thread, which executes the
NuSMV program via NuSMV’s batch mode. The thread is killed
if the execution of the NuSMV program exceeds 12 hours. Unlike
Algorithm 1, the tests would not finish until all NuSMV programs
are generated, executed and returned, even though an updatehas
been found. We record the time for processing eachS denoted as
time(S), including both the averaged shared preparation time and
its own model checking time. Experiments were performed on a
machine with an Intel(R) Core(TM)2 CPU T5500 @ 1.66GHz, and
with 2GB of RAM running Microsoft Windows XP Home Edition
Service Pack 3.
Synthetic Data Generation.To generate requests, we adapt data-
generation algorithms from [34, 37], which is parameterized by
the number of users (noU), the number of roles (noR), the num-
ber of permissions (noP), the maximum number of roles (noUR)
each user may be assigned with, the maximum number of permis-
sions (noRP) each role could possibly be assigned to, and thenum-
ber of requested permissions (noReqps). The relationγ.UA (resp.
γ.PA) is generated by assigning each user (resp. each role) a num-

berk of roles (resp. permissions) wherek is randomly chosen and
uniformly distributed between 1 and noUR (resp. noRP). Notethat
in all tests, no two users have the same role set and no two roles
have the same permission set.P is determined by randomly cho-
sen a number noReqps of permissions fromγ.P .
Time Metric. Given the set of programs ofprog(Capprox

de), let
progf be the set of programs that are checked false,progt the set
of programs that are checked true, andprogo the set of other pro-
grams that could not finish within time limits or that lead to mem-
ory crash. Fortunately, in all our test cases, we did get answers
(i.e., eitherprog(Capprox

de) = progt and all programs are finished
in time or there exist some programs that return with a counterex-
ample prior to time limit). Even though timeouts happen in sev-
eral cases, there was anotherprog(S) whose NuSMV program is
efficiently checked false and thus a counterexample is generated,
which reveals an update.

The time records shown in Figure 3 are computed as follows.

time = max{time(S) | S ∈ progf} +
X

S∈progt

time(S). (4)

For example, supposeCapprox

de = {S1, S2, S3, S4, S5} where
prog(S1) and prog(S5) are checked true, checkingprog(S2)
times out, andprog(S3) and prog(S4) are checked false and
counterexamples are generated. Then the computing time is:
time(S1)+ time(S5)+max {time(S3), time(S4)}. It is arguably
reasonable to ignore the time ofprogo. Taketime(S2) for instance.
In practice, one can easily compare the number of variables in
prog(S1), prog(S2), prog(S3), prog(S4), andprog(S5). Since
NuSMV’s performance highly depends on the number of variables,
one can schedule programs’ executions in increasing order by the
number of variables and thus putprog(S2) at the end of queue.
When, for example,prog(S3) returns a counterexample, then an
update is found and there is no need to executeprog(S2).6 In
this case, decomposition appears useful. Hence, we suspectthat
time in (4) is possibly longest time taken byRoute to evaluate
req〈γ,P , π, T 〉. Since the data set is randomly created, for each
configuration of parameters, we ran the test 5 times. The timein
Figure 3 is averaged over the 5 runs.
Results. Figure 3 reports the experiment results. The time is in
minute and log-scale in Figure 3(e), but is in second and linear in
others. Note that for each run, a new instanceQexp was generated
each time a configuration was tested. In Figure 3(a), we generated
Qexp by fixing “noR=500 noP=2000 noUR=3 noRP=150 noRe-
qps=500” but varying noU. Two longest intervals taken byRoute,
about 25 minutes, are at “noU=500” and “noU=1500”. The main
reason for this abnormality is that, in both cases, it happened that
prog(Capprox

de) = progt (i.e., no update exists) in all 5 runs and
|prog(Capprox

de)| is quite large, with averagely about 25 and 22 each
run, respectively. In other cases, eitherprogf 6= ∅ (i.e., an update
is found) or|prog(Capprox

de)| is small. Generally,RUP is scalable
with the number of users. With “noU=1500-2000”, there is a no-
table drop. The observation is that, with larger number of users,
there are more constraints on the role-permission assignments and
more ignorable roles; thus more NuSMV variables were made con-
stants. This also shows the effectiveness of the reduction of remov-
ing ignorable roles.

In Figure 3(b), we generatedQexp by fixing “noU=1500
noP=2000 noUR=3 noRP=150 noReqps=500” but varying noR. As
a whole, the time taken was almost polynomial to noR. The reduc-

6In practice, one can run all programs in parallel, and stop them
when one of them returns a counterexample or all programs return
with an answer “true”.

tion of decomposition is useful as the number of roles increases.
By decomposition,Route only dealt with requests with a limited
number of roles.

In Figure 3(c), we generatedQexp by fixing “noU=1500
noR=500 noP=2000 noUR=3 noRP=150” but varying noReqps.
The peak (about 17 minutes) was reached at “noReqps=500-600”.
The use of “propagating requested permission” reduction saved
Route from setting more and more variables, with the increase of
noReqps. This explains why the time starts to drop at 700.

Figure 3(d) shows the case where “noU=1500 noR=500
noP=2000 noUR=3 noReqps=500” were fixed and Figure 3(e)
the case where “noU=1500 noR=500 noP=2000 noRP=150 noRe-
qps=500” were fixed. WhileRoute dealt quite well with large
noRP, the performance ofRoute with respect to large noUR was
relatively poor. One reason might be that, the larger noUR is, the
more NuSMV programs were created and checked; and the reduc-
tions also took notable time. Even though reductions were per-
formed and many role-permission assignments were set constants
according toπ, there were still many variables, for|rolesγ [u]|
could be quite large (> 5); since constraints are put on the per-
mission assignments of roles inrolesγ [u], the large number of
|rolesγ [u]| prevents more variables from being fixed.

In real-world large-scale RBAC systems, even though noUR
could be large (> 5), we expect that only a small portion of users
have a number noUR of roles and that the number of roles that are
under an SSO’s control will be small. Hence, we conjectureRoute
will be able to handle update requests in these RBAC systems.

7. RELATED WORK
RBAC policy analysis and repair. Many RBAC policy analysis
tools (RPATs) are invented to help administrators understand and
manage RBAC policies e.g., [3, 14, 19, 31, 32, 36], to name a few.
Most (safety) analysis problems in literature basically can be stated
as: given the current stateγ, a queryq, and a state-change rule
ϕ, canγ be taken a stateγ′ whereq evaluates true? If this is the
case, one may argue that the steps takingγ to γ′ may also be re-
ported to SSOs so that they can follow to makeγ′. However, as
the objectives are different, we believe this report could hardly be
sufficient forRUP. As remarked in [14], “...q typically encodes an
unsafe situation that should never occur;...” Hence, RPATsexplore
every possible sequence of actions, as long as they are allowed by
ϕ, to test if there is such aγ′ whereq is true; consequently, RPATs
do not care what the resulting states look like. On the contrary,
Route seeks for a resulting state with expected assignments. In
addition, most RPATs focus on user-role assignments; although it
is argued that role-permission relation is a dual of user-role rela-
tion and might be treated likewise, role-permission relation also
deserves its own attention [22], especially in terms of roleupdat-
ing. Finally, Route goes beyond by enabling various constraints
on updates, with which SSOs specify requirements on updates.
Role engineering.Recently, much research effort has been devoted
to role engineering [10, 7, 20, 33, 34, 37]. Basically speaking, ex-
isting role engineering tools (eRETs) consume a predefined user-
permission assignments and output a set of user-role assignments
and a set of role-permission assignments, taking into account some
optimization objectives (e.g., a minimal set of roles) and possibly
other concerns such as roles’ business meanings, semantics, users’
attributes. Taxonomically,Route can be viewed as a role engineer-
ing tool, asRUP also deals with these assignments. However, role
updating works when RBAC states have been defined and possibly
deployed, whereas eRETs usually define roles from scratch. The
focuses are also different. Role updating aims to answer SSOs’
question whether an update is achievable with respect to update

 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500

 0 400 800 1200 1600 2000

T
im

e
(s

ec
)

noU

varying noU

(a) Varying noU

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

noR

varying noR

(b) Varying noR

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

noReqps

varying noReqps

(c) Varying noReqps

 400

 600

 800

 1000

 1200

 1400

 1600

 100 150 200 250 300

T
im

e
(s

ec
)

noRP

varying noRP

(d) Varying noRP

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7

T
im

e
(m

in
)

noUR

varying noUR

(e) Varying noUR

Figure 3: The computing time of evaluatingreq〈γ,P , π, T 〉

constraints and, if any, to generate one. On the contrary, eRETs put
more emphases on how to define a appropriate set of roles. In the
view of role life cycle,Route is for role maintenance, while eRETs
help role design. Thus, one may condsiderRoute as a complement
of eRETs;Route can be used to fine-tune the ideal state generated
by eRETs.
Model checking in RBAC. Jha et al. [14] presented a transforma-
tion from an RBAC policy analysis instance to a NuSMV program
by letting states correspond to user-role assignments and transi-
tions correspond to administrative rules. However, their transfor-
mation does not fit forRoute. The reason is that it is more in-
tuitive and convenient to encode constraints on updates (i.e.,π) in
NuSMV states rather than in the transitions. This reflects the differ-
ence between administrative rules and constraints on updates: ad-
ministrative rules specify what transitions can be made from each
state, whereas constraints on updates put restrictions on the result-
ing states. Schaad et al. [27] applied model checking techniques
to automated analysis of delegation and revocation functionalities,
with an emphasis on static and dynamic separation of duty proper-
ties. They do not consider the role-permission assignments. Reith
et al. [24] applied model checking techniques to the policy analysis
of a languageRT0, which can be viewed as a generation of RBAC
models considered in this paper. It is unclear how to use their algo-
rithms to tackleRUP though. There are some other works, which
applied model checking techniques to RBAC or its variants, such
as [1, 21]; but, to our knowledge,Route is the first to use them for
RUP.
RBAC updating. Ni et al. [22] studied the role adjustment problem
(RAP) in the context of role-based provisioning based on machine-
learning algorithms. Though similar,RUP differs from the RAP
in several aspects. First, customized constraints on updates are en-
forced in role updating, whereas it is unclear if these constraints
could be supported in RAP. Second, the role updating is request-
driven, whereas RAP is a learning process. Specially, SSOs submit
a specific update objective toRoute, which tries to find the ex-
pected update. On the contrary, RAP is supplied by SSOs with

provisioning data and output a set of mappings from roles to (new)
entitlements. Hence, RAP andRoute are both assistant tools for
SSOs but with different usage and orientation. Fisler et al.[15]
presented a tool to investigate the semantic difference of two RBAC
policies (in XACML) and the properties of the difference. They do
not consider how to make a different desired state from the current
one. Ray [23] studied the problem of real-time update of access
control policies, in the context of a database system. The focus was
put on the transaction properties. However, RBAC models have
important features that deserve consideration when updating.

8. CONCLUSION AND FUTURE WORK
We have studied theRUP problem, presented a set of reduc-

tions forRUP, and proposed a role updating toolRoute based on
model checking techniques. Experiments confirm the effectiveness
and efficiency ofRoute. There are several avenues for future work.
Two additional components, role hierarchies and separation of duty
(SoD) policies, are also useful in RBAC systems. Their presence
complicates the problem. Role hierarchies are important for RBAC
systems, as they further mitigate the burden of security administra-
tion and maintenance. In the case of SoD policies, enforcingSoD
policies is difficult by itself [17]. The interaction between updating
and SoD policies poses new challenges. Existing works oftenas-
sume that role-permission relation is fixed, when considering SoD
policies. However, this assumption does not hold from the view-
point of role updating. Another interesting problem is to update
RBAC systems when administrative rules are in position to regu-
late SSOs’ actions.

Acknowledgment
This work is supported by National Natural Science Foundation of
China under Grant 60873225, 60773191, 70771043, National High
Technology Research and Development Program of China under
Grant 2007AA01Z403, and Natural Science Foundation of Hubei
Province under Grant 2009CDB298. This project is supportedin

part by an Australian Research Council (ARC) Discovery Projects
Grant (DP0988396). We thank the anonymous reviewers for their
helpful comments.

9. REFERENCES
[1] T. Ahmed and A. R. Tripathi. Static verification of security requirements in role

based cscw systems. InSACMAT’03, pages 196–203.
[2] D. A. Basin, S. J. Burri, and G. Karjoth. Dynamic enforcement of abstract

separation of duty constraints. InESORICS, pages 250–267, 2009.
[3] L. Bauer, S. Garriss, and M. K. Reiter. Detecting and resolving policy

misconfigurations in access-control systems. InSACMAT’08, pages 185–194.
[4] L. Chen and J. Crampton. Set covering problems in role-based access control.

In ESORICS, pages 689–704, 2009.
[5] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,

R. Sebastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for
Symbolic Model Checking. InProc. International Conference on
Computer-Aided Verification (CAV 2002), LNCS, pages 359–364, 2002.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press,
1999.

[7] A. Colantonio, R. D. Pietro, A. Ocello, and N. V. Verde. A formal framework to
elicit roles with business meaning in rbac systems. InSACMAT’09, pages
85–94.

[8] J. Crampton. Understanding and developing role-based administrative models.
In CCS, pages 158 – 167, Alexandria, VA, USA, Nov. 2005. CCS’05.

[9] S. Du and J. B. D. Joshi. Supporting authorization query and inter-domain role
mapping in presence of hybrid role hierarchy. InSACMAT’06, pages 228–236.

[10] A. Ene, W. G. Horne, N. Milosavljevic, P. Rao, R. Schreiber, and R. E. Tarjan.
Fast exact and heuristic methods for role minimization problems. In
SACMAT’08, pages 1–10.

[11] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and R. Chandramouli.
Proposed NIST standard for role-based access control.ACM Trans. Inf. Syst.
Secur., 4(3):224–274, 2001.

[12] J. Hu, Y. Zhang, R. Li, and Z. Lu. Role updating for assignments. Technical
report, Huazhong University of Science and Technology & University of
Western Sydney, 2010.

[13] K. Irwin, T. Yu, and W. H. Winsborough. Enforcing security properties in
task-based systems. InSACMAT’08, pages 41–50.

[14] S. Jha, N. Li, M. Tripunitara, Q. Wang, and W. Winsborough. Towards formal
verification of role-based access control policies.IEEE Trans. Dependable
Secur. Comput., 5(4):242–255, 2008.

[15] L. M. Kathi Fisler, Shriram Krishnamurthi and M. Tschantz. Verification and
change impact analysis of access-control policies. InICSE, May 2005.

[16] A. Kern, M. Kuhlmann, A. Schaad, and J. D. Moffett. Observations on the role
life-cycle in the context of enterprise security management. In SACMAT, pages
43–51, 2002.

[17] N. Li, Z. Bizri, and M. V. Tripunitara. On mutually-exclusive roles and
separation of duty. InCCS, pages 42–51, 2004.

[18] N. Li and Z. Mao. Administration in role-based access control. In ASIACCS,
pages 127–138, 2007.

[19] N. Li and M. V. Tripunitara. Security analysis in role-based access control. In
SACMAT, pages 126–135, 2004.

[20] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. B.Calo, and J. Lobo.
Mining roles with semantic meanings. InSACMAT, pages 21–30, 2008.

[21] S. Mondal, S. Sural, and V. Atluri. Towards formal security analysis of gtrbac
using timed automata. InSACMAT’09, pages 33–42.

[22] Q. Ni, J. Lobo, S. B. Calo, P. Rohatgi, and E. Bertino. Automating role-based
provisioning by learning from examples. InSACMAT, pages 75–84, 2009.

[23] I. Ray. Applying semantic knowledge to real-time update of access control
policies.IEEE Trans. Knowl. Data Eng., 17(6):844–858, 2005.

[24] M. Reith, J. Niu, and W. H. Winsborough. Toward practical analysis for trust
management policy. InASIACCS ’09, pages 310–321. ACM.

[25] R. S. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for
role-based administration of roles.TISSEC, 2(1):105–135, 1999.

[26] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based
access control models.IEEE Computer, 29(2):38–47, February 1996.

[27] A. Schaad, V. Lotz, and K. Sohr. A model-checking approach to analysing
organisational controls in a loan origination process. InSACMAT’06, pages
139–149.

[28] A. Schaad and J. D. Moffett. A lightweight approach to specification and
analysis of role-based access control extensions. InSACMAT’02, pages 13–22.

[29] B. Shafiq, J. Joshi, E. Bertino, and A. Ghafoor. Secure interoperation in a
multidomain environment employing rbac policies.IEEE Trans. Knowl. Data
Eng., 17(11):1557–1577, 2005.

[30] M. Shehab, E. Bertino, and A. Ghafoor. SERAT: SEcure Role mApping
Technique for decentralized secure interoperability. InSACMAT’05, pages
159–167.

[31] K. Sohr, M. Drouineaud, G.-J. Ahn, and M. Gogolla. Analyzing and managing

role-based access control policies.Knowledge and Data Engineering, IEEE
Transactions on, 20(7):924–939, July 2008.

[32] S. D. Stoller, P. Yang, C. Ramakrishnan, and M. I. Gofman. Efficient policy
analysis for administrative role based access control. InCCS’07.

[33] J. Vaidya, V. Atluri, and Q. Guo. The role mining problem: Finding a minimal
descriptive set of roles. InSACMAT, pages 175–184, 2007.

[34] J. Vaidya, V. Atluri, and J. Warner. Roleminer: mining roles using subset
enumeration. InCCS, pages 144–153, 2006.

[35] G. T. Wickramaarachchi, W. H. Qardaji, and N. Li. An efficient framework for
user authorization queries in rbac systems. InSACMAT, pages 23–32, 2009.

[36] W. Xu, M. Shehab, and G.-J. Ahn. Visualization based policy analysis: case
study in selinux. InSACMAT’08, pages 165–174.

[37] D. Zhang, K. Ramamohanarao, T. Ebringer, and T. Yann. Permission set
mining: Discovering practical and useful roles. InACSAC, pages 247–256,
2008.

[38] Y. Zhang and J. B. D. Joshi. Uaq: a framework for user authorization query
processing in rbac extended with hybrid hierarchy and constraints. InSACMAT,
pages 83–92, 2008.

APPENDIX

A. EXAMPLE OUTPUT OF NUSMV
Considerγex in Figure 1 andQ3 = req〈γex,P , π,T 〉 as follows:

• P = {p5, p8, p9},

• π.U = γex.U = {u1, u2, u3, u4} and, for anyu ∈ π.U ,
π.th[u] = permsγex

[u], and

• T = γex.R = {r1, r2, r3, r4, r5, r6}.

Below is a example running of the NuSMV program translated
from Q3. State:1.1 describes the RBAC state after the reduc-
tions are performed. During the reductions, some assignments are
added toγex, as indicated by the underlined variables. Note that we
denote each assignment as a variable, and fix variables as constants
if possible.State:1.2 only lists the variables whose values have
been changed fromState:1.1.

>*** Compilation and copyright information ***
>
>-- specification

AG !(x-wu-p8 & !x-wu-p6 & !x-wu-p1 &
x-wu-p9 & !x-wu-p7 & x-wu-p5 & !x-wu-p2)

is false
>-- as demonstrated by the following execution

sequence
>Trace Description: CTL Counterexample
>Trace Type: Counterexample
>-> State: 1.1 <-
> x-wu-r5 = 0 x-wu-r3 = 0 x-wu-r2 = 0
> x-wu-r6 = 0 x-wu-r4 = 0 x-r5-p6 = 0
> x-r5-p1 = 1 x-r5-p7 = 0 x-r3-p1 = 0
> x-r2-p6 = 1 x-r2-p7 = 0 x-r2-p2 = 1
> x-r6-p6 = 1 x-r6-p7 = 0 x-r6-p2 = 0
> x-r4-p6 = 1 x-r4-p7 = 1 x-r6-p8 = 1
> x-r5-p8 = 1 x-r6-p5 = 1 x-r2-p5 = 1
> x-r4-p8 = 1 x-r5-p5 = 1 x-r2-p8 = 1
> x-r4-p5 = 1 x-r6-p9 = 1 x-r2-p9 = 1
> x-r3-p5 = 1 x-r4-p2 = 0 x-r3-p6 = 0
> x-r4-p1 = 0 x-r3-p7 = 0 x-r4-p9 = 0
> x-r3-p8 = 0 x-wu-p8 = 0 x-wu-p6 = 0
> x-wu-p1 = 0 x-wu-p9 = 0 x-wu-p7 = 0
> x-wu-p5 = 0 x-wu-p2 = 0
>-> Input: 1.2 <-
>-> State: 1.2 <-
> x-wu-r6 = 1 x-r6-p6 = 0 x-wu-p8 = 1
> x-wu-p9 = 1 x-wu-p5 = 1

FromState:1.1 andState:1.2, Route computesχ and
outputsdiff(χ, γ) in the form of assign and revoke actions.
Note that, as reductant assignments are made by reductions before
model checking, one could remove unnecessary changes fromχ
prior to generating actions.

