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ABSTRACT

The role-based access control (RBAC) has significantly Kiiregd
the management of users and permissions in computing system
In dynamic environments, systems are usually undergoiagges,
whereas the associated user-role, role-role and roleigsion re-
lations need to be updated accordingly in order to reflecsjise
tems’ evolutions. However, such updating process is gépera
complicated as the resulting system state is expected torreees-
sary constraints. This paper presents an approach fotingsasl-
ministrators with the update task: using this approach,poissible
to check, in an automatic way, whether a required updatehigac
able or not, and if so, a reference model will be producedigint |
of this model, administrators could fulfill the changes toARB
systems. We propose a formalization of the update appraach,
vestigate its properties, and develop an updating algoribhsed
on model checking techniques. Our experimental resultsodem
strate the effectiveness of our approach.

Categories and Subject Descriptors

D.4.6 [Operating System$: Security and Protection-Access con-
trols; K.6.5 [Management of Computing and Information Sys-
temg: Security and Protection

General Terms
Management, Security, Verification, Performance

Keywords
RBAC, Role Updating, Role Engineering, Model Checking

1. INTRODUCTION

Role-based access control (RBAC) is an effective mechafusm
simplifying the administration of users and permissionsamput-
ing systems [11, 26]. In RBAC systems, users are associatad w
roles such amanager andemployee, and a role in turn is defined
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as a set of permissions; users acquire permissions via Edsgn-
tially, an RBAC system manages three relations: user-esétion,
role-role relation, and role-permission relation. OwindRBAC’s
advantages (e.g., being policy-neutral and the abilityuggpsrt a
wide range of access control requirements) it is widely suigpl
in commercial operating systems and database systems.
However, the administration of large RBAC systems is a com-
plex and challenging task. As organizations undergo crartge
definition of roles (in terms of permissions) may need uppto
reflect those changes. We refer to the updating of user-rolie;
role, and role-permission relationsrae updating Role updating
is a key component of role maintenance in role life-cycld,[26d
takes a great proportion of the total cost of role maintead#z2).
Despite many convenient RBAC administration models (¢8g.,
18, 25]) at our disposition, role updating is generally difft and
error-prone, because usually the resulting state is eegaotmeet
various constraints. For example, updating is supposetbonmt-
expectedly change users’ role set or permission set anchthder
tasks being performed in the system; nor should it assigtua
dent role to a user who is a professor in real-life, even though her
permission set remains the same.
Given a high-level update request, the trial-and-error@ggh is
work-intensive, inefficient and, when the request is noiacble
at all, very frustrating. An updating strategy, if existsayrnvolve
several administrative actions. The situation becomesavas the
RBAC systems grow large. Hence, a tool facilitating role atpty
is desired, as is also motivated by the following scenarios.
Repairing. Misconfigurations in access control systems can result
in severe consequences [3]. As such, correcting miscoatigas
is essential to systems’ usability and security. It cossidttwo
parts: identifying misconfigurations and changing accesgrol
policies. While the former has been studied, how to changessc
control policies is still an open problem, even though it rhaylear
who should implement the changes. As stated in [3]: “How #eru
elects to modify the policy is orthogonal to our work; it cdwn-
tail changing an access-control list on a server or ...” &fwe,
role updating might be needed under the circumstance ttsaomi
figurations in RBAC systems are detected.
User-permission assignmentdn task-based systems, each task is
associated with a set of permissions [13The set of permissions
should be assigned to a set of users so that the associdted tdd
be accomplished. In systems where RBAC is deployed, the user
permission assignments are achieved via roles [2]. Corisglthe
variety of tasks, it is likely that any combinations of rolied to
enable exactly the needed user-permission assignmerdastésk.
In this case, to support the task, one may be willing to chahge

!permissions for tasks may be augmented with temporal con-
straints. One essential problem is to assign permissions.



current RBAC state, to some extent such as with the consttain
previous task assignments are not affected. Furthermueeydr-
missions required by users and tasks are not static. Forhimg t
modern enterprises and organizations need to adapt toarmiyst
changing environments and requirements [22]. For andtteald
happen that a groufg of users are performing a task with a $eof
permissions, and that it turns out that an extra permissiod P

is a must at the late stage of the task; or the administratgrrea
ognize thatP contains more privileges than strictly necessary for
the task, she may try to revoke redundant permissions frdas].

To help system security officers (SSOs) understand and reanag
RBAC policies, various RBAC policy analysis tools have béaen
vented [3, 14, 15, 19, 28, 31, 32, 36]. However, little effat been
devoted to answering what if the current RBAC state fails &t
a requirement. One may consider role updating as an unpleasa
experience and thus avoid it. Also, it is because the upglainot
straightforward, an automated assistant tool has somebppe

In this paper, we investigate the role updating probl&uWRp),
with a bias on the update of role-permission relation, arabige
an automated te updatetool (Route). Note thatRoute is not
designed to automatically change RBAC policies, but toggia
high-level update request, check whether the request is\adiie
and, if so, present a reference model, in light of which SSadoc
implement changes to RBAC systems. Specifically,
following contributions:

o We formally define a basic version 8UP and a notion of
update constraint schemavhich is able to express a wide
range of constraints on updates. We show the intractability
of RUP.

We present a set of reductions RUP. The reductions can
not only be used bjroute, but also simplifyfRUP itself.

We devise an automated tdebute for RUP based on model
checking techniques, for which there exist mature tools tha
have been proven to work well in practice.

Finally, we undertake a set of experiments, which illugtrat
the effectiveness and efficiency Bfoute, considering the
use-pattern and frequency of role updating.

The remaining of the paper is organized as follows. Section 2
gives the preliminaries of the RBAC model used in this pager.
motivation example is presented in Section 3. In Sectionelder
fine RUP, show its complexity, and give the basic approach. The
reductions ofRUP are presented in Section 5. Experiment results
are reported in Section 6. Related work is discussed in @eéti
We conclude in Section 8. In this paper, we write SSOs and ad-
ministrators interchangeably; and a singleton{sgtis sometimes
written ass. Except for Theorem 2, proofs are given in [12].

2. PRELIMINARIES

The RBAC model used in this paper is defined as follows. An
RBAC statey is a tuple(y.U,v.R,v.P,v.UA,~.PA), wherey.U
is a set of usersy.R is a set of rolesy. P is a set of permissions,
v.UA C ~.U x ~.Ris user-role relation, ang. PA C v.R x v.P
is role-permission relation.

Given a statey, we define several convenient functions. Function
users, : 277 U 27T — 27U gives the set of users that roles
and permissions are associated with: FoE ~.R, users,[z] =
Urea {u €U | (u,r) € fy.UA}; for x C ~.P, users,[z] =
users, [roles, [z]].

Functionroles,, : 20V U 27-F +— 27 returns the set of roles
that are related to users and permissionszfar .U, roles, [z]

we make the U

Figure 1: A running example RBAC state~ex. Users are in el-
lipses, roles in circles, and permissions in rectangles. Buser-
role relation ~ex.U A is represented by dashed arrows and the
role-permission relation yex. P A by solid arrows.

Uwes {7 € 7-R | u € users,[r]}; for z C ~.P, roles, [z]
ee {re~.R|(r,p) €~.PA]}.

Finally, functionperms,, : 27U y27f sy 27 P maps the users
and roles to their related permissions: foC ~.U, perms_[z] =
Uwes {P € 7-P | u € users,[p]}; forz C ~.R, perms_ [z]
U,co {p € 7-P | r € roles,[p]}.

Given a set of userd/, a set of rolesR, and a
of permissions P, we define a set of RBAC stateB
{{(v.U,v.R,v.P,vUA,~.PA) | vU = U,v.R = R,v.P =
P,vUA C U x R,v.PA C R x P}. We sayl' is theRBAC
state space ofU, R, P), denoted aspace(U, R, P). Giveny =
(v.U,v.R,~v.P,y.UA,~v.PA) € space(U, R, P), we denotey as
(v.UA,~.PA) without explicitly enumerating.U, ~v.R, andy.P.
We denote the RBAC space thatesides in aspace(v), where
space(y) = space(y.U,~v.R,~.P).

set

3. AMOTIVATION EXAMPLE

Figure 1 shows an example RBAC statg. Suppose that an
SSO needs to updatey in response to the following requests.
Repairing. Suppose that a misconfiguration that the useshould
have been able to perform is detected. The SSO is informed of
this problem and asked to take measures to gratite permission
p2. The question is how the SSO may accomplish this, while keep-
ing other users’ role sets and permission sets unchangeg®rts
overreacting to assigp. with r1 or with r3, because that would
incidentally grantp, to u; Or ug.

Permission assignmentsSuppose that a tagk requires the per-
missionsP; = {ps, ps, po }. Currently inex, there does not exist

a set of roles whose permission set is exaétly If t is important
and all permissions i are indispensable, an update request, that
P be assigned via roles but with users’ role sets and permissio
sets unchanged, may be issued in hope of enabling task

This type of requests could also happen in the contexttef-
domain role mappingsa set of permissions (e.dps, ps, po }) are
to be shared via roles, but the underlying state could ndileribe
exact set of permissions [4, 9, 29, 30, 35, 38].

In both cases, the SSO needs to either find a satisfactoryaipda
or determine the request is not satisfiable at all. Howeven with
this toy example, it is not straightforward to make decision



4. PROBLEM DEFINITION

4.1 Constraints on updates

Given the current state, consider an update request that a set
‘P of permissions be assigned to users via roles. If new roles ca
be defined forP, this question becomes trivial. Hence, we look
at more difficult role updating problem in RBAC systems whaoe
new roles can be created. We believe this is more commonubeca
new roles should be introduced with discretion, but not hyere
response to such permission assignment requests. Foraay st
obtained after updating, we may want to impose this constraint:

x-R=1~.R. 1)

The effects of an update should be confined to a certaifi/set
of users. In other words, updates are supposed to be tramspar
users outsidé’ in the sense that their permission setg iemain as
in . In this way, the tasks that are being performed in the system
W(;Uld not be interfered by updating. Put formally, the coaist
is:

perms, [u] = perms,_[u], forallu € v.U\U. 2

Additionally, to make updates rational, the following ctvamt
seems necessary.

roles, [u] = roles,[u] forallu € v.U\U.

(©)

Constraint (3) keeps users’ role sets unchanged. This i$ mot
vated by the following observations: (1) User-role assignts are
business-driven; users’ role memberships are determipeatdir
attributes, jobs, titles, and etc. (2) From the user-expee view-
point, a staff in a university may be reluctant to takstadent
role even though she is entitled to the same privileges.hEura,
user often activates only a subset of her roles for a taskpitidv
be obtrusive for grofessor to activate both thetudent role and
the secretary role to finish what she can do withpofessor role
before, had an update adjusted her role assignments.

Motivated by these observations, we define a notiokJpdate
Constraint Schemavhich generalizes constraints (1), (2) and (3).

Definition 1. (Update Constraint SchemaJCS) Given a state
v, aUCS of v is atupler” = (x7.U, =" .th}), where

1. #7.U C~.U,and

2. 77th : «".U — 27F such that, for anyu € =.U,
n7 thlu] C perms_[u] (th is short forthreshold.

When-y is clear from context, we omit the supscript

When SSOs are specifying «.U often contains those users for
whom the SSOs are not responsible so that the SSOs have to e
sure that the potential update does not affect those usgsefting
m.thlu] = perms,_[u]), and/or those users whose permissions are
designated by the SSOs and vary within a range (i.e., therlowe
bound ism.th[u] and the upper bound iserms_[u]). The set
~.U\w.U is a set of users whose current role sets and permission
sets iny are neglected by updates; updates may change their role-
assignments and permission-assignments.

n

Definition 2. (m-compatibility) Giveny, 7, and an RBAC state
X € space(y), we sayy is w-compatibleif the following condi-
tions are met.

CoND-U-R foranyu € =.U, roles, [u] = roles, [u], and
2Given two setsd andB, A\B = {a € A | a & B}.

CoND-U-P for any v € 7.U, m.thlu] C perms [u] C
perms_ [u].

Note that only RBAC states ispace(+y) are considered. That

means, we assume that no changes are made to the user set, role

set, and permission set. Conditioro@Dd-U-R requires that the
role assignments of any € «.U in x remain as iny, i.e.,x.UAN
(.U x x.R) = v UAN (7.U x v.R). This is exactly the same
as (3). WND-U-R also indicates that we focus on the update of
role-permission assignments. In accordance withnG-U-P, any

uw € .U must satisfy:u’s permission set varies from.th[u] to
perms_[u], both inclusively. This is a generalization of (2). At
least, by lettingr.th[u] = perms_ [u] so that users permission sets
remain the same, SSOs guarantee that tasks assigned tdrusers
«.U progress smoothly after update.

Definition 3. An update requesto ~, req(y,P,w,7), com-
prises the current RBAC statg a set of permission® C ~.P,
aUCS 7 of v, and a set of roleg C ~.R.

Definition 4. GivenQ = req(~, P, m, 7T), we sayy Iis an up-
date ofQ, if x is m-compatible and there exists a et C 7
such thatperms, [R] = P. Denote the set of updates ¢f as
upd{~y, P, m, 7). We sayQ is satisfiableif upd{vy, P, m,T) # 0.

Definition 5. (Role Updating Problem RUP) The RUP is to,
givenreq(y, P, m, T), check whetheupd(~, P, w, T) # (0 and, if
S0, to find onex € upd{y, P, 7, T).

SSOs express update requests by specifseady, P, w, 7). If
it turns out thatupd(v, P, w,7) = 0, that means the update re-
quest cannot be fulfilled without violating-compatibility. Other-
wise, supposing € upd(y,P,n,7T) is found, SSOs can make
changes toy in light of .

Route might be used when the RBAC state is migrating to an
ideal state suggested by role mining techniques; the ideté s
may be fine-tuned usinBoute to adjust assignments. More im-
portantly, Route is able to assist SSOs with administrative works,
especially when assigning (or adjusting) permissions éosus

Satisfiability is defined based en One most important restric-
tion thatr puts is that, only a limited set of permissions may be as-
signed with a role. Givereq(vy, P, n,7T),r € v.RandR C v.R,

let
N

u€ (usersy [r]Nm.U)

max-perms, . [r] = perms_[u],

andmax-perms . .\ [R] = U, cpmax-perms, . [r]. If (v, 7)
is clear from context, we omit the subscrigt 7). max-perms|r]
(resp.,max-perms|[R]) is the maximal set of permissions that
(resp.,R) could possibly be assigned with in

PropPosITION 1. Givenreq(v, P, w, T), if x is m-compatible,
then, for all(r,p) € x.PA, p € max-perms[r].

Supposingy € upd{y,P,n,T), m-compatibility is to restrict
the difference between andy, which is measured as below.

Definition 6. Given v and x such thaty € space(y),
the difference between~y and x is defined asdi f f (v, x)
(v.PA\x.PA) U (x.PA\~v.PA). Note thatdiff (x,~v)

di ff (v, %)-
4.2 RuUPis intractable

THEOREM 2. Given an update requeseq(y,P,w,T), it is

NP-complete to decide its satisfiability.



PROOF Since elements i) = req(y,P,n,T) are finitely
fixed and, for any € space(vy), it takes polynomial time to check
if x € upd(vy,P,nw,T), a non-deterministic Turing machine can
guess an updatg and verify if x € upd(~, P, w, 7). Hence, the

thatdi ff (x,v) € v.R x P~. Butp.+ ¢ perms_[r] because
r & {re, 7z, }; as aresult(r,p.+) € di ff(x,v). Thus,
we reach a contradiction. Suppose that= -z V --- V -z, iS
false underr; that is,7(x¢) = 1 for 1 < ¢ < n. Then according

problem is in NP. To show its NP-hardness, we reduce the known to the definition ofr, perms, [rz,] € Pforl < ¢ < n. Since

NP-complete problervionotone SAT to our problem.

Monotone SAT: Given a setX of boolean variables and a col-
lectionC of clauses oveX where each clause contains either only
positive literals or only negative literals, is there altrassignment
of X sothat/ C is true? We call a clause with only positive literals
a positive clausgdenoted ag™ and otherwise aegative clause
denoted as ™.

Given amonotone SAT instance, construct eeq{~y, P, m,7T)
as follows. First we construet. For each clause™ € C, create a
permissiorp,+; for eachc™ € C, create a permissigy.- . Denote
Pt = {p.+ | ¢ € CtandP™ = {p.- | ¢ € C}. Let
v.P = PTUP™. Foreach: € X, create a corresponding rolg.
Let (ry, p+) € v.PAifand only if ¢t contains the literat and
(re,p.~) € v.PA if and only if ¢~ contains the literabz. For
eachc™, create a use,- and let(u,—,r.) € v.UA if and only
if ¢~ contains—z. For eachr, create a uset,, and let(us,r.) €
v.UA. LetP = P*. Now we configurer by letting

o 1.U=~.U,7T =.R,
o for eachu,-, m.th[u.-] = perms_[u.-], and

o for eachu,, w.thu,] = perms_[r,] NP>

We now show thamonotone SAT is satisfiable if and only if
upd{~, P, 7, T) # 0.

Suppose that is a truth assignment that mak@sC' true. Then
an update ofreq(v,P,w,7) consists of: removing al(rz, p)
wherer(z) = 1andp € P~. Note thatP = P*. Since/ C
is true, allct is true. As a result, for any € P, there exists
at least oner such thatr(z) = 1 and(r.,p) € v.PA. Then
{rz | 7(z) = 1} in the updating state is a role set whose permis-
sion set is exactlP. Since themonotone SAT formula is satisfied
by 7, each positive clause' is true undetrr; for eachp € P, there
must exist at least one, such that(r., p) € v.PA andr(z) = 1,
hence after removing all permissionsrf which are also outside
‘P, p can be assigned to users vigin the updatesr-compatibility
is established as follows. For any useif any permissiomp € P
belongs toperms,, [u], since the update does not involve permis-
sions inP™,  still acquires that permission in the update. Simi-
larly, conditions regarding any user. are also satisfied. For any
useru,—, consider any.— € perms,_[u.-]. Sincec™ is true un-
der 7, there exists at least onein ¢~ with () = 0. From the
construction of the update, the update does not affgdherefore,
it holds thatp.- € perms, [r;], namely,u.- is still associated
with p_.— viar,.

On the other hand, suppose thate upd{vy,P,n,7). Con-
struct a truth assignment over X: 7(z) = 1 if and only if
perms, [r.] C P, and otherwisey(z) = 0. Thent can make
the formula true for the following reasons. Recall tfat= P™.
Suppose thatt = x1V---Vz, is false under; thatis,r (z,) = 0
for1 < ¢ < n. In light of the definition ofr, it holds that
perms, [rz,] £ P, for 1 < £ < n. Hence, from the fact that €
upd(y, P, m, T), there exists € x.Rsuchthap .+ € perms, [r],
perms [r] C P, andr & {rs,, - ,rs,}. However, sincey
is m-compatible, particularly the effects of users, it must hold

3This means that, for each role, only permissions outgidmuld
be removed.

u,.— is only assigned with roleéry,, -« ,r,,} andp,— & P, it
holds thatp.- ¢ perms, [u.-]. However,p.- € perms_[u.-],
a contradiction withr-compatibility (in terms of @ND-U-P for
u.—). O

4.3 A model checking approach

Route leverages model checking techniques [6] RiWP. The
basic idea is as follows. Givereq(y,P,w,T), let ¢ denote the
statement that a (witness) user could acqireia roles in7"; we
ask if =¢ is always true in allr-compatible reachable states from
~. If a positive answer is returned, that means one cannotl fulfi
req(w, P, w, T) without violating the constraints on updates spec-
ified by 7. Otherwise, model checkers would generate a counter-
example, from whichRoute constructs an update.

4.3.1 Formalization

The model checking techniques thRbute uses works with
computational tree logic (CTLandKripke structured6]. We first
introduce these notions and thModel Checking Problem (MCP)
considered in this paper; and then transRité? to MCP.

Let AP be a set of atomic propositions. Kipke structureM
is a tuple(S, o, L) where

1. S'is afinite set of state,

2. o is a binary relation orf (i.e.,c C S x S) which defines
the transitions between states, and

3. L : S — 247 associates each statec S with a set of
propositions inAP.

A path in M starting from s is denoted asH =
[807 S1,°°* ,8i,Si+1, " ], Whereso =S and(si7 8i+1) € o holds
forallz > 0.

The syntax of CTL is given as: Every atomic propositign €
AP isaCTL formula; and ifp; andy» are CTL formulas, then so
are—p1, o1 A2, o1V 2, andAGep:.° The formulaAdGy means
that on every computation pathholds at every state. The seman-
tics of CTL formulas is usually defined with respect to a Kepk
structure. LetM = (S, o, L) be a Kripke structure for CTL. Given
any s € S, denote a CTL formulay holds in M at states as
(M,s) E . The relationf= is defined by structural induction
on CTL formulas:

M, s) k= apiff ap € L(s).

M,s) | it (M,s) I .

M, s) = @1 A2 iff (M,s) E p1and(M,s) E pa.
M,s) = @1V e iff (M,s) E p10r(M,s) E pa.

(M,s) &= AGy iff for all paths H = [so, 51,82, " ,]
whereso = s and for alli > 0 (M, s;) = .

An MCP can be abstracted as follows [5]. Givel/, ¢, ),
where M is a Kripke structureg is a CTL formula, andl C S

“Note that these are not RBAC states.

5This definition is not complete; but we only use the formula
AGLpl



is a set of initial states, the problem is to determine whethe
IC{seS|(M,s) =}

We now connecRUP with MCP. Given@ = req(y,P,n,7T),
we define a set of propositiopsop(Q) = Pry U Pr2, where

o Pri = {z-ur | u € YUAT € v R} U{z-rp | r €
v.RApe€~.P}, and

e Pro={z-wu-r|reT}.

The propositionz-r-p is meant to represent the assignmenpof
to r: z-r-p = 1 meansr is assigned witlp, and otherwise not.
The propositions inPr; is used to model the user-role and role-
permission assignments in RBAC states. The propositiod3rin
denote whether or not a witness usger is assigned with the roles
inT.

Given @, we construct a Kripke structu®/q = (S,0,L) as
follows.

o S={sa|ACprop(Q)},
e Lisdefinedad.(sa) = {ap € prop(Q) | ap € A},

e To defines, we define a mapping : S — space(y):
g(sa) = va = (va.Uya.R,va.P,ya.UA,va.PA) if
and only if

— y4.U =~v.U,ya.R=~.R,ya.P =~.P,
- (u,7) € ya.UAlifand only if z-u-r € A, and
— (r,p) € va.PAifand only if z-r-p € A.

Then for anysa, sg € S, (sa, sg) € o if and only if both
g(sa) andg(sg) arer-compatible.

To define the initial states of Kripke structure, for any RBAC
statey’, letKstates(y') = {sa € S| g(sa) =+'}. Weletlg =

Kstates(+) so that the initial states correspond to the requested ¢,

RBAC statey in Q.

Finally, we define¢ of MCP (Mg, ¢,10), i.e., the property
that we want to check. Assume that = {ri, .- ,r¢}, P =
{p1, -+ ,pm} and y.P\P {pm+1,-- ,pn}. We let¢ be
AG—(p1 A ¢2), where

e ¢ = X-Wu-p1 A--- A X-WU-py,, and
e o= (X-WI-pmg1 V-V X-W-p,).
Inturn, forl < /¢ < n, X-wu-p, is defined as
(z-WU-T1AZ-T1-pe) V(Z-WU-T2 AZ-T2-pe) V- - -V (Z-WU-TL AZ-T4-Dp ) -

Intuitively, eachX -wu-p, is testing if the witness usew has the
permissionp,. Theng; models if (a)wu can have all permissions
in P, whereasp, is used to test if (b)wu has no permission in
~v.P\P. As aresult AG—(¢1 A ¢2) is asking if there is no reach-
able state from the initial states that satisfies both (a)(ahdFor-
mally, we have the following result.

THEOREM 3. upd{v,P,w,T) = @ ifand only ifIg C {s €
S1(Mgq,s) E AG=(¢1 A ¢2)}

If AG—(¢1/¢2) is checked to be true, then there is no reachable
state satisfying the requirements (a) and (b); otherwiseSMV
would generate a counterexample. The counterexample fiere i
states 4; then the RBAC statg(s4) is a desired update fa@p.

4.3.2 Implementation in NUSMV

Particularly, Route embeds the model checker NuSMV [5] to
search for updates. NuSMV is a modern symbolic model checker
supporting various useful features such asTRANS constraints.

A TRANS constraint defines which next states that the current state
may transit into. Namely, the model of the constraint is adet
current/next state pairs. MultipfERANS constraints are treated as
the conjunction of allTRANS constraints. We refer readers to [5]
for details of NUSMV.

Encoding states. Recall the condition OND-U-R of =-
compatibility, that users’ role assignments remain duripgates;
hence, we do not need to encode the user-role assignmentt. A s
of boolean variables are defined to describe the role-psioniss-
signments. According to Proposition 1, only a vector of ables

for {r} x max-perms|r] are defined for each € ~.R.

Encoding w. The UCS 7 mainly defines the set of result-
ing states thaty may evolve into. Recall that, for ar-
compatible RBAC statg, the condition @ND-U-P requires that
mthlu] C perms [u] C perms_[u]. Sinceperms [u] =
perms_ [roles,[u]] androles, [u] = roles,[u], this requirement
actually puts restrictions on the variables fer} x max-perms|r],

for eachr € roles, [u].

Route translates this requirement infbRANS constraints in
NuSMV. For eachr.th[u] C perms [roles,[u]] C perms._[u],
Route constructs twoTRANS constraints.  Ther.th[u] C
perms, [roles, [u]] part requires that, for eagh€ 7.th[u], there
exists at least one € roles,[u] such that(r,p) € x.PA.
Thus, supposing that.th[u] = {p1,- - ,pn} androles,[u]
{r1, -+ ,rm}, the following NuSMV constraint is needed.

TRANS next ((m-r1-p1| o |xermep1)& -
&(-rm-pn| - |T-rm-pn));

For perms [roles,[u]] C  perms_[u] part, first ob-
serve thatperms, [roles,[u]] C perms_[u] if and only if
perms, [roles,[u]] N (max-permsjroles, [u]]\perms_[u])
Hence, assumingnax-permsjroles, [u]]\perms_[u]
{q1, -+ ,q:}, itis required that eack-r;-¢; be 0 constantly if
g; € max-perms|r;],forl1 <i<mandl <j <t.

The encoding 0cfAG—(¢1 A ¢2) is straightforward. Appendix A
provides a counterexample for an example update.

4.4 Example usage of role updating

This section presents several example configurations of
req(~, P, m, T) that SSOs can specify to achieve different update
objectives, with respect tgx in Figure 1.

Adjusting role sets and permission sets. To repair vex SO
that u> can havep:, the SSO could issue a requedh
req(’YeX77D,7T,T>:

o P =perms, [u2] U{p2} = {p1,p2,ps,p1,p5},

o 7.U = vex.U\{u2} = {u1,us,us} and, for anyu € w.U,
m.th[u] = perms__ [u], and

o T =ex.R={r1,72,73,74,75,76}.

Running with Q1, Route would suggest a sequence of ac-
tions: s1 = ( revoke(ps,r2); assign(ri, wu); assign(rz, wu);
assign(rs,wu); ), wherewu is the witness user not belonging to
~. Then the SSO can follow; to make changes t@x: revokeps
from r, and associatér, r2, r3} with us.

For another example, suppose that the SSO wants to shglek
permission set tdp1, ps, pr} and revokers from us. ThenQs =
req(vex, P, m, 7) models this request:



o P = {p17p57p7}'

o .U = vex.U\{us} = {u1,u2,us} and, for anyu € =.U,
m.thlu] = perms__ [u],

o T = I’OleS—y[U3]\{7‘3} = {7“47 Ts},

Route would return a sequence of actions: = ( assign(ps, s );
revoke(ps, r4); revoke(ps, r4); assign(ps, r¢); assign(rs, wu);
assign(rs,wu) ).

If the SSO requests to remove from usz (i.e., assign only-;
with wu2) but retainuz’s current permission sef{p1, ps, pa, ps},
Route would report that the request is not achievable.
Permission assignments. To update for enabling the exact set
of permissionsP, = {ps,ps,po}, the SSO could se@)s =
req(vex, P, m, 7 ) as follows:

e P=FH,

o 7.U = vex.U = {u1,u2,us,us} and, for anyu € =.U,
m.thlu] = perms__ [u], and

o 7T =~ex.R={ri,r2,r3,74,75,76 }.

Given Y3, Route returns the sequence of administrative ac-
tions: ss = ( assign(ps,re); assign(ps,re); revoke(pe,r¢);
assign(re, W); ).

5. REDUCTIONS

Section 4.3 describes the idea of applying model checkiclgte
nigues toRUP. However, the execution of the NuSMV program
directly transformed fromreq(~y, P, w, 7) quickly leads to state
exploration (and memory crash). In this section, we presaet of
reductions folRUP. These reductions are not exclusiveRoute
but could also benefit other approache&tdP.

Consider two request§: = req(yi,P,m,7) and Q2 =
req(vyz, P, w2, 7T ), which share the sanfé and7 . If it holds that
upd{~y1,P,m,7T) # 0 if and only if upd{~y2, P, w2, 7T) # 0, then
Q1 is satisfiable if and only if so i€)>. On the other hand, if
upd(y1,P,m1,7) C upd{yz2, P,m2,7T), then when we find an
updatey for Q1, we also obtain an update f@-. Put together, we
have the following definition.

Definition 7. Given a reques) = req(~, P, w, 7 ) and a set of
reqUEStd’?SEt = {req<717 7)7 1, T>7 B req<7m7 P7 T T)}’
we sayQ — Qs if the following two conditions are satisfied.

1. Usper Updine, P, e, T) # 01 upd(y, P, 7, T) # 0.
2. Ulgegm Upd(’ye, 7)7 e, T) c upd<’77 7): T, T>

It can be seen that i) — Q..:, then we can work with the set
Qset instead of@Q; we need to find &) that is easier to tackle.

5.1 Reduction on core

Observation 1.For w-compatibility, changes can only happen
around roles that are related to the permissiorg.in

Given @ = req{v,P,w,7), we denote the set of roles
roles, [users, [P]] ascore(y,P) and call it thecore setfor Q.
The reductions center arourdre(v, P). The intuition is that: ac-
cording tor, only users irusers,[P] can have permissions iR
and thus only their roles may be assigned with permissiofs in

Definition 8. Given a statey and R C v.R, we sayy g is a fil-
tered state ofy by R, where~yg).U = users,[R], yir].R =
roles,[yir1.U], vim-P = permsy[yrm R], yim-UA =
v UAN (’y(m U x YIR] .R), andfy(m PA=~UAN (’y(m R x
’W'R" P)

Givenreq(y, P, m, T), denote the statgcore(,,7)] ascore-7.
While + is filtered with respect taore(~, P), a newUCS on up-
dates ofcore-v is to be constructed as well in a way that those
updates taore-y can be seen as updatesito Not surprisingly,
this newUCS stems fromp.

Definition 9. (Refinement ofr) Given req({~,P,w,7) and a
statey’ obtained by filteringy with some role set, define dCS
1 by letting:

1. ﬂ'h/].U =n.UnN ’yl.U, and

2. for any w € ry1-U,
m.th[u]\perms_ [roles, [u]\y".R].

W[Wl].th[u] =

The UCS 7,/ is a confinement ofr to o'. 7,/ only allows
changes toy’, which is a filtered state of. Hence, all updates
allowed bymr.,; would not influence users in.U\~'.U; the first
clause refines the user set. Singeg/; only allows changes to roles
in +'. R, the permission set of any role in R\~’. R would not be
changed by any update of, and, therefore, nor is the permission
set of any role imoles, [u]\"'.R, for eachu € 7,.U.

Let Qcore = req{core-y, P, T[core], 2 ). Proposition 4 corre-
sponds to Observation 1.

PROPOSITION 4. Q — Qcore.

5.2 Decomposition

Observation 2.It is sometimes useful to decomposg =
req(v, P, m, T) into sub-problems that can be solved separatively.

A collectionCy, C 27-® is adecompositiorf Q if

1. foranys, S’ € Cge, P C perms,[S], and eitherS = S’ or
S¢S

2. foranyR C v.R, if R € Cg, then either? ¢ perms,_ [R]
or there existsS' € Cy such thatk C S.

Given S € Cy, let S = roles, [users,[S]] and denote the state
V& asdes(vy). One may decomposg into a set of requests:

Qae = {req(des(v), P, Trdgeg(v)1, T) | S € Cye}-
Proposition 5 formalizes Observation 2.
PROPOSITION 5. Q@ — Qge-

Proposition 5 does not reduce the complexity RIJP the-
oretically. It is likely that there existsS € (g such that
S = core(y, P)—-in this case, we may still have to work
with Q. However, the benefits lie in practice. For one thing,
when upd(y,P,7,T) # 0, we may figure out oney €
upd(des(vy), P, Traeg(+)], Z) With smaller S, which could be
more efficient than working withQ; for another, the incurred
changes could be more restricted, foC roles, [P].

DefineCie’™ = {S C roles,[P] | perms,_[S] D PA
vSs' c S:perms [S'] 2 P}.



Cinin is a decomposition of). Civ'™ features that eachd € Cy,
is a minimal role set whose permission set contdis Hence,
evaluatingreq(dens (), P, Tde (1)1, Z) for M € Cga'™ might
be easier. Unfortunately, computigg.’™ is NP-hard.

In our prototype oRoute, priority is given to the linear comput-
ing runtime of a decompositiofj;>”"**, while keeping each mem-
ber as minimal as possible. Practical systems may use §pedia

algorithms forCi™", which is beyond the scope of this paper.
5.3 Removing ignorable roles

Observation 3.For a roler such thatperms_[r] NP = 0, if
its permission assignments could not be changed duertevould
not help withreq(~y, P, 7, 7) and thus can be ignored by updates.

Givenr € ~.R, we sayr is ignorableif r ¢ roles,[P] and
perms_[r] = max-perms(r|. Thatis,r is ignorable if it cannot
accept any permission assignments other than those tralteady
assigned with it iny.

Denote the set ofion-ignorableroles asR.,;, and the state
obtained by filteringy with Rnig (i-€., vrr,,,,1) asnig(y). Let
Q = I’eq<fy7'P77r,T> andQnig = upd<nig(’7)7lp7ﬂ-(nig(’y)—|7T>'
Proposition 6 corresponds to Observation 3.

PROPOSITION 6. @ — Qnig.

5.4 Propagating requested permissions

Observation 4.If complying with =, we may associate permis-
sions in? with as many roles as possible. In addition, there ex-
ists an update that does not remove any assignimepj such that
p € P, should there exist an arbitrary update.

Given x € upd(y,P,w,7T), p € P, andr € ~.R such that

perms, [r] £ P and(r,p) ¢ x.PA, if allowed by 7, making

(r,p) € x.PA would retainy being an update. Namely, we can

propagate permissions fa among roles and only change the role-

permission assignments whose permissions reside ougside
Define a statt () by letting

o pty(v).U = .U, ptx(7).R = 7.R, ptp(v).P = ~.P,
pty(v).UA =~.UA, and

e pty(v).PA = v PAU{(r,p) | r € v.RAp € (PN
max-perms|r])}.

PROPOSITION 7. req(y, P, 7, T) — req(pty(y), P, m,T).

PrROPOSITION 8. If x1 € upd(pt,(vy),P,n,7T), then there
existsyz € upd(pt, (), P, , T) such thatdi f f (pt;(v), x2) N
{(r,p) IpeP}=0.

Proposition 8 means that we can just fix the assignnignt)
constantly, ifp € P. Together with Proposition 7, we would not
miss an update if there exists one.

6. EXPERIMENTS

Figure 2 depicts the prototype Boute. The interface receives

=
o

11

SSOs’update requests

!

| Interface

A
requests
o - ———— - —
A 4 S

/
1 Translator
|
|
|

Back-end

NuSMV
programs

A 4 counter-
example Update

Constructor

1
|
update |
|
1

Figure 2: Route prototype.

Algorithm 1: Algorithm of the back-end.

Input: req(y, P, w,T)

Output: eitherupd{~, P, 7, T) = @ or x € upd{vy, P, 7, T).
begin

Computecore-y, Trcore7, and the se€g??";

foreach S € C2""°* do

Apply the reductions of “decomposition”, “Removing
ignorable roles” and “Propagating requested
permissions” ta&ore-y andncore.4] iN S€QUENCE;
Denote the obtained state au€S as+’ andx’,
respectively;

TransNuSM/(req(y’, P, n’, T));

Execute the resulting NuSMV program;

if a counterexample is returndtien

L Constructy according to the counterexample;

A W N P

© 0N O O»

return di ff (x,v);

return upd(y, P, m,T) = 0;
end

6.1 Experiments

Experiment Cases. The prototype ofRoute is implemented in
JAVA. A requestQezp = req(~, P, m,7) is randomly generated.

In all tests, we letZ = ~.R and setr by letting7.U = ~.U

and, for allu € 7.U, w.thlu] = perms_[u]. The reductions
are performed in sequence as shown in Algorithm 1. For each
S € CglP" ", we generate afile for the corresponding NuSMV pro-
gram (denoted gsrog(.S)) and a file for NuSMV commands. Then
for each NuSMV program, we fork a thread, which executes the
NuSMV program via NuSMV'’s batch mode. The thread is killed
if the execution of the NuSMV program exceeds 12 hours. énlik
Algorithm 1, the tests would not finish until all NuSMV progna

are generated, executed and returned, even though an update
been found. We record the time for processing eéiaenoted as
time(S), including both the averaged shared preparation time and
its own model checking time. Experiments were performed on a
machine with an Intel(R) Core(TM)2 CPU T5500 @ 1.66GHz, and
with 2GB of RAM running Microsoft Windows XP Home Edition

SSO’s update requests and forwards them to the back-end. Al-Service Pack 3.
gorithm 1 presents the pseudo code of the back-end. FunctionSynthetic Data Generation.To generate requests, we adapt data-

Tr ansNuSMV translates the request into NuUSMV programs; it ex-
plores some further simplifications of the problem. The basi
tuition is to reduce the number of variables in NuSMV progsam
in accordance withr-compatibility. Tr ans NuSMV also groups to-
gether those permissions that can be treated likewise ¢ither
revoke all of them from one role or assign all of them with one
role) and retain only one of them.

generation algorithms from [34, 37], which is parametetiby

the number of users (hoU), the number of roles (noR), the num-
ber of permissions (noP), the maximum number of roles (noUR)
each user may be assigned with, the maximum number of permis-
sions (NORP) each role could possibly be assigned to, anmlithe

ber of requested permissions (noReqps). The relatidi (resp.
~v.PA) is generated by assigning each user (resp. each role) a num-



berk of roles (resp. permissions) whekas randomly chosen and  tion of decomposition is useful as the number of roles irsesa
uniformly distributed between 1 and noUR (resp. noRP). Nt By decompositionRoute only dealt with requests with a limited

in all tests, no two users have the same role set and no tws role number of roles.

have the same permission s@.is determined by randomly cho- In Figure 3(c), we generated).., by fixing “noU=1500
sen a number noReqps of permissions fraR. noR=500 noP=2000 noUR=3 noRP=150" but varying noRegps.
Time Metric. Given the set of programs @frog(C32""’"), let The peak (about 17 minutes) was reached at “noRegps=500-600
prog, be the set of programs that are checked fgiseg, the set The use of “propagating requested permission” reductioeda
of programs that are checked true, gndg, the set of other pro- Route from setting more and more variables, with the increase of
grams that could not finish within time limits or that lead tem- noReqgps. This explains why the time starts to drop at 700.

ory crash. Fortunately, in all our test cases, we did get arsw Figure 3(d) shows the case where “noU=1500 noR=500
(i.e., eitherprog(C4l”"°") = prog, and all programs are finished = noP=2000 noUR=3 noReqps=500" were fixed and Figure 3(e)
in time or there exist some programs that return with a coerte the case where “noU=1500 noR=500 noP=2000 noRP=150 noRe-

ample prior to time limit). Even though timeouts happen in-se
eral cases, there was anotimeog(S) whose NuSMV program is
efficiently checked false and thus a counterexample is gézukr
which reveals an update.

The time records shown in Figure 3 are computed as follows.

time = max{time(S) | S € prog, } + Z time(S). (4)
Seprog,

approx

For example, suppos€g. = {54, 52,53, 54,55} where
prog(S1) and prog(Ss) are checked true, checkingrog(S2)
times out, andprog(Ss) and prog(S,) are checked false and
counterexamples are generated.
time(.S1) +time(Ss) + max {time(Ss),time(S4)}. Itis arguably
reasonable to ignore the timemfog, . Taketime(.S2) for instance.

In practice, one can easily compare the number of varialles i

prog(S1), prog(Sz2), prog(Ss), prog(Ss), andprog(Ss). Since
NuSMV'’s performance highly depends on the number of vagsbl
one can schedule programs’ executions in increasing ondéned
number of variables and thus pptog(S2) at the end of queue.
When, for exampleprog(Ss) returns a counterexample, then an
update is found and there is no need to exequrtey(S2).5 In
this case, decomposition appears useful. Hence, we susact
time in (4) is possibly longest time taken byoute to evaluate

req(v,P,w,T). Since the data set is randomly created, for each

configuration of parameters, we ran the test 5 times. The itime
Figure 3 is averaged over the 5 runs.

Results. Figure 3 reports the experiment results. The time is in

minute and log-scale in Figure 3(e), but is in second andatiire
others. Note that for each run, a new instafke, was generated
each time a configuration was tested. In Figure 3(a), we géseer

Then the computing time is:

gps=500" were fixed. WhildRoute dealt quite well with large
noRP, the performance &oute with respect to large noUR was
relatively poor. One reason might be that, the larger noUkhis

more NuSMV programs were created and checked; and the reduc-

tions also took notable time. Even though reductions were pe
formed and many role-permission assignments were setasunst
according tor, there were still many variables, fdroles, [u]|
could be quite largex 5); since constraints are put on the per-
mission assignments of roles moles,[u], the large number of
[roles, [u]| prevents more variables from being fixed.

In real-world large-scale RBAC systems, even though noUR
could be large ¥ 5), we expect that only a small portion of users
have a number noUR of roles and that the number of roles that ar
under an SSO’s control will be small. Hence, we conjecRmete
will be able to handle update requests in these RBAC systems.

7. RELATED WORK

RBAC policy analysis and repair. Many RBAC policy analysis
tools (RPATS) are invented to help administrators undedsend
manage RBAC policies e.g., [3, 14, 19, 31, 32, 36], to nameva fe
Most (safety) analysis problems in literature basically ba stated
as: given the current statg a queryq, and a state-change rule
©, can+y be taken a state’ whereq evaluates true? If this is the
case, one may argue that the steps takirtg v may also be re-
ported to SSOs so that they can follow to make However, as
the objectives are different, we believe this report coddlly be
sufficient forRUP. As remarked in [14], “.q typically encodes an
unsafe situation that should never occur;...” Hence, RR&Xpdore
every possible sequence of actions, as long as they areeallbyw
©, to test if there is such & wheregq is true; consequently, RPATs

do not care what the resulting states look like. On the coptra
Route seeks for a resulting state with expected assignments. In
addition, most RPATSs focus on user-role assignments; adinat

is argued that role-permission relation is a dual of usk¥-rela-

tion and might be treated likewise, role-permission relatalso
deserves its own attention [22], especially in terms of upédat-

ing. Finally, Route goes beyond by enabling various constraints
on updates, with which SSOs specify requirements on updates
Role engineering.Recently, much research effort has been devoted
to role engineering [10, 7, 20, 33, 34, 37]. Basically spegkex-

Qexp by fixing “noR=500 noP=2000 noUR=3 noRP=150 noRe-
gps=500" but varying noU. Two longest intervals takenRyyute,
about 25 minutes, are at “noU=500" and “noU=1500". The main
reason for this abnormality is that, in both cases, it hapgehat
prog(C4¥*"**) = prog, (i.e., no update exists) in all 5 runs and
[prog(C4PP"°*)| is quite large, with averagely about 25 and 22 each
run, respectively. In other cases, eitipeog, # ? (i.e., an update

is found) or|prog(C42*"°*)| is small. GenerallyRUP is scalable
with the number of users. With “noU=1500-2000", there is a no

table drop. The observation is that, with larger number @frsis
there are more constraints on the role-permission assigtsnaad
more ignorable roles; thus more NuSMV variables were made co
stants. This also shows the effectiveness of the reducfimemmov-

isting role engineering tools (eRETSs) consume a predefised u
permission assignments and output a set of user-role assigs
and a set of role-permission assignments, taking into atcmme

ing ignorable roles. optimization objectives (e.g., a minimal set of roles) andgibly
In Figure 3(b), we generated) by fixing “noU=1500 other concerns such as roles’ business meanings, semarsécs’
NOP=2000 noUR=3 noRP=150 noReezgps:SOO" but varying noR. As 2itributes. TaxonomicallfRoute can be viewed as a role engineer-

awhole, the time taken was almost polynomial to noR. Thecedu ing tool, asRUP also deals with these assignments. However, role
updating works when RBAC states have been defined and ppssibl

deployed, whereas eRETSs usually define roles from scratble. T
focuses are also different. Role updating aims to answersSSO
question whether an update is achievable with respect tatepd

5In practice, one can run all programs in parallel, and stemnth
when one of them returns a counterexample or all programsret
with an answer “true”.
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Figure 3: The computing time of evaluatingreq(~y, P, 7, T)

constraints and, if any, to generate one. On the contragTeRut

provisioning data and output a set of mappings from roleaeaj

more emphases on how to define a appropriate set of rolese In th entitlements. Hence, RAP arRbute are both assistant tools for

view of role life cycle,Route is for role maintenance, while eRETs
help role design. Thus, one may condsiBewute as a complement

SSOs but with different usage and orientation. Fisler et[ah]
presented a tool to investigate the semantic difference@RBAC

of eRETs;Route can be used to fine-tune the ideal state generated policies (in XACML) and the properties of the difference.ejdo

by eRETSs.

Model checking in RBAC. Jha et al. [14] presented a transforma-
tion from an RBAC policy analysis instance to a NuSMV program
by letting states correspond to user-role assignments rangit
tions correspond to administrative rules. However, theingfor-
mation does not fit foRoute. The reason is that it is more in-
tuitive and convenient to encode constraints on updates. in
NuSMYV states rather than in the transitions. This refleagitfier-
ence between administrative rules and constraints on egpdatl-
ministrative rules specify what transitions can be madefeach
state, whereas constraints on updates put restrictionseoresult-
ing states. Schaad et al. [27] applied model checking teciesi
to automated analysis of delegation and revocation funatities,
with an emphasis on static and dynamic separation of dufyguro
ties. They do not consider the role-permission assignméagh

et al. [24] applied model checking techniques to the politglygsis

of a languageRTy, which can be viewed as a generation of RBAC
models considered in this paper. It is unclear how to use &hgo-
rithms to tackleRUP though. There are some other works, which
applied model checking techniques to RBAC or its variantshs
as [1, 21]; but, to our knowledg®oute is the first to use them for
RUP.

RBAC updating. Nietal. [22] studied the role adjustment problem
(RAP) in the context of role-based provisioning based onhimae
learning algorithms. Though similaRUP differs from the RAP

in several aspects. First, customized constraints on apdat en-
forced in role updating, whereas it is unclear if these qairsts
could be supported in RAP. Second, the role updating is stque
driven, whereas RAP is a learning process. Specially, S8mis

a specific update objective Route, which tries to find the ex-

not consider how to make a different desired state from thesnt
one. Ray [23] studied the problem of real-time update of s&ce
control policies, in the context of a database system. ThesSfvas
put on the transaction properties. However, RBAC models hav
important features that deserve consideration when upglati

8. CONCLUSION AND FUTURE WORK

We have studied th®UP problem, presented a set of reduc-
tions forRUP, and proposed a role updating td®bute based on
model checking techniques. Experiments confirm the effectss
and efficiency oRoute. There are several avenues for future work.
Two additional components, role hierarchies and separafiduty
(SoD) policies, are also useful in RBAC systems. Their prese
complicates the problem. Role hierarchies are importarRBAC
systems, as they further mitigate the burden of securityigidtre-
tion and maintenance. In the case of SoD policies, enforSiviy
policies is difficult by itself [17]. The interaction betweepdating
and SoD policies poses new challenges. Existing works aften
sume that role-permission relation is fixed, when conside8oD
policies. However, this assumption does not hold from ttesvvi
point of role updating. Another interesting problem is talafe
RBAC systems when administrative rules are in position ture
late SSOs’ actions.
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APPENDIX
A. EXAMPLE OUTPUT OF NUSMV

Consideryex in Figure 1 and)s = req(vex, P, m, 7 ) as follows:

o P = {p57p87p9}y
e .U = vex.U = {u1,u2,us,us} and, for anyu € =.U,

m.thlu] = perms__ [u], and

e 7 =~ex.R={r1,72,73,74,75,76 }

Below is a example running of the NuSMV program translated
from Q5. St at e: 1. 1 describes the RBAC state after the reduc-
tions are performed. During the reductions, some assigtsneen
added toyex, as indicated by the underlined variables. Note that we
denote each assignment as a variable, and fix variables staotn

if possible.St at e: 1. 2 only lists the variables whose values have
been changed frorgt at e: 1. 1.

>xxx Conpil ation and copyright information *x*x*

>

>-- specification
AG ! (x-wu-p8 & !'x-wu-p6 & !'x-wu-pl &

X-Wu-p9 & !x-wu-p7 & x-wu-p5 & !x-wu-p2)

is fal se

>-- as denonstrated by the foll ow ng execution
sequence

>Trace Description: CTL Counterexanpl e

>Trace Type: Counterexanpl e

>-> State: 1.1 <-

> X-wu-r5 =0 x-wu-r3 =0 x-wu-r2 =0
> X-wu-r6 =0 x-wu-r4 =0 Xx-r5-p6 =0
> X-r5-pl =1 x-r5-p7 =0 x-r3-p1 =0
> X-r2-p6 =1 x-r2-p7 =0 x-r2-p2 =1
> X-r6-p6 =1 x-r6-p7 =0 Xx-r6-p2 =0
> X-r4-p6 =1 x-r4-p7 =1 x-r6-p8 =1
> x-r5-p8 =1 x-r6-p5 =1 x-r2-p5 =1
> X-r4-p8 =1 x-r5-p5 =1 x-r2-p8 =1
> X-r4-p5 =1 x-r6-p9 =1 x-r2-p9 =1
> X-r3-p5 =1 x-r4-p2 =0 Xx-r3-p6 =0
> X-r4-pl =0 x-r3-p7 =0 x-r4-p9 =0
> Xx-r3-p8 =0 x-wu-p8 =0 x-wu-p6 =0
> xX-wu-pl =0 x-wu-p9 =0 x-wu-p7 =0
> X-wu-p5 =0 x-wu-p2 =0

>-> |nput: 1.2 <-

>-> State: 1.2 <-

> X-wu-r6 =1 Xx-r6-p6 = X-wu-p8 =1
> X-wu-p9 =1 x-wu-p5 =1

FromState: 1. 1 andSt at e: 1. 2, Route computesy and
outputsdi f f (x,~) in the form of assign and revoke actions.
Note that, as reductant assignments are made by reductémeb
model checking, one could remove unnecessary changes)from
prior to generating actions.



