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 Abstract – Communication overhead is one of the dominant factors that affect performance 

in high-performance computing systems. To reduce the negative impact of communication, 

programmers overlap communication and computation by using asynchronous communication 

primitives. This increases code complexity, requiring more effort to write parallel code and 

making less readable code. This paper presents the hybrid use of MPI and SMPSs (SMP 

superscalar), a task-based shared-memory programming model, enhanced with a restart 

mechanism allowing the programmer to introduce the asynchronism that is necessary to enable 

the effective communication/computation overlap in a productive way. We demonstrate the 

hybrid use of MPI/SMPSs with the high-performance LINPACK benchmark, which uses the look-

ahead technique to overlap communication and computation. MPI/SMPSs improves the 

performance of a pure MPI with look-ahead by 7,6% on a 1024 processors machine.  In addition 

to better performance, hybrid MPI/SMPSs substantially reduces code complexity, it is less 

sensitive to network bandwidth and operating system noise, and improves the use of main 

memory. 

 

1 Introduction 

 

The Message Passing Interface [1] (MPI) programming model has the widest practical 

acceptance for programming on distributed-memory architectures. In this model, processes with 

separate address spaces perform computation on their local data and use communication 

primitives to share data when necessary. Programmers tend to maximize the amount of 

computation out of the local memory to minimize the impact that remote communication has on 

the performance of the application. The two basic issues to achieve good performance and 

scalability are finding the appropriate work granularity for MPI tasks and finding a balanced 

distribution of the work.  

 To further improve performance and scalability, programmers have to modify their 

application in order to: 1) overlap communication and computation [2] and 2) accelerate the 

execution critical path in the computation [3]. To achieve 1), the programmer needs to use the 

asynchronous (non-blocking) communication calls available in MPI. The programmer can issue 

communication requests as soon as the data (or container for reception) is ready, perform another 

computation not dependent on this data, and then wait for the end of the communication.  To 

achieve 2), the programmer has to restructure the application code to perform critical 

computation (and communication requests) as soon as possible delaying other not so critical 

computations. The use of these techniques results in increased code complexity and in reduced 

programmer productivity. The approach presented in this paper tries to achieve the potential 

performance benefits mentioned above with minimal simple program annotations in pure MPI 

code. The annotations are from the SMPSs (SMP Superscalar [4]) programming model, a task-

based shared-memory programming model). In SMPSs the programmer annotates functions as 



potential tasks and the intended use of its arguments (input, output or inout). The runtime system 

uses this information to dynamically build the dependence task graph and exploit the parallelism 

in a dataflow way.  

 To motivate the paper and to show the benefits of our proposed hybrid MPI/SMPSs 

approach, both in terms of programming productivity and execution efficiency, we use HPL [5], 

a portable implementation of the high-performance Linpack benchmark for distributed-memory 

computers. As a highly optimized program it uses the above mentioned techniques to squeeze the 

utmost performance out of the parallel architecture.  Even if the problem solved is simple (the 

solution of a system of equations) the HPL source code is relatively large (more than 19000 

lines) and a good understanding of the code goes far beyond the conceptual issues of an LU 

decomposition [7]. As such the HPL is a good representation of MPI scientific and technical 

applications. 

 This paper makes the following contributions: 

• A restart mechanism for those SMPSs tasks that block on certain events, such as blocking 

MPI calls. The runtime reschedules restarted tasks in order to allow fair progress of other 

computational tasks. 

• A hybrid MPI/SMPSs approach to which achieves a global asynchronous dataflow 

execution of both communication and computation tasks. Overlapping computation and 

communication is automatically achieved by the runtime system by appropriately 

scheduling communication and computation tasks in a dataflow way. The proposal is 

demonstrated using the HPL benchmark, showing how better performance can be 

achieved with a much simpler program structure. In addition, better tolerance to low 

network bandwidth and better tolerance to external perturbations such as OS noise, are 

also achieved. 

 The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 

describes the HPL benchmark and the techniques used to achieve high performance and their 

impact in the code structure. Section 4 overviews the SMPSs programming model and the 

necessary changes to effectively support a hybrid MPI/SMPSs approach. Section 5 describes the 

implementation of HPL using MPI/SMPSs focusing on code readability. Section 6 evaluates 

parallel execution performance considering aspects such as the impact of the problem size and 

tolerance to network bandwidth and preemptions. Section 7 concludes the paper and discusses 

some future work. 

 

2 Related work 

 

Since the emergence of MPI, there has been a lot of work on improving the performance of the 

MPI library implementation and on reducing or hiding the negative impact of using the MPI 

communication primitives in parallel applications. The ability to efficiently overlap 

communication and computation has long been considered as a significant performance benefit 

for MPI applications, which has been addressed at the library specification level (non-blocking 

primitives) and its appropriate use in MPI and hybrid MPI/OpenMP programs [8], at the MPI 

library implementation level (e.g. using multi-threaded model to implement MPI point-to-point 

operations [9]) or proposing hardware approaches (e.g. enforcing speculative dataflow [10]). 

 Clusters comprised of a distributed collection of SMP nodes are becoming common for 

parallel computing. The hybrid use of MPI with shared-memory paradigms, such as OpenMP, 

has been subject of research and performance evaluation [11][12][13]. The explicit fork/join 

paradigm in these shared-memory programming models and the restrictive barrier 



synchronization precludes more advance or aggressive overlapping of communication and 

computation (i.e. across iterations of an outer sequential time step loop).  

 In order to address the programmer productivity wall in distributed memory architectures, 

some languages that are based on the partitioned global address-space abstraction (PGAS), such 

as UPC or CAF, rely on the compiler to perform the appropriate optimizations to overlap 

communication and computation. The use of pure shared-memory approaches to program these 

architectures, relying on the compiler to translate from OpenMP to MPI [14] or on the use of a 

distributed-shared memory (DSM) layer also need to worry about this optimizations at the 

appropriate level (language extensions to express data distributions and communication [15], 

compiler optimization [16] or runtime library [17][18]). 

 Recognizing the popularity and influence in the research area of the HPL as a benchmark, a 

lot of previous research has focused on improving its behavior. For example, using hybrid 

MPI/OpenMP for SMP clusters [19], using optimized BLAS routines [20], or using an 

asynchronous MPI programming model [2] to explicitly code the overlap of communication and 

computation. In order to address the programmer productivity issue, some implementations of 

the HPL benchmark using PGAS languages have appeared [21][22], focusing on programming 

productivity and not in achieving big performance improvements. 

 The hybrid MPI/SMPSs approach presented in this paper exploits the use of asynchronous 

MPI calls without increasing complexity of code, which leads to better performance. 

Overlapping computation and communication is automatically done by the runtime system by 

appropriately schedule communication and computation tasks in a dataflow way. 

 

3 Motivating example: High-Performance LINPACK 

 

The HPL [5] is the most widely used benchmark to measure the floating-point execution rate of a 

computer and the basis to rank the fastest supercomputers in the TOP500 list [6]. The kernel 

solves a system of linear equations. This section describes the techniques used in the 

parallelization of the HPL benchmark and shows their impact in the code structure and 

readability, as a motivation for the proposed hybrid MPI/SMPSs approach. 

 We use the HPL benchmark because we consider it a good representative of a significant set 

of applications, in terms of communication patterns and granularities, and techniques used to 

achieve good performance. We analyze the HPL considering important tuning parameters that 

change behavior of the application and affect performance. These parameters change behavior in 

terms of: global computation and communication ratio, load balance, amount of fine grain (small 

frequent messages) communications, performance of inner sequential computation, etc. In this 

paper we focus more on the resulting code structure than on the actual percentage of peak 

computation achieved (since in many other applications it is not possible to use such highly 

optimized inner sequential computation cores as the BLAS routines used in the HPL). 

 

3.1 Basic parallelization 

 

The HPL benchmark implements a LU decomposition with partial pivoting. The elements of the 

coefficient matrix are double-precision floats initialized with a random distribution. The matrix 

to be factored has N x N elements and it is decomposed into blocks of size NB x NB, that are 

distributed onto a grid of P x Q processes. Given the triangular nature of the algorithm and in 

order to achieve load balance, the blocks are distributed among processes in a cyclic way, as 

shown in Figure 1.a. In a typical P by Q partition, every process will have a set of blocks 



corresponding to different columns and rows regularly spaced over the original matrix.  These 

blocks are stored contiguously in a local matrix which can then be operated on with standard 

BLAS routines. Of course, highly optimized versions are used in order to achieve a high 

percentage of processor peak performance.  

 A step of the main loop of the overall algorithm is composed of the panel factorization 

and the update of the trailing submatrix, as shown in Figure 1.b. We will use the term panel to 

refer to the blocks in a column of the matrix and trailing submatrix to refer to the blocks on the 

right of the panel. The LU factorization is done by iteratively applying these two steps on the 

trailing submatrix. The number of iterations inside the main loop is directly related to block 

dimension NB and matrix dimension N. 

 
Figure 1.  a) P by Q partitioning of the matrix in 6 processes (2x3 decomposition) and b) one 

step in the LU factorization (panel, U and trailing matrix) 

  

 When the computation of the panel factorization is finished, the panel needs to be 

broadcasted to the other processes along the Q dimension so that they can perform the update of 

the trailing submatrix. This broadcast can be implemented using the MPI_Bcast call if the 

machine provides an efficient implementation of this primitive (as for instance in Blue Gene 

[23]). Alternatively, several methods are provided in the HPL distribution to perform the 

broadcast by circulating the data in one or several rings of point-to-point communications. The 

pseudo-code for a simplified version of the main loop in the HPL is shown in Figure 2.a. 
  

3.2 Look-ahead 

 

Look-ahead technique restructures the code in order to accelerate the execution of critical path in 

the computation and to overlap communication and computation. The panel factorization process 

lies in the critical path of the application. When the panel in iteration j has been factored by 

processes in column q=j%Q and broadcasted, the globally next urgent job to perform is the 

factorization and communication of the panel in iteration j+1 by processes in column (q+1)%Q. 

The HPL code includes a look-ahead option that performs this optimization. As soon as a column 

of processes q receives a panel factored by its previous column, they update, factor and send the 

next panel before updating the rest of panels also owned by this column of processes. In this 
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way, the transmission of the data can be advanced and the global critical path is accelerated. 

Introducing this optimization requires significant changes in the source code, not only in the 

main iterative loop, but also in the different routines called inside this loop. In addition to that, 

the programmer has to explicitly allocate several panels and to specify the part of the code that is 

executed while the panel has still not arrived. Probing to retransmit messages is also added in 

every function which increases internal code complexity. Pseudo-code just showing the changes 

required in the main loop for a version with look-ahead degree of 1 is shown in Figure 2.b. 

Higher degrees of look-ahead requires further modifications in the code and data structures. 

 

3.3 Partitioning 

 

The rationale for a two-dimensional data distribution originates from the actual amount of data to 

be transmitted at every step and the potential concurrency of such transmissions. A value of P 

larger than 1 implies that different blocks of the panel can be sent concurrently as each of the P 

processes has one part of the panel. However, this also introduces additional communication in 

the factorization step. These communications are of much finer grain than those in the panel 

broadcast phase. The value of P introduces a clear trade-off between communication and 

synchronization overhead in this phase and the parallelism to execute this phase which lies in the 

critical path. The case of P=1 is a special situation: it avoids all communications in the 

factorization phase as well as the need to broadcast the U submatrix (see Figure 1.b) in the 

update phase, but has to pay for a long sequential time of the factorization phase and long 

communication chain for the panel broadcast. 



 
 

Figure 2. a) Simplified version of the main loop in HPL and b) version with look-ahead equals 

to one. 

#define NPANELS N/NB*Q) 

#define root (j%Q==my_rank) 

 

double A[N/P][NPANELS*NB]; 

double tmp_panel[N/P][NB]; 

 

int k=0; 

 

for( j = 0; j < N; j += nb ){ 

   if (root){ 

factorization (&A[k*NB][k*NB], tmp_panel, k); 

k++; 

   } 

   broadcast (root, tmp_panel);   

   for(i = k; i < NPANELS; i++ ) 

update (tmp_panel, &A[k*NB][i*NB],k); 

} 

 

double tmp_panel[2][N/P][NB]; 

double *p[2]; 

 

p[0] = tmp_panel[0][0][0]; 

p[1] = tmp_panel[1][0][0];  

k = 0; j = 0;  

 

if (root){ 

factorization(&A[k*NB][k*NB], p[0], k); 

k++; 

} 

broadcast_start(root, p[0]);  

for (j = nb; j < N; j += nb){ 

   broadcast_wait(p[0]); 

   if (root){ 

         update (p[0], &A[k*NB][k*NB], k); 

         factorization (&A[k*NB][k*NB,], &p[1], k);     

         k++; 

   } 

   broadcast_start(root, p[1]); 

   for (i = k; i < NPANELS; i++) 

   update_and_broadcast_progress (p[0], &A[k*NB][i*NB], k, root, p[1]); 

   p[0] = p[1]; 

} 

broadcast_wait(p[0]); 

for (i = k; i < NPANELS; i++) 

    update (p[0], &A[k*NB][i*NB], k); 

a) 

b) 



4 Hybrid MPI/SMPSs programming model 

 

In this section we overview the SMPSs programming model and describe the proposal to use it in 

a hybrid MPI/SMPSs approach. We will emphasize the potential to overlap computation and 

communications and describe the extensions necessary in SMPSs to support an efficient use of 

the processors. 

 

4.1 SMPSs overview 

 

The SMP superscalar programming model [4] extends the standard C/Fortran programming 

language with a set of pragmas/directives to declare functions that are potential tasks and the 

intended use of the arguments of these functions: 
 

#pragma css task [clause-list] 

{function-header|function-definition} 

 

 

 

    

  With the following possible clauses: 
 

• input(data-reference-list) 

• output(data-reference-list) 

• inout(data-reference-list) 

• highpriority 

 

The first three clauses are used to indicate argument use and the last one to specify high priority 

when scheduling the task.  

 Based on the input/output specifications and the actual arguments in function invocations, the 

runtime system is able to determine the actual dependences between tasks and schedule their 

parallel execution so that these dependences are satisfied. The dependences derived at runtime 

replace the use of barriers in most of the cases, allowing the exploitation of higher degrees of 

distant parallelism. 

In addition to the dependences derived from the argument direction, the SMPSs 

programming model adds a barrier (to wait for the termination of all tasks generated up to this 

point) and a data dependent task wait construct: 
 

#pragma css barrier   #pragma css wait on (data-reference-list) 

 

 The SMPSs environment consists of a source-to-source compiler that substitutes the original 

invocations of the annotated functions with calls to an add_task runtime call, specifying the 

function to be executed and its arguments. The resulting source code is compiled using the 

platform native compiler and linked to the SMPSs runtime library. The add_task runtime call 

uses the memory address, size and direction of each parameter at each function invocation to 

build a dependence task graph. A node in the task graph is added to represent the newly created 

task and it is linked to previous tasks on whose output it depends. Once a task is finished, the 

runtime updates the task graph, inserting in the ready queue all those tasks that have no pending 

dependences. Concurrently with this main thread, a set of worker threads, started at initialization 

time, traverse this list looking for tasks ready for execution. In the case that the main thread 

encounters a synchronization (barrier, wait on specific data or end of the program) it cooperates 

with the worker threads to execute pending tasks. 

 The actual schedule of the tasks is selected by the runtime based on its view of the task graph 

which may be only a partial graph of the whole application. The highpriority clause gives a hint 

to the runtime system about the “urgency” of scheduling the task. The runtime has two ready list 



queues and tasks from the high priority queue are selected before tasks in the low priority queue. 

This mechanism allows a programmer with global understanding of the critical computations to 

influence the actual schedule. 

 In order to reduce dependencies, the SMPSs runtime is capable of renaming the data, leaving 

only true dependencies. This is the same technique used in superscalar processors and optimizing 

compilers to remove false dependencies due to the reuse of data storage (e.g. registers). In 

SMPSs the renaming may apply to whole regions of memory passed as arguments to a task. Such 

renaming is implemented by the runtime, allocating new data regions and passing the appropriate 

pointers to the tasks, which themselves do not care about the actual storage positions passed as 

arguments. The runtime is responsible for properly handling the actual object instance passed to 

successive tasks. Also if necessary, it copies back the data to its original position. This 

mechanism has the potential to use otherwise available  memory to increase the actual amount of 

parallelism in the node. An uncontrolled usage of these mechanisms may nevertheless result in 

swapping and thus extreme performance penalty. A parameter in a configuration file limits the 

size of memory that can be used for renaming.  

 

4.2 Taskifying MPI calls: a first step towards hybrid MPI/SMPSs  

 

An MPI process usually contains sequential computations between MPI calls. Further fine-grain 

shared memory parallelism can be exploited, if the architecture supports it, using for instance 

OpenMP for parallel regions between MPI calls. However OpenMP is based on a fork/join 

execution model with barrier synchronizations. These barriers inside each iteration preclude the 

exploitation of parallelism across iterations, a feature that is necessary to exploit the lock-ahead 

parallelism in HPL and achieve the effective communication/computation overlap. The dataflow 

synchronization in SMPSs will allow to exploit the distant parallelism across multiple iterations, 

just based on the availability of data at runtime.  

 In order to allow a pure dataflow execution model, the first step consists on considering MPI 

calls as SMPSs tasks that consume data (MPI_Send) or produce data (MPI_Recv) in the task 

graph. We can encapsulate these communication requests as SMPSs tasks by specifying their 

inputs (for sends) and outputs (for receives). By doing so, we may rely on the general SMPSs 

scheduling mechanism to reorder the execution of such tasks relative to the computational tasks 

just guaranteeing that the dependences are fulfilled. Assuming a sufficient number of processors 

for each MPI process this would have the effect of propagating the asynchronous dataflow 

execution supported by SMPSs within each node to the whole MPI program.  

 

4.3 Handling blocking MPI calls: extending SMPSs with restartable tasks 

 

As opposed to standard computation tasks, communications tasks have an undetermined 

execution time, depending on when (or whether) the communication partner invokes the 

matching call. In addition, blocking communication calls could lead to deadlock situations [24] 

in an architecture where the number of threads per node is limited or in our initial target where 

this number is just one. 

 To appropriately handle blocking communication calls, the programmer needs to split a 

blocking call into a non-blocking call to issue the communication request and a wait call to wait 

for the data. This separation just moved the deadlock risk mentioned above from the blocking 

communication call to the wait call. To solve the problem we added a new pragma in the SMPSs 

programming model: 



 

#pragma css restart 

 

The effect of this pragma is to abort the execution of the current task and put it again in the ready 

queue. With this new pragma, the wait can be implemented with 1) a MPI_Test to check 

whether data has already arrived or not; 2) if so, the MPI_Wait can be done and data is 

available for SMPSs task depending on it; 3) if not, the restart pragma is executed, aborting 

the wait task and queuing it again in the ready queue for later consideration. The code fragments 

in Figure 3 show the code transformation done for a blocking receive call and for a broadcast 

operation. 

 

 
Figure 3. Taskifying process for a blocking receive (a) and a broadcast (b) with SMPSs. 

 

This approach requires the explicit separation of blocking MPI calls into the appropriate 

sequence of their corresponding non-blocking calls.  Both tasks are invoked in sequence in the 

source code although if data take some time to arrive, the scheduler will launch the execution of 

other computational tasks. With the proposed approach, the programmer does not need to think 

about the placement of both asynchronous calls, which would force a specific schedule which 

may or may not be the most appropriate. Notice that the transformation described above could be 

even hidden inside the implementation of the MPI library or in stubs calling it, making the use of 

the hybrid MPI/SMPSs even more simpler and productive.  

 The possibility to abort and resubmit a task has several implications. First, the task should 

not have any side effect on the state of the program or environment, as the whole task could be 

repeated a number of times that is outside the control of the programmer. Second, the runtime 

should not immediately selected the aborted task for execution if there are other tasks in the 

ready queue, as this may result in the same resource starvation and associated deadlock we tried 

to avoid. And third, the runtime should give these aborted tasks an opportunity to execute 

#pragma css task output(buf, req)  

void recv (<type>  

     buf[count], MPI_Request *req){ 

  MPI_Irecv(buf,…,req); 

} 

 

#pragma css task input(req)  

void wait (MPI_Request *req){ 

  int go;     

  MPI_Test (req, &go, ...);  

  if (go==0) #pragma css restart;  

  MPI_Wait (req_recv, …); 

} 

 

void application_receive(){ 

   recv (); 

   wait (); 

} 

#pragma css task input(buf) output(req) 

void send (<type> buf[N*nb],  

          MPI_Request *req); 

 

#pragma css task input(req) 

void wait (MPI_Request *req); 

 

#pragma css task output(buf, req) 

void recv (<type> buf[size], 

          MPI_Request *req); 

 
void broadcast (int root, <type> buf){ 

  if (root){ 

send (buf, req_send); 

wait (req_send); 

  } else { 

 recv (buf, req_recv); 

 wait (req_recv); 

 if (necessary) { 

  send (buf, req_forward); 

  wait (req_forward); 

 } 

} 

a) 

b) 



relatively frequently as this will result in better application responsiveness to incoming messages 

and may result in faster propagation of data along the critical path. 

 In our current implementation a task that invokes a restart primitive is inserted back in the 

ready queue after the first ready task, leaving at least a normal ready task between two restarted 

tasks in the list. This is done to avoid a potential deadlock in the case of two concurrent wait 

tasks. If the task that is restarted is marked as highpriority, it looses this condition and goes into 

the low priority list. Because the basic mechanism described above re-injects restarted tasks 

towards the head or the low priority ready queue, the net effect is that the restarted task still goes 

before the many possibly ready tasks in the low priority queue. 

 

5 Hybrid MPI/SMPSs LINPACK 

 

In this section, we will describe how the LINPACK code can be restructured to use the proposed 

hybrid MPI/SMPSs model. First we describe the transformation assuming P=1 (one-dimensional 

data decomposition) and later comment the differences for a two-dimensional decomposition 

(P>1). 

 

5.1 One-dimensional decomposition 

 

The structure for the one-dimensional decomposition LINPACK version with SMPSs is sketched 

in Figure 4. Notice that it is the same code as in Figure 2.a just with the specification of the 

computation and communication tasks. The computation part of algorithm is composed of the 

panel factorization and the update of trailing submatrix. The factorization is performed by a 

single task whose input is the updated panel of a previous iteration and whose output is the 

factorized panel for the current iteration. The update of the trailing submatrix is partitioned in a 

set of tasks, each of them taking as input the factored panel (either produced locally or received) 

and a subset of the local panels to update. The code shown uses the broadcast operation already 

described in Figure 3.b., in which the original sends and receives are replaced by tasks with the 

appropriate input and output arguments.  

 Figure 5 shows a partial task graph generated during the execution of this hybrid version. In 

the original HPL with no look-ahead one process executes all tasks in one iteration j before 

proceeding the the execution of the next iteration j+NB, precluding the overlapping of 

communication and computation. The original HPL with look-ahead tries to follow the critical 

path executing tasks that are a certain number of iterations in advance (degree of look-ahead). 

The control flow in the HPL code achieves this execution. The hybrid MPI/SMPSs naturally 

follows the critical path of the execution by executing the task graph in a dataflow way. So for 

example, process  p in Figure 5 would execute recv(j), send(j),  first instance of update(j), 

fact(j+NB), send(j+NB), … With no look-ahead or dataflow execution, fact(j+NB) would not 

start until all instances of update(j) were finished, delaying the critical path of the application. 

This global critical path proceeds along the panel factorization, communication to the next 

process, update of the first uncompleted panel in this process, factorization of this panel and so 

on. In order to speedup the computation along this path, the send and receive tasks are labeled as 

highpriority. Notice that the renaming mechanism in SMPSs is dynamically doing the replication 

of panels that is necessary to execute the tasks in a dataflow way and whose management added 

part of the complexity to the code in Figure 2.b. 

 



 
Figure 4. One-dimensional decomposition version for HPL using hybrid MPI/SMPSs. 

 

5.2 Two-dimensional decomposition 

 

In order to achieve good load balance and scalability of the algorithm, the HPL distributes data 

onto two dimensions. As we commented in Section 3.3, this data distribution adds new 

communications in the algorithm and increases the code complexity. New communication 

operations appear in the factorization and update phases. In the update phase, what is called 

pivoting broadcasts the U submatrix across the P processes and pivots local rows. 

 We explored two possibilities to parallelize with our hybrid approach. The first one consists 

on taskifying all communication operations in panel factorization and pivoting. However, this 

represents less than 5% of the execution time of the main loop but accounts for more than 99% 

of the total number of messages. In addition these messages are very small (eager protocol). As a 

consequence, the overhead introduced to dynamically create and manage these tasks is too large 

to compensate any benefit. The second alternative explored is much simpler and consists on 

defining the pivoting function as a new task, with the appropriate clauses to specify the direction 

of the arguments. The panel broadcast, the most expensive communication part of algorithm, 

overlaps computation part as well as in the one-dimensional decomposition and we also keep the 

code readability as well.  

#pragma css task input(A, k) output(panel)highpriority 

void factorization (double A[N/P][NB], double tmp_panel[N/P][NB], int k); 

 

#pragma css task input(panel, k) inout(A) 

void update (double tmp_panel[N/P][NB], double A[N/P][NB],int k); 

 

#define NPANELS N/(NB*Q) 

#define mine (j%Q==my_rank) 

 

double A[N/P][NPANELS*NB]; 

double tmp_panel[N/P][NB]; 

 

int k=0; 

 

for (j = 0; j < N; j += nb){ 

   if (root){ 

factorization (&A[k*NB][k*NB], tmp_panel, k); 

k++; 

   } 

   broadcast(root, tmp_panel);   

   for (i = k; i < NPANELS; i++) 

update(tmp_panel, &A[k*NB][i*NB], k); 

} 

 



 
Figure 5.  Partial dataflow graph for the execution of HPL: MPI process execution in vertical 

and iteration j of main loop in horizontal. Nodes correspond to the different tasks: fact (panel 

factorization), send (panel send), recv (panel receive) and update (panel update). In red the 

critical path of the partial execution. 

 

6 Performance results 

 

In this section we present results for the experimental evaluation of the proposed hybrid 

MPI/SMPSs programming model applied to HPL. The evaluation is done using 128, 512 and 

1024 processors of a cluster made of IBM JS21 blades and Myrinet interconnection network. 

First, we analyze the mentioned important tuning parameters from section 3.The one-

dimensional decomposition is used for the executions with 128 processors and the two-

dimensional decomposition for the executions with 128 (P=8, Q=16) 512 (P=16, Q=32) and 

1024 (P=16, Q=64) processors. We compare the raw performance of the original HPL version 

and our hybrid MPI/SMPSs version, for different problem sizes and number of processors. 

Second we evaluate other potential gains:  1) tolerance to low network bandwidth; and 2) 

robustness in the presence of OS noise and preemptions. In order to introduce the perturbations 

in 1) and 2) we modified the HPL code in such way that modifications do not have influence on 

the correctness of application results (the modifications only try to simulate the issues without 

side-effects). 

 

6.1 Performance references 
 

Performance of a system depends on a large variety of factors. Achieving the best performance 

requires well done analysis of these factors.  Linpack offers the list of 31 tuning parameters that 

defines how the problem is to be solved. Varying these parameters LINPACK stresses some 

parts of the system more than others and also gives a good representation of some MPI scientific 



and technical applications. We did analysis on 128 processors  assigning the most important 

tuning parameters: problem size (N), block size (nb), data decomposition (P and Q), overlapping 

communication and computation by using look-ahead technique. 

 The largest problem size (N) that fits in memory gives the best performance of the system.  

In effect, matrix dimension (N) defines a ration between communication and computation. For 

small problem size, Linpack is very sensitive to network performance, increasing the problem 

size communication and computation increases as well, but computation increases much faster 

and the communication overhead decreases. For very large matrix, the influence of network 

performance significantly drops. Figure 6 shows performance results for various problem sizes 

using look-ahead technique and LINPACK version without using look-ahead technique. The 

LINPACK version with look-ahead turned on decreases the communication overhead by 

overlapping communication and computations and gives better performance results for small  

problem sizes, while both versions give almost the same performance for large problem size due 

to Amdahl's law. 

                  
Figure 6. Computation/communication ration. Large problem size reduces the communication 

overhead by increasing ration between computation and communication((P,Q)=(8,16), nb=128). 
 

Proper block size (nb) responds to data distribution, computation granularity (probing granularity 

for look-ahead techniques) and performance of BLAS routines. Large block sizes tend to a load 

imbalance and limits probing for message, while small block sizes increases internal blocking 

factor of BLAS routines and as such decreases efficiency of matrix multiplication. Figure 7 

presents sensitivity to various nb. For this experiment we used N=65536 and P=8 and Q=16, as 

such nb=128 gives optimal interaction between data distribution and computation granularity. 

                    
Figure 7. Sensitivity to various block size. 
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Variables P and Q determine the data distribution. For 128 processors, possible grids are 

(P,Q)={(1,128),(2,64),(4,32),(8,16),(16,8),(32,4),(128,1)} , these respond for load balance and 

scalability of the algorithm. In order to analyze load balance, we measure the total execution 

time for gemm routines, BLAS routine for matrix multiplication in the update phase, as the most 

expensive computations in the application, Figure 8.a. shows that a good load balance prefers 

square grids. A factor of load imbalance is ration between the longest and the shortest execution 

time of computations obtaining from MPI processes. 

Processes do the panel broadcast operation over Q-processes, so large value Q may limits 

scalability of the algorithm. Look-ahead techniques and hybrid MPI./SMPSs attack this issue 

trying to hide a cost of the broadcast operation, We have already seen how increasing the size of 

problem reduces communication overhead. Figure 8.b. establishes these statements because 

hybrid MPI/SMPSs version shows higher performance improvement than pure MPI for small N 

and P values. Larger P value increases number of fine grain communications and communication 

latency causes performance degradation. Both versions suffer due to latency impact, especially 

for small problem sizes.  

 In order to test our approach we found interesting two cases: first (1,128) decomposition 

where coarse grain communications do not appear and the communication overhead only comes 

from the broadcast operation; second (8,16) decomposition that gives the best performance and 

contains a good ration between large messages for coarse grain communication(broadcast 

operation) and small messages for fine grain communication (panel factorization). These cases 

represent behavior of some MPI scientific and technical applications offering challenge to our 

approach. 

 
     a) 

     
     b) 

Figure 8.  a) Sensitivity to various data decompositions and b) Load imbalance issue due to 

various data decompositions(N=65536, nb=128).   
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6.2 Basic comparison 

 

The MPI/SMPSs is low-level programming model but introduces higher level of abstraction than 

pure MPI, which may cause performance degradation. Figure 9 shows the performance rate 

(Gflops) of LINPACK for MPI with look-ahead and for hybrid MPI/SMPSs. Notice that in 

general the hybrid MPI/SMPSs version shows better performance results because of the non-

blocking MPI calls that were used and the efficient use of memory to perform the look-aheaded 

execution technique. In general, increasing the matrix size increases the performance rate 

because the influence of communication overhead is smaller. We identify three patterns as 

application case studies for 128 processes:  

• For small matrices, the computation part of the application is small and there is not much 

possibilities to overlap communication and computation, which makes the network 

parameters (bandwidth and latency) the dominant factors. In this case, the hybrid 

MPI/SMPSs gets 20% better performance than the original LINPACK version. 

• By increasing the problem size the hybrid MPI/SMPSs version exhibits a full strength 

against the original MPI version with look-ahead. The hybrid version increases 

performance by 41%. 

• For very big problem sizes, the communication overhead is not predominant and as a 

consequence the hybrid MPI/SMPSs version just improves the performance by 9% for 

the same input data. 

These patterns are not so clearly separated for 2D decomposition with 128, 512 and 1024 

processes. In this case, the use of the two-dimensional data decomposition with blocking MPI 

calls makes the behavior slightly different. For small and large problem sizes the hybrid 

MPI/SMPSs version shows up to 5% performance improvement, while our programming model 

demonstrates high potential for medium problem sizes and reaches 15% performance 

improvement. The hybrid MPI/SMPSs creates the negligible overhead and efficiently uses all 

asynchronous MPI features.  
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Figure 9. Performance rate of the LINPACK benchmark for two different versions (original 

HPL with look-ahead one and hybrid MPI/SMPSs). Results are presented for 128, 512 and 1024 

processors.  

    
     

6.3. Tolerance to low bandwidth 

 

Bandwidth is one of the important metrics in the interconnection network technology [26]. In 

future multi-core systems with a large number of cores per node, the impact of bandwidth will 

become more important. If computing nodes become much faster relative to the interconnection 

network, performance will be more sensitive to the low bandwidth. Even in today systems, it is 

always important to know how sensitive my application is to the network bandwidth, or in other 

words, how much bandwidth could I save without penalizing much the performance of my 

application?. The ability of the programming model to overlap communication and computation 

may change the physical bandwidth requirements of the application.  

 In order to explore the impact of lower bandwidth we used a dilation technique by modifying 

the source code such that for each message of size S an additional message of size f*S is 
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transferred between two dummy buffers at sender and receiver. A value of f=1 would mimic the 

availability of half the original bandwidth. Figure 10 shows the execution time of a LINPACK 

run for a problem size that reaches the asymptotic behavior on 128 and 512 processors.  

 

                 

                 
Figure 10.  Sensitivity to low network bandwidth. Results are presented for 128 and 512  

processors. 

 

 The plot shows that even if starting at a significantly smaller execution time, the hybrid 

MPI/SMPSs version is not affected by a reduction of bandwidth close to 40%. The HPL version 

is much more sensitive to such reduction, resulting in an increase of the 120% in the execution 

time. Results for 512 processors show that the hybrid MPI/SMPSs version is almost not affected 

for five times smaller bandwidth. In the case of HPL, the execution time doubles for the same 

reduction of bandwidth.   

 

6.4. Tolerance to OS noise 

 

Operating system noise in general and process preemptions in particular have been identified as 

one of the important potential causes of significant performance degradation. Local perturbations 

easily propagate and accumulate through the whole program dependence chains and specially at 
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global synchronization points. The high levels of asynchronism introduced by the hybrid 

MPI/SMPSs model make the applications more tolerant to such perturbations.  

 In order to evaluate this effect we have modified the source code of the application by 

generating an additional thread per process that iterates on a loop that alternates sleeping and 

computing phases. By controlling the average duration of both phases it is possible to simulate 

different levels of OS noise. Figure 11 shows the sensitivity of the two versions of the code to 

process preemptions. Preempting is modeled with periodical computations of 500ms, and its 

amount can be regulated by changing the period of the sleeping phase. The plot presents the 

execution time of the application as function of total amount of the noise injected. As can be seen 

in the figure, the hybrid MPI/SMPSs version tolerates preemption much better. For 128 

processors and the period of preemption bursts of 3 seconds, performance of our version does not 

suffer, while execution time of the HPL is increased for 11%. At very high preemption 

frequencies, both versions suffer the impact of the perturbation.  

                                    

                        
  

       Figure 11.  Sensitivity to the process preemptions. Results are presented for 128 and 512 

processors. 

 

7.  Conclusions and future work 

 

This paper presents the hybrid use of MPI with a task-based shared-memory programming 
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abstraction than pure MPI without performance sacrifice. Simple annotations in the original MPI 

code allow the programmer to provide hints to the runtime system to achieve a good 

computation/communication overlap and to fast forward the execution of the critical path of the 

application. The experimental evaluation on a real supercomputer reveal performance 

improvements up to 41% when compared to the original version of the LINPACK benchmark for 

the same input data. . Also, the resulting program is less sensitive to network bandwidth and to 

operating system noise, such as process preemptions.  

 In the HPL collective operations, such as the broadcast, are implemented using point-to-point 

communication calls. This paper demonstrates how the hybrid MPI/SMPSs programming model 

works well for MPI applications that do not use blocking MPI collective operations. In the future 

work, we shall explore applications that contain MPI collective operations(MPI_Alltoall, 

MPI_Scatter, MPI_Gather, etc) by combining the hybrid MPI/SMPSs programming model 

and non-blocking MPI collective operations library [24].  

 There are many possibilities for improving the development of the MPI/SMPSs 

programming model, specially those aspects related with the management of communication 

tasks and their restartable behavior. The better performance results as well as programmer 

productivity give a promising future to the proposed programming model. Regarding portability, 

the same annotations used in SMPSs are also used in CellSs (Cell Superscalar [27]). This means 

that by just recompiling the hybrid MPI/CellSs could be executed on a cluster based on the Cell 

B./E. multicore architecture. 
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