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ABSTRACT 
Defining strategies on how to perform quality assurance (QA) and 
how to control such activities is a challenging task for 
organizations developing or maintaining software and software-
intensive systems. Planning and adjusting QA activities could 
benefit from accurate estimations of the expected defect content 
of relevant artifacts and the effectiveness of important quality 
assurance activities. Combining expert opinion with commonly 
available measurement data in a hybrid way promises to 
overcome the weaknesses of purely data-driven or purely expert-
based estimation methods. This article presents a case study of the 
hybrid estimation method HyDEEP for estimating defect content 
and QA effectiveness in the telecommunication domain. The 
specific focus of this case study is the use of the method for 
gaining quantitative predictions. This aspect has not been 
empirically analyzed in previous work. Among other things, the 
results show that for defect content estimation, the method 
performs significantly better statistically than purely data-based 
methods, with a relative error of 0.3 on average (MMRE). 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management – Software Quality 
Assurance (SQA). 

General Terms 
Management, Measurement, Reliability, Experimentation, Human 
Factors. 

Keywords 
HyDEEP, Hybrid estimation, Effectiveness, Defect content. 

1. INTRODUCTION 
Planning or adjusting software quality assurance (QA) strategies 
in companies requires a good understanding of the expected 
defect content of the artifacts that undergo QA activities, as well 
as a good understanding of the effectiveness of the quality 
assurance activities themselves. Such information can support 
decisions about what quality assurance activities should be used, 
at what points in the life cycle, and to what extent. 
Besides this, such information can be helpful for a variety of other 
purposes, such as controlling of the accurate performance of QA 
activities (i.e., are the expected number of defects found?). 
Another purpose is early risk management, e.g., by identifying 
cases when artifacts with high defect content are planned to 

undergo QA activities with predicted low effectiveness. In this 
case, countermeasures can be taken. Estimates about defect 
content and QA effectiveness estimation can also support 
economically-oriented decisions: Models for the economics of 
quality assurance describe the cost of quality, respectively non-
quality, e.g. [23]. They try to provide criteria for QA trade-off 
decisions with respect to cost saving. Most of them require data 
about the expected defect content and QA effectiveness as 
essential input for decision-making. Unfortunately, numbers 
collected in empirical studies and provided in the literature are of 
limited use due to their great diversity [10], [1]. Estimates 
calculated for a specific project based on information sources 
from the concrete context may provide more accurate estimates. 
Estimating defect content and quality assurance effectiveness is a 
difficult endeavor. Several approaches for these tasks have been 
reported in the literature, mostly focusing on purely data-based 
estimation or purely expert-based estimation. Applying such 
techniques is often challenged by the specific characteristics of 
the real project environments in which such techniques are to be 
applied. Besides the need to tailor estimation models to the 
specific characteristics of an organization (especially to a 
multitude of company-specific impact factors), other constraints 
such as limited availability of appropriate experts or sufficient 
data often exist when such techniques are piloted.  
Hybrid and customizable estimation methods address some of the 
specific constraints of real project environments (such as limited 
data availability, dependence on expert judgment) and promise to 
assure applicability in realistic environments while providing 
sufficient estimation accuracy. The HyDEEP approach combines 
expert judgment and typically available measurement data to 
build prediction models for defect content and QA effectiveness 
[12]. The approach is inspired by other hybrid estimation 
methods, especially by CoBRA [2]. The HyDEEP method 
captures the knowledge of local domain experts in a defect 
content and effectiveness causal model in order to allow reuse of 
formalized expert experience in future projects by considering the 
impact of typical influencing factors in the specific context, 
without the need to have extensive data repositories. 
HyDEEP can be used for different application scenarios in 
industry. HyDEEP has already been initially evaluated 
empirically in a specific setting in the aerospace domain [13].  
The purpose of the usage of HyDEEP in that previous study was 
mainly qualitative risk assessment and QA controlling. The article 
at hand presents a case study focusing on another application 



scenario, the quantitative estimation of defect content and QA 
effectiveness with the purpose of better support planning.  Unlike 
in the previous study, not only data about defects found by QA 
but also data about defects that slipped QA were available, so that 
quantitative estimations were applicable. The study presented 
here focuses on a system integration testing activity in the 
telecommunication domain.  
The remaining paper is organized as follows: In Section 2, an 
overview of related work is sketched. Section 3 describes the 
foundations of the HyDEEP method. Section 4 presents the 
context and goals, the execution and analysis, and the results of 
the case study. Finally, Section 5 summarizes practical experience 
from the study. 

2. RELATED WORK 
The development and validation of prediction models to support 
the planning and controlling of quality assurance has been an 
ongoing research topic in software engineering for decades. In 
this section, we give an overview of existing approaches and 
relate them to the specific requirements and method applied in the 
case study. 

In the area of dependable systems, one research direction is the 
development and application of reliability (growth) models [16], 
which use failure detection times during testing to predict the 
reliability of the system (and the remaining defects). These 
models can provide an answer to the question “When can we stop 
testing?”, but since these models require data generated during the 
test process, they provide no predictions during the planning stage 
of the testing activity. A newer approach to predicting the defect 
content and effectiveness of testing activities is the use of 
capture-recapture models [21]. These models originating from 
biological science were successfully applied for software 
inspections in several studies [20]. They measure the degree of 
overlapping in defects found by different testers to estimate the 
number of defects remaining in the product. However, they can 
only be applied for controlling testing activities, not for planning 
them, because information collected during the current testing 
activity is required for the estimates. In addition, based on 
empirical results for the application of capture-recapture models 
in inspections, we would expect four [20] or more [24] testers 
have to independently test the same part of the product to obtain 
sufficiently accurate results. 

Fault prediction models / quality classification models are another 
class of models that can be applied (at least partially) to predict 
the defect content of a product. They usually use a selection of 
metrics extracted from databases with historical product and/or 
process data to identify defect hotspots in the current product 
(e.g., most defect-prone modules) or to predict the number of 
defects for each module in the product. A plethora of different 
approaches have been developed over the last decades [4]. They 
mainly differentiate in two aspects: (1) the kind of measurement 
data they use (e.g., product-related data as measures of design 
complexity [3] or process-related data as the number of revisions 
of a module [8]) and (2) the algorithms they utilize to build the 
prediction model (e.g., regression or classification algorithms). 
Recent studies show that fault prediction models built in one 
context are difficult to transfer to another [17], [19]. Thus, they 
have to be built in each application context with a significant 
amount of measurement data gathered in this context. This fact 

inhibits their application in the presented case study, where the 
product is delivered as a “black box” by the subcontractor with 
the effect that source code or configuration management 
databases cannot be analyzed to obtain product- or development-
process-related measurement data.  

The COQUALMO model by Chulani and Boehm [5] – an 
extension of the famous COCOMO II model – can be used for 
project planning. It considers project cost, schedule, and quality in 
terms of residual defects. The model focuses on the overall 
development process with typical stages and QA activities, 
providing estimates for the defects introduced during 
development and the final number of residual defects. In order to 
support the planning of a specific QA activity, the model’s 
abstraction level is seen as too high, especially because the set of 
predefined defect introduction factors may not be appropriate in 
specific contexts [14] and only a single factor in the model rates 
the effectiveness of a specific QA activity (with a five-level scale 
from “very low” to “extra high”). 

Software process simulation models can support decision-making 
by modeling and simulating the development process or parts of it 
[18]. In most cases, they are used to simulate the complete 
project; only rarely do they focus on QA or testing activities [26]. 
In principle, process simulation models can be built for specific 
QA activities based on available measurement data and expert 
knowledge in such a way that they can be used for defect content 
and effectiveness prediction. However, the fact that most 
simulation approaches require multiple iterations for model 
inspection and refinement by experienced experts as well as the 
use of complex and expensive tools (“Extend” and “Vensim” are 
the most commonly used tools [26]) may hinder their application 
for defect content and effectiveness prediction in practice. 

In conclusion, we see that many existing approaches either 
concentrate on a fine-grain level – supporting the planning of 
tasks (e.g., fault prediction models tell us which modules to test 
more intensively) – or on the level of project and strategic 
planning, as for instance COQUALMO and many of the process 
simulation models. This fact limits their usefulness for QA 
activity-specific planning because the required data may not be 
available (e.g., in the case of fault prediction models) or the 
models are too coarse-grain to obtain precise defect content and 
effectiveness predictions for a specific QA activity (e.g., in the 
case of COQUALMO). The existing approaches that close the gap 
between task and project level by supporting activity-specific 
predictions such as capture-recapture and reliability models use 
data collected during the current application of the activity, which 
contradicts their usage for the planning of the activity. 

3. FOUNDATIONS OF HYDEEP 
The HyDEEP method is a hybrid approach for QA planning and 
controlling. Hybrid means that the approach is not only based on 
available measurement data but also tries to take advantage of the 
experience of available domain experts. The expert knowledge is 
captured in a quantified defect content and effectiveness (DCE) 
causal model. The quantified causal model is then used together 
with historical project data and a characterization of the current 
project to predict the defect content and effectiveness of the 
current QA application (Figure 1). More details on how DCE 
causal models are built (and applied for qualitative quality risk 
analysis and QA controlling) can be found in [13]. 
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Figure 1: Overview of the application of the HyDEEP 

approach for defect content and effectiveness prediction 
In the following subsections, we will focus on an overview of the 
principles of the HyDEEP method and show how the method can 
be used for predicting absolute numbers for the defect content of a 
product and the effectiveness of a QA activity before this activity 
is conducted (i.e., at its planning stage). We describe this specific 
kind of method application in more detail because it is the focus 
of the case study presented here and is not addressed in [13]. 

3.1 Defect Content & Effectiveness Equations 
This subsection motivates the equations used for defect content 
and effectiveness prediction. Defect density (DD) is a common 
quality measure in practice and usually defined as the number of 
defects in a product (i.e., its defect content DC), divided by its 
size (DD=DC/size) [7]. Therefore, we can consider DD as the 
slope of a line in a coordinate system with product size on the x-
axis and DC on the y-axis (Figure 2). When considering the DC 
of a product, we can assume that the product has a certain base 
defect content (i.e., the minimum number of defects in the 
considered context for a product of a specific size at this stage of 
the process) that is extended by a number of additional defects 
caused by factors promoting the existence of defects in the 
product (e.g., imprecise requirements). If we place this additional 
number of defects in relation to the number of defects in the best 
case as a relative increase (e.g., 20% more defects), we can define 
a relative increase factor, the defect density increase factor 
(DDIF), and provide the following equation for the defect content 
of a product, where DDbase is the base defect density of the 
product: 

DC = size · DDbase · (1+DDIF)  (1) 
The effectiveness (Eff) of a QA activity is typically defined as the 
number of defects found (DF) by the QA activity divided by the 
number of defects in the product when the QA activity started 
(Eff = DF/DC) [11]. This is the reason why a specific Eff value 
can be presented as a line in a coordinate system with DC on the 
x-axis and DF on the y-axis (Figure 2). Just as in equation (1) for 
the defect content, we can again split the number of defects found 

by a specific QA activity into two components. The base defects 
found represent the minimum number of defects found by this 
kind of QA activities in the considered context for a product with 
a given defect content. In addition to this minimum number of 
defects found, further defects can be detected by the QA activity 
when factors (e.g., the availability of experienced testers) improve 
the base effectiveness (Effbase) of the QA activity. If we put this 
additional number of defects in relation to the base defects found 
as a relative increase (e.g., 30% more defects are detected), we 
can define a relative increase factor, the effectiveness increase 
factor (EIF), and obtain the following equation for the 
effectiveness of a specific QA activity: 

Eff = Effbase · (1+EIF)   (2) 
Equations (1) and (2) can be combined into one DCE equation as 
presented in [13]. The DCE equation is useful if we have no 
information about the defect slippage (i.e., if we do not know how 
many defects remain in the product after the QA activity). 
However, using this equation does not allow predicting absolute 
numbers for defect content or QA effectiveness. This is the reason 
why we do not use the DCE equation in this case study but refine 
(1) and (2) based on the fact that the defect content in the product, 
at the start of the QA activity, is equal to the number of defects 
found by the activity plus the number of defects slipped (DS) 
through the activity (i.e., DC = DF + DS). The DS cannot be 
measured directly; instead, it is usually approximated by the 
number of defects found by further QA activities or in the field, 
which means that the DS can only be determined retrospectively 
for the QA activity. Applying this kind of approximation allows 
us to calculate the DDbase and the Effbase for the QA activity for a 
historical project with equations (1) and (2), respectively. In order 
to do this, we need the defects found by the QA activity (DF), the 
defects found later (DS), the size of the checked product, and the 
project-specific DDIF and EIF (see left side of Figure 1). 

3.2 Determine DDIF and EIF 
In order to determine the context-specific values for base defect 
density and base effectiveness as well as to later on predict the 
defect content and effectiveness of the QA activity in the current 
project, DDIF and EIF have to be determined (Figure 3). 

 

 
Figure 2: Visual representation of the DC and Eff equations 
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Figure 3: Determining EIF probability distribution 

The defect density and effectiveness increase factors (DDIF and 
EIF) describe the project-specific increase in defect density, 
respectively effectiveness, relative to base values for defect 
density and effectiveness in the context (DDbase and Effbase). In 
order to find these relative increase factors, the most relevant 
influencing factors for defect density and effectiveness are 
captured in the DCE causal model. The impact of each of these 
factors is quantified by several domain experts. Comparing the 
context-specific best and worst cases of the respective factor, they 
estimate the minimum, maximum, and most likely increase in 
defects found (for an example, see Figure 7). The three values are 
then used as nodes for a triangular probability distribution 
capturing the uncertainty of the expert’s estimate. In order to 
determine DDIF or EIF, (1) the triangular distributions of the 
different experts for one factor are combined into one probability 
distribution, which is (2) adjusted based on the concrete level of 
the factor in the considered project, and (3) finally aggregated 
with the adjusted impact distributions of the other defect content 
or effectiveness factors (Figure 3). The result of these operations 
is the DDIF or EIF probability distribution, respectively. The 
actually applied algorithms based on Monte Carlo methods are 
described and analyzed in more detail by [15]. 

3.3 Predicting Defect Content & Effectiveness 
Assuming that we have built a DCE causal model and used it 
together with historical project data in the context to approximate 
the context-specific base defect density and base effectiveness 
(usually by calculating the median over the base values of the 
historical projects), we can predict the defect content and 
effectiveness for the QA activity in the current project using 
equations (1) and (2). The only additional information needed is 
the specific product size and the expert-based project 
characterization with respect to the factors in the DCE causal 
model (Figure 1).  
Dependant on the base effectiveness determined for the context 
and the EIF probability distribution computed for a project, if we 
had applied the sampling algorithms used in [14] and [15] in a 
straightforward manner, we could have obtained a positive 
probability for an effectiveness value greater than 100% (i.e., 
predicting a certain probability of finding more defects than the 
product contains). If we allowed such predictions, this would 
contradict reality. Therefore, we have to explicitly deal with areas 
of the probability distribution with effectiveness values greater 
than 100%.  We do this by restricting the value range of the 
probability distribution and considering areas with values greater 
than 100% simply as 100% (i.e., even in the case that the activity 

is extremely effective, we cannot find more defects than the 
defects that are in the product). From a probability theory point of 
view, this seems reasonable, because in such cases, we obtain a 
certain probability (>0) of finding all defects. Also, the larger the 
area of the probability distribution exceeding 100% effectiveness, 
the higher the probability of finding no defects later on. 

4. CASE STUDY 
4.1 Context of the Study 
The presented case study took place in an integration and 
validation department (I&V) of T-Mobile International (TMO), 
where telecommunication infrastructure services are being 
integrated and tested. Dependant on the concrete activity, three 
and four members of the department, respectively, were involved 
in the model-building process as domain experts. All involved 
experts have a lot of experience in the telecommunication domain 
(their experience can be measured in decades). Moreover, great 
experience was documented concerning testing. 

The product for which the prediction model was to be built is one 
of the main products that are validated by the department. It was 
released in 2004 and has been continuously maintained and 
extended with new features since then. The updates take place in 
multiple releases each year. Thus, at the time the model was built, 
historical data from 10 releases could be provided by TMO. The 
validation activity performed is a kind of acceptance test, where 
the system under test is provided as a black box by a 
subcontractor. This means that TMO has no direct access to or 
insights into the corresponding code. As a result, no code metrics 
could be measured, for example. The test process is relatively 
stable and uses a set of acceptance tests according to the product 
changes in a specific release. 

4.2 Goals of the Study 
From the scientific point of view, the primary goal of the study 
was to evaluate the HyDEEP method in an industrial context for 
the purpose of defect content and effectiveness prediction. In 
order to do this, a context-specific model was to be built together 
with available domain experts and its prediction accuracy was to 
be determined and compared with the accuracy of simpler models 
based only on the available measurement data. Moreover, 
questions motivated by the industry partner were investigated, 
too. In detail, three research questions were derived: 

RQ 1: Is it possible to build a reasonable, context-specific, 
quantified causal model with acceptable effort for the local 
experts, which calculates effectiveness and defect content 
predictions of adequate quality? 

This research question was split into corresponding sub-questions: 

RQ 1.1: How much effort is necessary for the experts during 
the creation phase? 

RQ 1.2: How accurate are the estimation values regarding 
effectiveness and defect content? 

Research question one and its sub-questions resulted in the 
following hypotheses: 

H1.1: A quantified causal model can be built with less than 
two person-days of effort per local expert. 



H1.2: The estimation error of the model with respect to defect 
content is significantly lower than the estimation error of 
applicable methods based solely on data. 

H1.3: The estimation error of the model with respect to 
effectiveness is significantly lower than the estimation error 
of applicable methods based solely on data. 

Additionally, two more questions were investigated, which are 
especially valuable for motivating the application of the model in 
the concrete context after it was built. 

RQ 2: Is it necessary to use each of the initially included 
influencing factors in the final model, and how does the 
prediction accuracy of the model behave when only a subset of 
the most relevant influence factors is considered? 

RQ 3: How does the model behave regarding its predication 
accuracy when the model is initially built with a limited number 
of historical project data and additional project data is integrated 
in an iterative manner? This question is especially motivated by 
the practical question “How many historical releases are 
necessary to provide predictions with adequate accuracy?” 

4.3 Planning of the Study 
During the study, we tried to make optimal use of the most 
limited resource, namely the local domain experts. Therefore, we 
distributed all relevant steps for building a hybrid prediction 
model that require the involvement of the local domain experts to 
three workshops and three questionnaires (Figure 4). In addition, 
we omitted further iterations with model revisions, which are 
proposed in [22] for hybrid cost prediction models to improve 
accuracy. In order to be able to check hypothesis H1.1, we 
collected the number of participating experts in each step and the 
effort they required. 

4.4 Performing the Study 
Workshop 1: The model building process started with a first 
workshop performed with three domain experts from TMO (i.e., 
experts knowing the context) and two methodology experts from  
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Figure 4: Relevant model building and validation activities 
and their mapping to workshops and questionnaires used 

the research partner (i.e., experts knowing how to apply the 
method). A brief overview of the method and the planned 
activities was presented and questions were answered. 
Next, the influence factors were gathered in a brainstorming 
session where the experts explained what influences the number 
of defects found during the testing process based on their 
experience. All in all, eight influence factors could be identified 
(Figure 5). In order not to miss an important factor, a list of 
typical influencing factors based on [9] was used as a checklist. 
For each of the identified influence factors, an initial description 
as well as the best and worst cases for each factor in the context 
of the case study were defined. Two of the eight influence factors 
have an influence on both the effectiveness of the testing and the 
defect content of the tested product. Therefore, these factors were 
recorded twice as effectiveness and defect content factors. 
Finally, the situation with respect to available measurement data 
for the historical releases was discussed. More details on this 
topic can be found under the topic “Historical project data” in this 
section. 

Questionnaire 1: After the workshop, a first questionnaire was 
prepared by the research partner, which was used by the domain 
experts from TMO to rank the identified influence factors. For 
this, each of the five effectiveness and defect content influence 
factors was given a value between 1 and 5, with 1 meaning that 
the factor is the most important one and 5 meaning that the factor 
is the least important one. A factor is considered more important 
if the factor is responsible for more of the variation in the 
product’s defect content, respectively in testing effectiveness in 
the context. The questionnaire was filled out by each of the three 
participants of the workshop individually and, in addition, by a 
fourth domain expert working in the same department.  

Usually, this step is performed in order to identify the most 
important influence factors and include only these factors in the 
model. Models with too many factors (>>10) significantly 
increase the model building effort and may lead to instable 
models. In an earlier industry case, 41 influence factors were 
identified and ranking had to be used to identify the most 
important ones in order to continue building the model with an 
adequate number of factors [12]. Since in the TMO context, only 
ten influencing factors were identified, we decided during the 
second workshop to include all of them in the initial model. 
Nevertheless, the ranking was important for later analyses (RQ3). 
The mean and the median ranking were calculated, based on the 
answers from the four questionnaires. 
Workshop 2: The factor-ranking results were presented to the 
experts at the second workshop. It was decided to include all 
identified factors in the initial causal model. No relevant 
interactions between the factors were identified and, therefore, 
each of the factors was included in the model with a direct 
relationship to defect content and/or effectiveness. The resulting 
causal model can be found in Figure 5. 
Next, we defined for each influencing factor a scale with four 
levels (i.e., answer possibilities) to characterize a specific release 
with respect to the influencing factor. Using a four-level scale is 
not demanded by the approach, but based on good experiences in 
previous studies that use hybrid estimation. In this case, level 0 
(low) represents the case in which the influence of the factor 
results in the lowest defect detection rate (i.e., defects found) and 
 



 
Figure 5: DCE causal model for the TMO context 

level 3 (high) represents the case in which the influence of the 
factor results in the highest one. The level descriptions for levels 
0 and 3 should both represent realistic (i.e., observable) extremes 
for the given context. Rough descriptions for the best and worst 
cases in the context were noted in the initial workshop and were 
used as a basis for defining the description for the scale levels 0 
and 3. Together with the experts from TMO, levels 1 and 2 were 
defined for each of the influence factors. One important objective 
was to choose the level descriptions in such a way that the impact 
of the factor on the defect content or effectiveness values 
increases linearly over the four levels as far as possible. An 
example of such a characterization scale can be found in Figure 6. 
The factor definitions and the scale level descriptions for each 
factor were discussed and approved. 
Questionnaire 2: The next step is to quantify the impact of each 
factor. Again, a questionnaire was prepared by the research 
partner. The experts were asked to provide estimates of the impact 
of the variation of the factor on the number of defects found. 
More precisely, they should estimate the relative increase in the 
number of defects found caused by increased defect density, 
respectively increased effectiveness, if the factor is high (level 3) 
instead of low (level 0). The problem with such estimations is that 
it is typically hard even for experts to provide estimates, 
especially if asked for a single precise value. A common approach 
to addressing this problem is to allow uncertainty in the expert’s 
estimates by not asking for a single value, but for a minimal, a 
maximum, and a most likely value. These values can then be used 
to define a probability distribution. Based on good experience 
from previous studies (e.g., [13]), we used a triangular 
distribution. These estimates were provided by each of the four 
participants of the initial questionnaire. An exemplar question 
with fictitious values is shown in Figure 7. 
Questionnaire 3 (Expert Meeting): Finally, a third questionnaire 
was prepared to characterize the historical releases regarding the 
influence factors. The characterization was based on the 
descriptions of the four levels of each influencing factor approved 
at the second workshop. The three experts from the initial 
workshop characterized the historical releases at a meeting. 
Although it was more time-consuming for the experts, the 
questionnaire was not filled out by one expert but by all three 
experts together in one meeting. This approach was chosen 
because a collaborative characterization makes the 
characterization more reliable and a “historically correct” 
characterization is critical for obtaining good prediction results. If 
several experts know all projects well, they can also fill out the 
questionnaire independently to determine their agreement.  

0 All existing requirements are easy to implement without 
changing interfaces

1 At least one very complex requirement with at least one new 
or changed interface exists

2 More than 15% of the requirements are very complex, 
since at least one new or changed interface exists.

3 More than 25% of the requirements are very complex, 
since at least one new or changed interface exists.

D3 Interface changes 

 
Figure 6: Example of an influence factor and its four levels 

 

(A)

(B)

F1 maximally .. 25 % more defects.
F2 minimally .. 10 % more defects.
F3 typically .. 15 % more defects.

More than 25% of the requirements are very complex,
since at least one new or changed interface exists.

 Based on the higher defect content, I would find .. 

D3 Interface changes

Requirements that require changes at interfaces are typically more 
defect-prone, because such changes are in most cases difficult to test 
by the developers (they need to simulate the interface).

 If the described factor "Interface changes" has the characteristic 
 B instead of characteristic A, how would you rate it?

All existing requirements are easy to implement without 
changing interfaces

 
Figure 7: Exemplary question for the factor quantification 

Historical project data: Beside the influence factors and their 
quantification, the second aspect of the model when using it for 
prediction of effectiveness and defect content values is the data of 
historical projects. Klaes et al. present in [12] an overview of 
different application possibilities and their prerequisites. We want 
to apply and validate the model for quantitative QA planning (i.e., 
to predict numbers for defect content and QA effectiveness). 
Therefore, we need measurement data for the total size of changes 
in a release, the number of defects found by TMO in the 
validation activity, and the defects slipped through the validation. 
Size: In the TMO context, information on the number of relevant 
and performed test cases was available as was the number of new 
features implemented in the release, but the features strongly vary 
in their complexity. Based on discussions with the experts, we 
finally chose the number of relevant test cases as the size variable 
because this value is available before a release starts and is 
assumed to be strongly correlated with the number of changes in a 
new release. 
Defects found & slippage: The defects found during the validation 
activities and later in the field were tracked and classified by the 
TMO validation department. Together with the local experts, 
defect classes relevant for the model were identified and the 
number of defects found and slippage were extracted for each 
release. We explicitly excluded defects that were problems in the 
test case documentation and not in the product. In part, 
information about defect slippage had to be extracted from email 
correspondence. In summary, all relevant data were gathered for 
ten releases in order to build and evaluate the model. 
Descriptive data analysis: Before building the model, a 
descriptive analysis of the data regarding effectiveness and the 
normalized defect content values (i.e., defect density) was 



performed. The goal was to analyze if outliers exist that could not 
be explained by typical variations between different releases. 
Figure 8 and Figure 9 show the results of this analysis for the ten 
historical projects. Due to confidentiality issues, Figure 8 and 
Figure 9 are provided without scales with absolute numbers. 
Regarding defect density, release F was identified as an outlier, 
and regarding effectiveness, release H was seen as an outlier. 
Although G has a high defect density, the release is not 
considered as an outlier, because the relative increase compared 
to C and J is moderate when comparing it with the increase from 
F to E or H. The experts from TMO mentioned two possible 
reasons. First, the tests of the releases took place some time ago 
and therefore, not all relevant influences are known anymore. 
Second, and this was the option that they consider to be more 
probable, it might happen sometimes that not all found defects are 
documented which results in imprecise data. The total defect 
numbers for these releases, which are not presented here, support 
their assumption regarding problems with non-documented 
defects because for both outlier releases, the total number of 
defects was very low. Thus, these two releases were removed 
before the prediction model was built in order not to violate the 
validity of the model through erroneous measurement data. 

4.5 Study Results and Model Validation 
RQ1: Regarding RQ1, it could be stated that it was possible to 
gather relevant context-specific influence factors and build the 
causal model with them. We got positive feedback from the 
practitioners after discussing and defining the influence factors. 
Agreement could be reached regarding the overall ranking of the 
factors and the information was valuable. 
With respect to RQ 1.1, the overall effort of the experts necessary 
to build the model was about one person-day. Table 1 shows the 
number of experts and the detailed efforts necessary for each of 
the activities needed to build the model. Most of the time was 
needed for the first workshop, where the method was explained 
and the relevant influence factors were gathered. The time 
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Figure 8: Variation in effectiveness data for the ten releases 
Defect Density for Historical Releases (DC/size)
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Figure 9: Variation in defect density data for the ten releases 

invested at the beginning is reasonable because the identified 
influence factors are the basis for the model. Completing the first 
two questionnaires was not very time-consuming, while the joint 
characterization of the historical projects needed a little more 
time. The second and third workshops took about one, 
respectively two hours, to explain and discuss the results and to 
describe how to proceed. Besides the three experts involved in 
every activity, a fourth person was involved in filling out two 
questionnaires. Thus, hypothesis H1.1 can be accepted. 
For answering RQ 1.2, models were built based only on historical 
data (i.e., the influence factors were not considered) and these 
models were compared to the influence factor model. 
Prediction accuracy: To compare the models in an objective way, 
accuracy measures proposed by Conte et al. [6] established in 
software estimation community were used: relative error (RE), 
magnitude of relative error (MRE), mean magnitude of relative 
error (MMRE), and prediction quality (Pred(.25)). Based on these 
measures, a model can be considered to be more accurate if its 
MMRE value is lower. In order to check the statistical 
significance of the improvement, a one-sided Wilcoxon Matched 
Pairs test was used, which is a non-parametric test and therefore a 
more robust counterpart of the classical paired t-test [25]. 
Cross-validation: To predict the effectiveness and the defect 
content values, a cross-validation approach was used; more 
concretely the leave-one-out approach. This means that to predict 
the defect content or effectiveness value for a specific historical 
release, the data from all historical releases except the one that 
should be predicted were used to build the prediction model. This 
model is then used to do the prediction. This is repeated for each 
of the eight historical releases used and the predicted values for 
defect content and effectiveness are compared with the actually 
measured values of these releases. 
Results: Regarding defect content predictions, Table 2 shows the 
results. In the bottom part, the MRE values for the effectiveness 
predictions of the influence factor (IF) model are presented for the 
remaining eight releases, and in the upper part, the same is done 
for the two data-based models that can be reasonably built with 
the available measurement data. The first one (DC) uses simply 
the median of the historical defect content values for the 
prediction; the second one (DD) calculates the median defect 
density of the historical releases and uses this value together with 
the size data of the current release for the prediction. 

Table 1: Number of involved experts and effort needed 

~ 1 day3-4Total

~2 h3Presentation and discussion 
of model and results

3rd Workshop

~1 h3Characterization of 
historical projects

3rd Questionnaire

~25 min4Quantification of factor 
impact

2nd Questionnaire

~1 h3Discussion of ranking 
results, model building, 
introduction of the 2nd 
and 3rd questionnaires

2nd Workshop

~20 min4Ranking of factors1st Questionnaire

~3.5 h3Introduction of the method, 
identification of relevant 
factors and available data

1st Workshop

Effort per 
expert

#ExpertsPurposeActivity

~ 1 day3-4Total

~2 h3Presentation and discussion 
of model and results

3rd Workshop

~1 h3Characterization of 
historical projects

3rd Questionnaire

~25 min4Quantification of factor 
impact

2nd Questionnaire

~1 h3Discussion of ranking 
results, model building, 
introduction of the 2nd 
and 3rd questionnaires

2nd Workshop

~20 min4Ranking of factors1st Questionnaire

~3.5 h3Introduction of the method, 
identification of relevant 
factors and available data

1st Workshop

Effort per 
expert

#ExpertsPurposeActivity

 



Table 2: Cross-validation results for defect content prediction 

Release A B C D E G I J MMRE Pred(.25)
MRE 0.17 0.52 0.27 0.56 1.33 0.20 0.75 3.20 0.87 0.25

Release A B C D E G I J MMRE Pred(.25)
MRE 0.21 0.10 0.30 0.18 1.57 0.50 0.11 0.25 0.40 0.63

Release A B C D E G I J MMRE Pred(.25)
MRE 0.02 0.00 0.20 0.23 1.32 0.45 0.00 0.21 0.30 0.75

Defect Content (DC) Model: DC = Median(DC)

Defect Density (DD) Model: DC = Median(DD) * size

Influence Factor (IF) Model: DC = size * Median (DDbase) * (1+DDIF

 
Table 3: Cross-validation results for effectiveness prediction 

Release A B C D E G I J MMRE Pred(.25)
MRE 0.05 0.02 0.38 0.02 0.10 0.24 0.10 0.02 0.12 0.88

Release A B C D E G I J MMRE Pred(.25)
MRE 0.02 0.14 0.35 0.00 0.10 0.06 0.10 0.00 0.10 0.88

Effectiveness (E) Model: Eff = Median(Eff)

Influence Factor (IF) Model: Eff = Median (Ebase) * (1+EIF)

 
The results of the IF model are more precise in almost every 
release compared to the data-based models, which is also 
expressed in the overall MMRE values. The predictions of release 
E are far from being correct and this release seems to be another 
outlier. Unfortunately, the reasons could not be identified, even 
after asking the experts from TMO. The MMRE value seems 
good for an initial model. Comparing the IF model with the best 
data-based model, the DD model, and performing a one-sided 
Wilcoxon Matched Pairs test with a significance level of .05, we 
got a p-value of 0.029, which means the improvement is 
significant. Thus, hypothesis H1.2 can be confirmed. 
Table 3 shows the calculated MREs regarding the effectiveness, 
again for the influence factor model and the data-based model. 
The overall MMRE is similar and very low, 0.10 on the one hand 
and 0.12 on the other hand. Performing a Wilcoxon Matched Pairs 
test with a significance level of 0.05, we got a p-value of 0.24, 
which means that the improvements of the influence factor model 
are not significant. Thus, there is no significant evidence to 
confirm hypothesis H1.3. In addition, it should be mentioned that 
only the two most important factors influencing effectiveness 
(quality of requirements documentation and stability of 
requirements) were used in the final model because adding more 
effectiveness factors could not increase the prediction accuracy of 
the model in advance. Nevertheless, a minor improvement in the 
MMRE value could be observed and the IF model often presents 
slightly better results. 
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Figure 10: Box plot with relative error of defect content and 

effectiveness predictions for different approaches 

Interpretation: One explanation could be that the test process in 
the case study context is very stable. Thus, only small influences 
on the effectiveness of testing activities performed can be 
obtained. The quality of the test case definition can be considered 
as the strongest influence factor on the effectiveness of the 
validation activity. However, most of the test cases are predefined 
and therefore their quality is difficult to be evaluated or 
influenced directly by the TMO I&V team. 

RQ 2: In order to provide an answer to research question 2, 
different numbers of influence factors were used for the 
prediction. As mentioned above, for predicting effectiveness 
values, the final model only consisted of two influence factors. 
Therefore, we focused this evaluation on the five defect content 
factors and reduced this number step by step.  
Results: Figure 11 shows the result in terms of the MMRE. The 
column to the far left shows the MMRE when no influence factor 
is used in the prediction model, which is the same as the DD 
model in Table 2. Thus, the value is again 0.40. Next, the factor 
identified as the most imported one was used in the prediction 
model. The overall MMRE in this case is 0.34, which is more 
accurate than using no influence factor. The two remaining 
columns show the MMRE when using the three most important 
influence factors and when using all five defect content influence 
factors (which is the original model with an MMRE of 0.30).  
Interpretation: In summary, higher quality of the prediction (here 
expressed as a decreasing MMRE value) can be seen when using 
more influence factors. In the TMO context, it seems optimal to 
use all five defect content factors. 
RQ 3: Finally, research question three asks how the model would 
behave over time if we were to start with a more limited set of 
historical releases and continuously predict new releases and then 
add the project data to the model. 
Approach: In order to answer this question, we simulated the 
model building process. This means that with a low number of 
data from releases (and the influence factors), a prediction for the 
next release was done. Because we know the complete data, we 
could compare the predicted value with the value of the next 
release. Afterwards, the actual value of this release was added and 
the next prediction was performed and so on. From a scientific 
point of view, some problems with respect to validity emerge. 
First, a necessary minimum of releases to start with (�4) reduces 
the overall number of possible increments. Second, based on a 
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Figure 11: Impact of different numbers of influence factors 



certain number of releases, one prediction for the next release is 
done. Based on only one value, no statistical analysis can be done. 
Third, by simulating the creation of the model, the real 
environment could not be recreated exactly. For example, the 
experience of the experts may change over time, which might 
result in different characterizations of the releases or a changed 
causal model. Nevertheless, this kind of analysis presents first 
insights into how the model would behave over time. As for RQ2, 
we consider only the defect content predictions, since the 
accuracy change in the effectiveness predictions is too small. 
Results: Figure 12 shows the magnitude of relative error for 
defect content predictions based on different numbers of releases 
used. The first column shows the MRE when four releases are 
taken for model building (releases A-D) and release E is 
predicted. The relative prediction error is very high (about 1.25). 
When using five releases, the relative prediction error decreases 
to about 0.4. Starting with six releases, the prediction error seems 
to be very low, especially for release I and for a new release to 
which the model was applied (the prediction error is slightly 
higher for the J release). 
Interpretation: Two interesting aspects could be observed. First, at 
least five historical releases are necessary for predictions with 
acceptable accuracy. Second, the quality of the prediction 
increases the more historical releases are available and used for 
the model. However, these are only initial results and their 
validity has to be proven in further studies. 

4.6 Threats to Validity 
As in any empirical study, there are threats to the validity of the 
study results [25]. Next, we will discuss what we consider to be 
the most relevant threats in the presented case study. 

Construct validity: The size of the product change in each 
release was measured by the number of relevant test cases. This 
measure was chosen based on the discussion with the local 
experts and can be considered as a good choice considering the 
MMRE value for the DD model, which is based only on this 
information. However, we cannot validate whether this measure 
really represents appropriately the size of the changes in a release. 

Conclusion validity: (i) In part, the quality of the measurement 
data used (especially its completeness) could not be assured. As a 
result, two of the historical data points (releases) had to be 
removed before model building, making it harder to obtain 
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Figure 12: Impact of different numbers of historical releases 

significant study results. (ii) Although we get a slightly better 
MMRE for effectiveness prediction with the influence factor 
model than with the data-based model, the statistical significance 
of these results could not be proven. Possible reasons may be the 
limited number of historical data points available, the minor effect 
size caused by the relatively stable testing process, or problems 
with the completeness of the collected defect slippage data. (iii) 
Due to the limited number of historical projects, we could not 
perform any statistical test to show the statistical significance for 
the result that model accuracy increases with an increased number 
of factors or historical releases used in the model. 

Internal and external validity: Finally, as for any industrial case 
study, we can see the advantage of the method’s application in a 
realistic context, but also the influence of many context-specific 
factors that cannot be controlled in the study design and that may 
influence the results of the study, meaning that the results might 
not be transferable to other contexts. One such context-specific 
factor may be the agreement between the experts with respect to 
the most relevant influencing factors. 

5. SUMMARY AND LESSONS LEARNED 
In summary, we presented in this paper the first application of the 
HyDEEP method for the prediction of absolute defect content and 
effectiveness values, which can be used for the planning of a 
specific QA activity. The method was evaluated in an industrial 
case study in the telecommunication domain for the final product 
validation activity (system testing). In order to build the model, 
measurement data from historical releases were used together 
with expert options, which were elicitated and captured in a 
context-specific causal model for defect content and 
effectiveness. In the following, we summarize the practical 
experience gathered in the industrial study, structured by the 
research questions stated in Section 4.1: 

(RQ1) It was possible to build a prediction model with suitable 
prediction accuracy in the given context (MMRE of 0.3 for defect 
content and 0.1 for QA effectiveness) and with acceptable effort 
(3 to 4 local experts participated with an average of 1 person-day 
of effort for each). The defect content predictions provided by the 
model were significantly more accurate than the predictions by 
models based only on the available measurement data. A 
limitation could be identified regarding the effectiveness 
prediction in the TMO context, which could not be improved 
significantly compared to a purely data-based model. As the most 
probable explanation, we see the very stable testing process where 
the potentially most influential factor, the appropriateness of the 
largely predefined test cases for a release, could not be assessed. 

(RQ2) Further, we conclude for the prediction model built in the 
case study that it is beneficial to include all (five) defect content 
factors in the model, because a reduced number of factors also 
reduces the model’s prediction accuracy. 

(RQ3) Finally, it seems reasonable to have at least five historical 
releases/projects to build the hybrid prediction model, which an 
increase in the number of available historical projects appearing 
to also increase the model’s prediction accuracy (at least in the 
presented case study). 

(Other) A further important lesson we learned with respect to the 
model building process was that the model should, if possible, 
contain no factors that influence both defect content and QA 



effectiveness. We observed that experts have great difficulty in 
differentiating between these two contradicting influences of a 
factor when quantifying its impact. 
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