
SMT-Based Bounded Model Checking for Multi-threaded
Software in Embedded Systems

Lucas Cordeiro
Advisor: Bernd Fischer

ECS, University of Southampton
lcc08r@ecs.soton.ac.uk

ABSTRACT
The transition from single-core to multi-core processors has
made multi-threaded software an important subject over the
last years in computer-aided verification. Model checkers
have been successfully applied to discover subtle errors, but
they suffer from combinatorial state space explosion when
verifying multi-threaded software. In our previous work, we
have extended the encodings from SMT-based bounded model
checking (BMC) to provide more accurate support for pro-
gram verification and to use different background theories
and solvers in order to improve scalability and precision in a
completely automatic way. We now focus on extending this
work to support an SMT-based BMC formulation of multi-
threaded software which allows the state space to be reduced
by abstracting the number of state variables and interleav-
ings from the proof of unsatisfiability generated by the SMT
solvers. The core idea of our approach aims to extract the
proof objects produced by the SMT solvers in order to con-
trol the number of interleavings and to remove logic that is
not relevant to a given property. This work aims to develop
a new algorithmic method and corresponding tools based on
SMT to verify embedded software in multi-core systems.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model checking

General Terms
Computer-Aided Verification

Keywords
Formal Software Verification, SAT Modulo Theories, Multi-
core systems

1. INTRODUCTION
Embedded computer systems are used in a wide range

of sophisticated applications, such as mobile phones or set-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

top boxes providing internet connectivity. Multi-core proces-
sors with scalable shared memory are becoming very popular
in embedded applications that require high computational
power. In addition, the functionality demanded for embed-
ded systems has increased significantly and an increasing
number of functions are implemented in software rather than
hardware. As a consequence, the verification of the software
design and the correctness of its implementation have be-
come increasingly difficult.

Bounded model checking (BMC) has been successfully ap-
plied to verify embedded software and discovered subtle er-
rors in real designs [4]. BMC generates verification condi-
tions (VCs) that reflect the exact path in which a statement
is executed, the context in which a given function is called,
and the bit-accurate representation of the expressions. Prov-
ing the validity of these VCs remains the main performance
bottleneck in verifying large embedded software, despite at-
tempts to cope with increasing system complexity by apply-
ing SMT (Satisfiability Modulo Theories) [3, 8, 10] solvers.

Recently, there have been attempts to extend BMC to the
verification of multi-threaded software [11, 13, 14, 18]. The
main challenge remains the classical state space explosion
problem in which the number of interleavings grows expo-
nentially with the number of threads and program state-
ments. An important observation is that on one hand BMC
finds counter-examples very quickly using the SMT solvers [8]
and on the other hand the SMT solvers produce unsatisfi-
able cores that allow us to remove logic that is not relevant
to a given property [16].

Grumberg et al. [12] propose an algorithmic method based
on Boolean Satisfiability (SAT) and BMC to model check a
multi-process system based on a series of under-approximated
models. They realized that the unsatisfiable cores generated
by the SAT solvers can also be used to control the number of
allowed interleavings of the given set of processes. However,
this method does not remove all redundant interleavings and
is incomplete since it tries to prove or disprove the property
up to a given length k. Grumberg et al. apply this method
to check reachability properties of a leader election proto-
col, but they do not consider the verification of low-level
embedded software in multi-core systems.

In our work, we plan to develop a strategy that aims
to mitigate the complexity problems to model check em-
bedded software in multi-core environments. In particular,
our method aims to focus on embedded programs because
they have characteristics that make model checking attrac-
tive, e.g., dynamic memory allocations and recursion are dis-
couraged. On the other hand, embedded programs are reac-

tive (i.e., do not terminate as opposed to most application
software) and we need to ensure that the loops terminate
for correctness. Consequently, we aim to extend the under-
approximation and widening (UW) algorithm proposed in [12]
with the purpose of addressing the verification of real-world
embedded software in multi-core systems using different back-
ground theories and SMT solvers. We intend to propose a
comprehensive SMT-based BMC procedure using interpo-
lation methods [15] and investigate partial order reduction
algorithms in the UW framework [1].

2. RELATED WORK
SMT-based BMC is gaining popularity in the formal veri-

fication community due to the advent of sophisticated SMT
solvers built over efficient SAT solvers [9]. Ganai and Gupta
describe a verification framework for BMC which extracts
high-level design information from an extended finite state
machine (EFSM) and apply several techniques to simplify
the BMC problem [10]. However, the authors use only the
theory of integer and real arithmetic, which does not re-
flect precisely the ANSI-C semantics. Armando et al. also
propose a BMC approach using SMT solvers for ANSI-C
programs [3], but they only make use of linear arithmetic,
arrays, records and restricted bit-vectors arithmetic and, as
a consequence, their SMT-CBMC prototype does not ad-
dress important constructs of the ANSI-C language.

Qadeer and Rehof present a pragmatic method to discover
bugs in concurrent software in which the program analysis is
restricted to executions with a bounded number of context
switches [17]. However, this method is incomplete since it
considers the verification up to a given fixed context bound.
In addition, the authors do not apply it to realistic and large
concurrent software benchmarks and the integration of this
context-bounded model checking algorithm into the explicit
state model checker ZING [2] is left for future work. Ra-
binovitz and Grumberg describe an extension of CBMC to
concurrent C programs [18], which translates C threads into
static single assignment (SSA) form and adds constraints for
a bounded number of context-switches (as described in [2]).
This approach, however, requires the encoding of all inter-
leavings into a single formula to be sent to a SAT solver.

Ganai and Gupta describe a lazy method for modelling
multi-threaded concurrent systems using shared variables [11],
but this method is restricted to two threads. Gupta et al. [14]
extend [11, 13] by supporting more than two threads and
by combining dynamic partial order reduction with sym-
bolic state space exploration. However, this method is in-
complete since it considers the concurrency semantics up to
the bounded depth as in [2, 18]. Grumberg et al. propose
an algorithmic method based on SAT and BMC to model
check a multi-process system based on a series of under-
approximated models [12]. This approach, however, does not
integrate partial order reduction algorithms to reduce redun-
dant interleavings and it does not address the problem of
model checking real-world embedded software in multi-core
environments.

To the best of our knowledge, there is no work that con-
siders a complete SMT-based BMC formulation to verify
real-world embedded software in multi-core systems using
a set of under-approximations and widening models as well
as the integration of partial order reduction algorithms into
the UW framework. As a consequence, our main contribu-
tion is an algorithmic method to extract the unsatisfiable

core produced by the SMT solvers in order to control the
verification complexity and at same time ensure the com-
pleteness of the algorithm by means of interpolation. In this
sense, we intend to verify real-world embedded software in
contrast to closely related works that apply the technique to
handcrafted small-size benchmarks [12, 18].

3. BMC FOR MULTI-THREADED SOFT-
WARE IN EMBEDDED SYSTEMS

In BMC, the program to be analyzed is modelled as a
state transition system, which is built by extracting its be-
haviour from the control-flow graph (CFG). This graph is
used as part of a translation process from program text
to SSA-form [8]. Each thread is modelled as a CFG and
nodes represent control points while edges represent transi-
tions (or program statements). Each transition is enabled
iff the condition that guards it is true and the process to
which it belongs is at the corresponding control point. For
example, Figure 1 shows the CFG of two threads TX and
TY . Each thread has two single transitions. The guards
x > 2 and x > 3 as well as the control points {TX0

, TX1
}

and {TY0
, TY1

} determine if a transition is enabled or not.

T X 0

T X 1

T Y 0

T Y 1

X1 x>2 : a [i] =5

Y0 j = f c tB ()X0 i = f c tA ()

T X 2 T Y 2

Y 1 x > 3 : a [j] = 1 0

Figure 1: Control-flow graph of two threads.

A transition systemM = (S,R, S0) is an abstract machine
that consists of a set of states S (where S0 ⊆ S represents
the set of initial states) and transitions R between states,
i.e., for each γ ∈ R, γ ⊆ S × S. A state s ∈ S consists
of the value of the program counter pc and the values of
all program variables. An initial state s0 assigns the initial
program location of the CFG to the pc. We identify each
transition γ = (si, si+1) between two states si and si+1 with
a logical formula γ(si, si+1) that captures the constraints on
the values of the program counter and the program variables.
Given a transition system M, a property φ, and a bound
k, BMC unrolls the system k times and translates it into
a verification condition ψ such that ψ is satisfiable iff φ

has a counterexample of depth less than or equal to k. The
model checking problem associated with SMT-based BMC
for checking linear temporal logic (LTL) properties is then
formulated by constructing the logical formula [3, 10]:

ψ
k = I (s0) ∧

k−1∧

i=0

γ (si, si+1)

︸ ︷︷ ︸

constraints

∧

property
︷ ︸︸ ︷

P (sk) (1)

where P (sk) represents a LTL property φ in step k, I is the
function for the set of initial states of M and γ (si, si+1) is
the function of the transition relation of M at time steps i
and i+1. Hence, the formula

∧k−1

i=0
γ (si, si+1) represents the

set of all executions of M up to the length k or less. P (sk)
is derived from the property being checked and represents
the condition that it is violated by a bounded execution of
M of length k or less. However, formula (1) encodes all
allowed interleavings of the given threads. The core idea of
our approach is to consider a series of under-approximations
of a given model by encoding additional literals into the
verification condition ψ and by extracting the proof objects
generated from an SMT solver [9]. We then rewrite formula
(1) as:

ψ
k = I (s0) ∧

k−1∧

i=0

γ (si, si+1) ∧ P (sk)
∧

∀j∈T

∧

∀l∈C

vjl (2)

where vjl ∈ P are literals that encode the control points
of each thread. We denote the set of threads by T , the
set of control points by C, and the set of control liter-
als by P . In the example of Figure 1, T = {TX , TY },
C = {TX0

, TX1
, TX2

, TY0
, TY1

, TY2
}, and the set of control

literals P =
{

vXX0
, vXX1

, vXX2
, vYY0

, vYY1
, vYY2

}

. Initially,

each literal in P is set to be false, because we aim to con-
trol the number of interleavings. As in [12], we also intend,
at every state, to expand only the transitions of the en-
abled thread with the smallest subscript (i.e., assume that
TX < TY). However, at this point in time, we are not aware
of which heuristics we could use in order to update the set of
variables in P on each iteration of our algorithm. As a run-
ning example, consider all thread interleavings of Figure 1.

X 0

X 1

Y 0

Y 1

Y 0

X 0

Y 0

X 0 X 1

Y 1

X 1

Y 1
{ } { X 0 , X 1 ,

 Y 0 , Y 1 }

Figure 2: All interleavings of the threads in Figure 1.

At the first step, we consider that only transition X0 is
expanded from the initial state and consequently we execute
symbolically program statements X0, X1, Y0, Y1 and build
formula (2). If we do not find any counter-example when
checking (2), we then analyze the proof objects generated
from the SMT solver to determine if any of the literals in
P is part of the proof objects. For example, if ¬vXX0

was
used by the proof, we should then remove it from P in order
to continue to the next iteration since this literal was used
to prove that the property holds and can now assume either
true or false (while the others must be false).

Furthermore, it is important to note that it is difficult to
determine statically whether transition X1 is dependent on
Y1. If i 6= j holds in some executions, transitions X1 and
Y1 become independent, meaning that the two sequences
X0;X1;Y0;Y1 and Y0;Y1;X0;X1 are equivalent. Differently
from [11, 12, 18], we intend to integrate symbolic partial
order reduction methods to take advantage of such informa-
tion. Furthermore, we intend to analyse the proof objects to
determine whether the proof does not depend on the under-
approximation itself. It means that the proof will allow us
to show that the property holds on the original model, and

the SMT-based BMC procedure terminates without needing
to increase the bound until the SMT solver explodes.

3.1 Case Studies
In order to validate our SMT-based BMC procedure, three

different case studies specific to the domain of telecommuni-
cations software are considered. The first case study is the
middleware for IPTV applications, which is not only soft-
ware that allows two or more applications to exchange data,
but also provides a set of drivers (e.g., memory allocation
driver, ticker driver, and external event driver), TCP/IP
socket I/O, and graphics facilities to make the software ap-
plication development easier. The verification of IPTV mid-
dleware is a good example of an embedded software appli-
cation that requires the verification of not only functional
properties, but also temporal properties due to the real-time
data transmission and control.

A digital TV platform also provides a set of processors and
Application Specific Integrated Circuits (ASICs) that allows
faster data decoding and encoding. As this kind of applica-
tion requires high computational power, more than one core
processor is often used. For this purpose, the second case
study deals with software verification of multi-core systems.
The third case study is related to the front-end of the digital
TV system. The front-end consists essentially of a tuner In-
tegrated Circuit (IC) that performs the demodulation and
error correction functions for receiving terrestrial/satellite
digital broadcasting. Consequently, the embedded software
that controls the functions of the tuner also imposes chal-
lenges to verify the functional and temporal properties, since
it will force the model checker to consider the stringent con-
straints of the hardware (e.g. real-time, memory allocation,
interrupts, and concurrency).

3.2 Main Contributions
The main contribution of this PhD thesis will be a com-

prehensive SMT-based BMC procedure to verify embedded
software in multi-core systems. We will provide details of an
accurate translation from ANSI-C programs into quantifier-
free formulae and show that our encoding allows us to rea-
son about arithmetic overflow and to verify programs that
make use of bit-level, pointers, unions and floating-point
arithmetic (i.e., ANSI-C constructs commonly found in em-
bedded software). We also intend to check the effectiveness
of our encoding techniques by using different SMT solvers
(CVC3, Boolector, and Z3) and exploit different background
theories and solvers, based on an analysis of the syntactic
structure of a given ANSI-C program.

Additionally, we will explore a new concept called contin-
uous verification [7] to detect design errors and integration
problems as quickly as possible by exploiting information
from the software configuration management (SCM) system,
systematically focusing the verification effort on new or mod-
ified functions. As a result, we will integrate the continuous
verification approach with the combination of different en-
codings and solvers in order to allow us to go deeper into the
system (compared to software model checkers only) and ex-
plore more exhaustively the state space (compared to testing
only). Finally, we will develop a comprehensive SMT-based
BMC procedure of multi-threaded software based on a set of
UW models by removing redundant interleavings and con-
sequently reduce the state space exploration.

4. WORK METHODOLOGY
The needed steps and directions to develop the proposed

method can be organized in three different phases. In the
domain analysis phase, we aim to investigate the resolu-
tion proofs and unsatisfiable cores generated by the SMT
solvers in order to derive thread invariants. Furthermore,
we intend to make a systematic examination of the interpo-
lation procedures for fragments of first order logic. In the
proposed methodology phase, an initial version of the algo-
rithmic method and its scope to verify embedded software in
multi-core systems are defined and implemented with sup-
port for the POSIX threads library. After that, this imple-
mentation is further refined in the validation phase by apply-
ing it to the case studies presented in Section 3.1. In order
to carry out the activities of this PhD dissertation, an incre-
mental and iterative approach will be used with the purpose
of reducing risks and uncertainties. For each increment, the
three phases will be addressed with different emphasis. For
each thesis increment, technical reports will be written and
if significant results have been achieved, then scientific pa-
pers will be reported to the academic community through
publications in workshops and conferences.

5. RESULTS ACHIEVED SO FAR
As a start, we proposed a combination of techniques to

verify statically and dynamically the “pure” and hardware-
related embedded software as well as techniques that aim to
find property violations at system level [6]. Apart from the
state space explosion problem, we found that CBMC and
SATABS allow us to verify full ANSI-C, but these model
checkers make it difficult to specify more complex temporal
properties in embedded software. NuSMV2 provides a vari-
ety of languages to specify the system’s properties, but there
is no straightforward mapping from the ANSI-C constructs
to the NuSMV language [6].

As a consequence, we investigated SMT-based verifica-
tion of ANSI-C programs and we described in [8] a new set
of encodings that allowed us to reason accurately about bit
operations, unions, floating-point arithmetic, pointers and
pointer arithmetic. We integrated the CVC3, Boolector, and
Z3 solvers with the CBMC front-end [5] and evaluated them
using both standard software model checking benchmarks
and typical embedded software applications from telecom-
munications, control systems, and medical devices. We also
improved substantially the performance of SMT-based BMC
for embedded software by making use of high-level informa-
tion to simplify the unrolled formula. The results in [8] show
that our approach outperforms the CBMC [5] and SMT-
CBMC [3] model checkers if we consider the verification of
embedded software.

However, for large embedded software, SMT-Based BMC
suffers from the state space explosion problem. In [7] we pro-
pose a new approach called continuous verification to detect
design errors as quickly as possible by looking at the Soft-
ware Configuration Management (SCM) system and by com-
bining dynamic and static verification to reduce the state
space to be explored. We also give a set of encodings that
use different background theories in order to improve scal-
ability and precision in a completely automatic way. As a
result, the continuous verification approach and the combi-
nation of different encodings and solvers allowed us to go
deeper into the system (compared to software model check-

ers only) and to explore more exhaustively the state space
(compared to testing only). Controlled experiments using a
case study from the telecommunications domain with more
than 30K of lines of C code shows that this hybrid solu-
tion improves the error-detection capability and reduces the
verification time by up to 50% [7].

6. REFERENCES
[1] R. Alur et al. Partial-order reduction in symbolic

state-space exploration. FMSD, 18(2):97–116, 2001.

[2] T. Andrews et al. Zing: Exploiting program structure
for model checking concurrent software. CONCUR,
pp. 1–15, 2004.

[3] A. Armando, J. Mantovani, and L. Platania Bounded
model checking of software using SMT solvers instead
of SAT solvers. Int. J. Softw. Tools Technol. Transf.,
pp. 69–83, 2009.

[4] A. Biere. Bounded model checking. Handbook of

Satisfiability, pp. 457–481. 2009.

[5] E. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. TACAS, LNCS 2988, pp.
168–176, 2004.

[6] L. Cordeiro et al. Semiformal verification of embedded
software in medical devices considering stringent
hardware constraints. ICESS, pp. 396–403, 2009.

[7] L. Cordeiro, B. Fischer, and J. Marques-Silva.
Continuous verification of large embedded software
using SMT-based bounded model checking. ECBS,
2009.

[8] L. Cordeiro, B. Fischer, and J. Marques-Silva.
SMT-based bounded model checking for embedded
ANSI-C software. ASE, pp. 137–148, 2009.

[9] L. M. de Moura and N. Bjørner. Z3: An efficient SMT
solver. TACAS, LNCS 4963, pp. 337–340, 2008.

[10] M. K. Ganai and A. Gupta. Accelerating high-level
bounded model checking. ICCAD, pp. 794–801, 2006.

[11] M. K. Ganai and A. Gupta. Efficient modeling of
concurrent systems in BMC. SPIN, LNCS 5156, pp.
114–133, 2008.

[12] O. Grumberg et al. Proof-guided
underapproximation-widening for multi-process
systems. POPL, pp. 122–131, 2005.

[13] V. Kahlon, S. Sankaranarayanan, and A. Gupta.
Semantic reduction of thread interleavings in
concurrent programs. TACAS, LNCS 5505, pp.
124–138, 2009.

[14] V. Kahlon, C. Wang, and A. Gupta. Monotonic
partial order reduction: An optimal symbolic partial
order reduction technique. CAV, LNCS 5643, pp.
398–413, 2009.

[15] K. L. McMillan. Interpolation and SAT-based model
checking. CAV, LNCS 2725, pp. 1–13, 2003.

[16] K. L. McMillan and N. Amla. Automatic abstraction
without counterexamples. TACAS, LNCS 2619, pp.
2–17, 2003.

[17] S. Qadeer and J. Rehof. Context-bounded model
checking of concurrent software. TACAS, LNCS 3440,
pp. 93–107, 2005.

[18] I. Rabinovitz and O. Grumberg. Bounded model
checking of concurrent programs. CAV, LNCS 3576,
pp. 82–97, 2005.

