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Design scientists have to balance the demands of method-
ological rigor that they share with purely curiosity-driven
scientists, with the demands of practical utility that they
share with utility-driven engineers. Balancing these con-
flicting demands can be conceptually complex and may lead
to methodological mistakes. For example, treating a design
question as an empirical research question may lead to re-
searcher to omit the identification of the practical problem
to solve, to omit the identification of stakeholder-motivated
evaluation criteria, or to omit trade-off and sensitivity anal-
ysis. This tutorial aims to clear up this methodological mist
in the case of software engineering (SE) research.

The core distinction is that between practical problems
and knowledge questions. A practical problem is a differ-
ence between stakeholder goals and experiences, that they
wish to reduce, and a knowledge question is a lack in knowl-
edge, that they wish to reduce [14]. For example, to reduce
the number of build failures in distributed SE projects is
a practical problem; to ask for the relation between team
communication structure and code integration build failures
is a knowledge question [17].

In all kinds of scientific research, knowledge questions
and practical problems are mutually nested. For example,
an empirical research question is a knowledge question for
which the researcher must do something to answer it, namely
to perform research. But to perform empirical research is in
turn a practical problem. The research problem must be
analyzed, the research must be designed and validated, etc.

Conversely, to solve any practical problem, the problem-
solver must know what the problem is, which is a knowledge
question; and to assess whether a solution design would solve
the problem, the problem solver must predict what would
happen if the design were implemented in the problem do-
main, which is another knowledge question. The mutual re-
cursion of practical problems and knowledge questions can
be confusing, and may easily cause the researcher to miss
relevant problems to solve, or questions to ask.

In design science, the top-level problem in this mutual
problem nesting hierarchy is always a practical problem [15].
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In software engineering, practical problems are always prob-
lems in the design, construction or maintenance of software
systems—the software engineering domain. Artifacts de-
signed or investigated in software engineering research can
be algorithms, techniques, methods, tools, notations, or even
conceptual frameworks used in the software engineering do-
main [11].

There are two roles that empirical research can play with
respect to artifact design, namely validation of a designed
artifact before it has been transferred to practice, and eval-
uation of the performance of an implemented design after
it has been transferred to practice. For example, testing a
new fault localization technique before it is transferred to
practice is a validation study [9], but a case study of long-
term usage of a system for software engineering measure-
ment and analysis in a company [1] is an evaluation study.
In validation research there is no practical experience with
the artifact yet and any prediction of its future behavior will
have some degree of uncertainty. The challenge of validation
research is to reduce this uncertainty, for example by scal-
ing up from controlled laboratory conditions to uncontrolled
conditions of practice.

In both validation and evaluation, typical design research
questions are the same, except that validation questions ask
for what will happen and evaluation questions ask for what
has happened. Where there is a difference, the questions are
given in their validation form:

• How to operationalize a stakeholder goal into measur-
able design criteria? An example is the operational-
ization of the concept of flying quality of aircraft [13].

• Design prediction: What will be the effect of this ar-
tifact in this problem domain? For example, what is
the effect of a new fault localization technique on the
cost of fault localization [9]?

• Effect valuation: How well does this effect match stake-
holder criteria? Does the use of a tool for capturing
socio-technical relationships in software development
serve the goals of software engineers [10]?.

• Trade-off analysis: What would be the effect if the
artifact design is changed? For example, how does a
new fault localization technique perform with respect
to alternative techniques [9]?

• Sensitivity analysis: What would be the effect if the
problem domain changes? For example, if the tool
works for 10 000 line programs, does it still work for
1000 000 line programs?
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Research methods to investigate these questions do not dif-
fer from research methods used in the natural or behavioral
sciences [3, 7, 8], but in validation research there is a pro-
gression of methods from the controlled conditions of the
lab to the uncontrolled conditions of practice [16]. Some ex-
amples of validation research methods are lab experiments,
benchmarking, pilot studies, technical action research and
user evaluation studies.

The scope of design knowledge transcends the individual
case but is rarely universal, which contrasts it with basic
science with its universal knowledge claims [5, 12]. De-
sign science theories are theories of practice, which means
they incorporate some of the conditions of practice that ba-
sic scientists, aiming for universal generalizations, abstract
from [4].

Knowledge can accumulate by trying to understand how
the interaction between an artifact and a problem domain
in particular cases produces effects. We can do this in a
bottom-up way by identifying generalizable underlying mech-
anisms of interaction between an artifact and the domain in
which it is inserted. This has been called analytical gener-
alization by some methodologists [6, 18]. We can also use a
top-down approach in which a theory from another domain,
such as social science or cognitive psychology, is applied to
software engineering [11].

The structure of design theories is the same as the struc-
ture of any scientific theory but reflects the role of design
theories in practical problem solving in the choice of research
questions and in the statement of intermediate scope. There
are three components.

• Conceptual framework: Constructs including opera-
tionalization of stakeholder-motivated criteria

• Design prediction (Artifact ∧ Problem domain causes
Effect) and valuation (Effect satisfies Criteria)

• Scope: Range of variation in Artifact and Problem
domain that still produces the Effects.

Design theories are not prescriptive, as some methodologists
claim [2]. It is the artifact specification that is prescriptive,
and design theories can be used by a design scientist to jus-
tify why a class of artifacts will solve a class of problems.
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