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ABSTRACT
Partitioning is the dominant technique to transmit large files
in peer-to-peer networks. A peer can redistribute each part
immediately after its download. BitTorrent combines this
approach with incentives for uploads and has thereby be-
come the most successful peer-to-peer network. However,
BitTorrent fails if files are unpopular and are distributed
by irregularly participating peers. It is known that Net-
work Coding always provides the optimal data distribution,
referred as optimal performance. Yet, for encoding or de-
coding a single code block the whole file must be read and
users are not willing to read O(n2) data blocks from hard
disk for sending n message blocks. We call this the disk
read/write complexity of an encoding.

It is an open question whether fast network coding schemes
exist. In this paper we present a solution for simple com-
munication patterns. Here, in a round model each peer can
send a limited amount of messages to other peers. We define
the depth of this directed acyclic communication graph as
the maximum path length (not counting the rounds). In our
online model each peer knows the bandwidth of its communi-
cation links for the current round, but neither the existence
nor the weight of links in future rounds.

In this paper we analyze BitTorrent, Network Coding,
Tree Coding, and Tree Network Coding. We show that the
average encoding and decoding complexity of Tree Coding is
bounded by O(kn log2 n) disk read/write-operations where
k is the number of trees and n the number of data blocks.

Tree Coding has perfect performance in communication
networks of depth two with a disk read/write complexity
of O(pnt log3 n) where p is the number of peers, t is the
number of rounds, and n is the number of data blocks. For
arbitrary networks Tree Coding performs optimally using
2(δ + 1)t−1p log2 n trees which results in a read/write com-
plexity of O((δ + 1)t−1n log3 n) for t rounds and in-degree
δ.
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1. INTRODUCTION
The exchange of data without centralized infrastructure is

the main motivation for the wide-spread use of peer-to-peer
networks. From a user’s perspective the fast distribution
of large files is the killer argument to choose peer-to-peer
network software. For such a task the IP Multicast protocol
seems to be the best solution, allowing routers to duplicate
packets on their paths to their destination, thus relieving
the bottleneck at the server [17, 6]. However, IP Multicast
suffers from the absence of reliable delivery and the lack of
support of most Internet service providers.

Peer-to-Peer Networks.
Peer-to-Peer Networks started in 1999 with Napster and

Gnutella which swiftly became very successful although they
were not very elaborated. In the following years, researcher
focused on finding robust network structures and efficient
lookup services, like CAN [13], Chord [16], Pastry [15], and
Tapestry [8]. Later on, for some of these networks, effi-
cient multicast extensions were proposed, e.g. Bayeux [19],
CAN-Multicast [14], and Scribe [3], filling the gap of the
unsupported multicast in the Internet network layer.

In a multicast tree the leaf position is the most favorable
one, since they do not upload any data to others. Usu-
ally, the upload is the crucial bottleneck in peer-to-peer
networks, since asymmetric connections designed for client-
server networks provide larger download than upload ca-
pacities (not mentioning the legal distinction between up-
loaders and downloaders). A solution was presented with
Splitstream [2], where files are partitioned into small blocks,
such that a peer can start redistributing blocks immediately



after downloading while continuing receiving further blocks
of the same file. The resulting multiple distribution trees are
overlaid to achieve fairness among peers by balancing both
upload and download for each of them.

BitTorrent [5] incorporates the block-based approach of
Splitstream and combines it with incentives for uploading
blocks. So, BitTorrent has become traffic-wise the most suc-
cessful peer-to-peer network.

Network Coding.
In their seminal paper Ahlswede et al. [1] showed that the

encoding of data can improve the data throughput beyond
the limits of standard packet delivery. Later work showed
that linear combinations of data units achieve optimal net-
work information flow. This idea has been adapted for use
in peer-to-peer networks like Practical Network Coding [4].
Some peer-to-peer networks use this new method. Yet, Bit-
Torrent without any coding technique remains unchallenged.

In our opinion the main obstacle for the wide-spread use
of Network Coding is the high computational complexity of
the coding and encoding process. For encoding (or decod-
ing) a single code block the whole file must be read and
users are not willing to read O(n2) data blocks from hard
disk for sending n message blocks. The additional overhead
after downloading the code blocks is simply not acceptable
for most users: When a user downloads 4 GByte of data con-
sisting of 1024 blocks, Network Coding requires disk opera-
tions reading 4096 GByte on each participating host while
BitTorrent only reads 4 GByte of data.

Our goal is to find coding schemes which provide the same
information flow as Network Coding with a disk access com-
plexity comparable to BitTorrent.

Previous Work.
In our previous work we have presented new network codes

with small read/write complexity. In [11] we have intro-
duced Pair Coding. We have shown that it performs at
least as good as BitTorrent with a constant factor increase
in complexity. For some scenarios it outperforms BitTorrent,
while Pair Coding fails for many scenarios like BitTorrent.

Furthermore, we have introduced Tree Coding [10]. It out-
performs a special version of Pair Coding called Fixed Pair
Coding, while its relationship to Pair Coding is unknown.
Pair Coding and Fixed Pair Coding are as efficient as Bit-
Torrent. Likewise the complexity of Tree Coding for k > 1
trees was stated as an open problem, which is solved in this
paper.

Coding Model.
All coding schemes presented here are restricted versions

of the Practical Network Coding introduced in [4]. A large
file of length m over an alphabet Σ (e.g. binary alphabet,
bytes, words) is partitioned into n equal units of size s =⌈
m
n

⌉
. We denote the blocks of the file by x = (x1, . . . , xn).

The last block may be filled up with zeros. We assume
n = 2a, a ∈ N+ since this supports the binary presentation
of data. The linear network code schemes presented use
scalar products in finite fields.

For efficiency the block xi is interpreted as a vector over
a finite field, i.e. xi = (xi,1, . . . , xi,`) ∈ GF [2h]` such that 2h

is larger than the number of blocks, but the product nh is
smaller than the block size 2h`. Then the additional infor-

mation of the encoding can be seen as a minor contribution
to the packet size.

A linear code block is defined as

b(c) =

(
n∑
i=1

cixi,ν

)
ν∈{1,...,`}

.

If n such linear code blocks b(c) = b1, . . . , bn with codes
c1, . . . , cn have been collected the matrix Cij = (ci,j) gives
the information for decoding since

xi,ν =

n∑
i=1

(C−1)i,jbj,ν .

A random choice of the code variables produces an in-
vertible matrix with probability of at least 1 − 2

2h
. Since

the space requirements of the parameters (nh) grow linearly
with h this allows exponential small failure probability. In
practice such a failure would usually result in the transmis-
sion of an additional encoded block and presents a minor
problem.

Communication Graph.
We model the communication of peers as a directed acyclic

graph. For this we consider a round model where each par-
ticipating peer Pi is multiply represented in the graph by
nodes Pi,j indicating the state of Pi in the j-th round. The
directed edges are of form (Pi,j , Pk,j+1) and are weighted
according to the number of blocks peer Pi can transmit to
peer Pk in round j. We consider only the transmission of
full blocks according to the linear encoding. By definition
the edges (Pi,j , Pi,j+1) always exist and have weight n. In
every round a peer may receive any number of blocks and
send any number of blocks within the edge weight. The sum
of all received blocks of a peer P is denoted as nr(P ) and
clearly we observe nr(P ) ≤ n if no unnecessary blocks are
sent around. The number of outgoing blocks of a peer P is
denoted by ns(P ). Peers in round 1 have either all blocks or
no blocks of the file. Peers of the first type are called seeds
and the latter ones leeches. We define nr(P ) = n if P is a
seed.

In this paper we assume that there are no edges with zero
weight and we consider only edges that lie on a directed path
coming from a seed.

In the communication graph we define the in-degree of a
node as the number of incoming edges of a node Pi,j not
counting the edge from the past round Pi,j−1. Since many
nodes represent the same peer we redefine the depth of the
graph as follows. All nodes corresponding to seeds have
depth 0 in all rounds. The depth of nodes in the first round
is also 0. In all other cases the depth is defined as

depth(Pi,j+1) =

max
{

depth(Pi,j),

1 + max
k 6=i,(Pk,j ,Pi,j+1)∈E(G)

{depth(Pk,j)}
}
.

The depth of the communication graph describes the max-
imum number of different peers a piece of information passes
through. According to this definition the number of rounds
can easily exceed the depth of a communication graph.



round 1

round 2

round 3

depth 0

depth 1

S

3

B

3

S

A

3

B

5

64

A

C

3

A B C

2

depth 2

C

CBA

S

S

Figure 1: Communication graph.

Theorem 1. [4] If there exists a flow from all seeds to
a peer of size of at least n then linear network coding dis-
tributes the complete file to all these peers.

In this paper we investigate variants of Network Coding
which share this optimal performance.

Definition 1. A file sharing system S1 performs per-
fectly if the complete file is received at all peers which have
a flow of n from the set of seeding peers.

The fundamental disadvantage of Network Coding is the
large computational complexity for encoding and decoding.
To reflect the cost of coding we use the read/write complex-
ity regarding disk access. We assume that any operation
involving two blocks (coded or plain) can be performed in
main memory, i.e. it requires only to read those two blocks
and write the result. The number of blocks a peer can store
in its main memory is constant (non-zero).

Definition 2. Consider a machine model where the main
memory is restricted to a constant number of blocks and
a mass storage device is available, which is an unbounded
random access memory (hard disk). The read/write com-
plexity of a peer is the number of accesses to the mass
storage for an operation. It is measured with respect to the
number nr of blocks received by a peer and the number ns
of blocks sent by a peer.

We consider the worst-case given by the peer of maximum
read/write complexity and the average read/write complex-
ity which is the sum of read/write operations averaged over
all peers.

Knowledge Model.
In the offline model the whole communication graph

with all future rounds is known to all peers in advance, i.e.
each node knows the activity and communication limits of
all peers in all upcoming rounds. In the online model this
knowledge is limited to the current round. Thus a plan can
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Figure 2: Example of a communication graph with
3 rounds. Inactive nodes are depicted dashed, the
nodes P1 and P6 are seeds, and the depth of the
communication graph is 3.

only be made for this round, while no information about fu-
ture rounds is available. Basically, this is a guarantee that
each peer remains active until the end of the current round
and will be able to fulfill its transmission bounds published
at the beginning of the round.

2. BITTORRENT
BitTorrent is at the moment the most popular file shar-

ing system. Except for error detection via hash function it
does not use coding. A file is divided into n blocks, that are
distributed to the downloading peers. When a copy of each
original block is present, the download is finished. The cru-
cial advantage of BitTorrent compared to prior peer-to-peer
systems is the capability of downloading from multiple other
peers in parallel, and start uploading completed blocks be-
fore the download of the whole file is finished. The so-called
policy describes the decision which block should be uploaded
to whom. It is based on the current status of the whole net-
work, including for example the progress of the receiving
peer, the amount of copies of a certain block in the network,
etc. BitTorrent uses incentives that encourage uploading by
delivering more blocks in return. Thereby, so-called leech-
ing, i.e. peers (leeches) download more blocks than they are
willing to upload to others, is discouraged.

This game-theoretic approach of using incentives helps to
increase network throughput, and together with the file par-
titioning this explains the success and popularity of BitTor-
rent. The game-theoretic aspects have been subject to a
lot of research, e.g. [9, 12], and they still are. However, we
focus on shortcomings of block-based file distribution sys-
tems, that are unsovable with incentives: In case a block is
completely missing in the whole network, i.e. no active peer
has a copy, BitTorrent is incapable of compensating this loss
and no peer is able to finish the download.



Performance Analysis of BitTorrent.
In the following, we describe the communication graphs

that can be handled perfectly by BitTorrent and also give
the read/write complexity. We will show that BitTorrent
fails for more complex communication graphs.

Theorem 2. BitTorrent performs perfectly for communi-
cation graphs with depth 1 for the online model and has worst
case read/write complexity nr + ns and average complexity
2n.

Proof. A simple policy downloading one missing block
at a time suffices. The downloading peer can explicitly re-
quest a desired block from each seed. So with each received
block the information available at the downloading peer in-
creases. Thus, the total information flow to that peer is op-
timal in the online model, and each block has to be sent and
received exactly once, yielding the given read/write com-
plexity in average. In worst case, a peer (in particular a
seed) has to upload more than n blocks for several down-
loading peers, ns > n, resulting in the above worst case
complexity.

For the average complexity note that∑
peer P

nr(p) =
∑

peer P

ns(p) ≤ np

where p is the number of peers.

The following theorem shows the unsolvable shortcomings
of BitTorrent. If the communication graph has a depth
larger than one, even in the offline model with complete
knowledge, BitTorrent cannot provide the optimal perfor-
mance.

Theorem 3. There is a communication graph of depth 2
where BitTorrent fails in the offline model.

Proof. The communication graph in Figure 3 depicts an
example. In round one, the seed S may transmit n/2 blocks
to each of the peers P1, P2, P3. Since there exist only n
different blocks, at least two peers have an identical block
after the first round. Due to the duplicate blocks at two
peers, in round two (without any transmission limits), at
least one of the peers P4, P5, P6 cannot download all original
blocks. No distribution strategy can solve this, not even for
the offline model with full knowledge.

However, there exists an optimal straight-forward solution
using Network Coding: In round one all transmitted blocks
are linearly independent code blocks. Then in round two the
nodes P4, P5, P6 each can collect n of those code blocks and
decode the original file, maximizing the network flow.

3. NETWORK CODING
The problem of missing blocks can be optimally solved by

using Network Coding [1] with its efficient implementation
given as the Practical Network Coding scheme [4]. Instead
of transmitting the original blocks of the file, linear combi-
nations of all n blocks are distributed. Those code blocks
are generated by interpreting each original block as a vector
over a Galois field. If all linear coefficients used in this en-
coding are linearly independent, then any n code blocks are
sufficient to decode all n original blocks from the file. Lin-
ear independency of the coefficients can be achieved easily
with high probability by a random choice, if the order of the
Galois field is chosen large enough.

round 1

round 2

S

P3P1 P2

P6P4 P5

n/2 n/2n/2

n/2 n/2 n/2 n/2 n/2 n/2

Figure 3: Scenario used in proof of Theorem 3.

Theorem 4. [1] Network Coding performs perfectly in
any communication graph.

However, encoding and decoding of blocks have a high
computational complexity and a high read/write complex-
ity. The computational overhead is basically the inversion
of an (n × n)-matrix C of the linear coefficients which has
a complexity of O(n2.376...). While this is manageable with
modern personal computers the read/write complexity dis-
plays the growing gap between the processing speed of the
CPU and had disks.

Theorem 5. The read/write complexity of Network Cod-
ing of each peer is in the worst case at most nr · ns and
O(n2) in the average.

Proof. Creating a code block requires to read nr blocks,
leading to nrns read operations to create ns code blocks,
which is the same for decoding like in Practical Network
Coding. Since nr ≤ n the average performance is at most
n2 since ∑

peer P

ns(P )nr(P ) ≤
∑

peer P

ns(P )n

=
∑

peer P

nr(P )n

≤ n2p ,

where p is the number of peers.

We think that this read/write complexity is the reason
that systems using Network Coding, like Avalanche [7], by
far fall behind BitTorrent’s success and there are empirical
analyses backing up this opinion [18].

4. TREE CODING
Code blocks in Tree Coding, which was already introduced

in [10], are defined by a complete binary tree. The leaves
of this tree form the original file blocks multiplied by a co-
efficient. Starting from the second layer code blocks are
generated by adding two children code blocks in the Galois
field, i.e. computing the vector-wise Xor of the code blocks.
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b logni (c) = cixi for i ∈ {1, . . . , n}
b j−1
i (c) = b j2i−1(c) + b j2i(c) for j ∈ {1, . . . , logn},

i ∈ {1, . . . , 2j−1}

Such a tree imposes an implicit partitioning of the file,
which may lead to the same problems we have seen for Bit-
Torrent, see Figure 5. The solution is to use several coding
trees with different coefficients.

Decoding from multiple coding trees is computationally
more complex. In the extreme case n coding trees are given
by their root nodes. Then, Treecoding is equivalent to Net-
work Coding. However, for a small number of trees the
decoding remains feasible.

Definition 3. A sub-tree in a coding tree T (c) is defined
by the position of its root node bji and contains all successor

nodes. It is denoted by T ji (c), where c is the tree’s coding
vector.

Definition 4. The function

count
(
bji (c1), . . . , bji (ck)

)
→ {0, . . . , k}

denotes the amount of blocks that are present in the coding
trees T (c1), . . . , T (ck) at the node position indicated by i
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Figure 6: A set of trees T ji (c1), . . . , T ji (ck) and their
left and right sub-trees.

and j. Furthermore, count(T (c)) denotes the number of
code blocks from the tree T (c).

The following lemma will allow to abstract from the ma-
trix representation. It shows that the rank of the trees is
described by the position of the code blocks within the trees.
See Figure 6 for an illustration of the notation.

Lemma 1. There exists a set of coding vectors c1, . . . , ck,
such that for all trees T (c1), . . . , T (ck) with

count(T (cν)) = rank(T (cν))

the rank of the set of trees equals

rank
(
T ji (c1), . . . , T ji (ck)

)
=

min
{ n

2j
, rank

(
T j+1
2i−1(c1), . . . , T j+1

2i−1(ck)
)

+ rank
(
T j+1
2i (c1), . . . , T j+1

2i (ck)
)

+ count
(
bji (c1), . . . , bji (ck)

)}
.

Proof. This can be proved by an induction over the
height of the sub-trees. For leaves the statement is true,
since the rank of a leaf is 1 if at least one code block exists
at the leaf’s position in any of the trees T (c1), . . . , T (ck). If
not, the rank is 0.

Assume that the lemma holds for depth of at least j + 1,
i.e. height smaller or equal logn − j − 1. Now, consider a
matrix built by the coefficient vectors of the two sub-trees
and the code blocks at the current root. The matrix has the
form depicted in Figure 7.

Clearly, the coefficients of the left and right sub-tree are
linearly independent. It remains to prove that the coeffi-
cients bji (c1), . . . , bji (ck) of the root are no linear combina-
tions of the rest of the matrix, if the overall number of coef-
ficients is bounded by n

2j
. If more coefficients are given, we

reduce the number of root coefficients such that the overall
number equals n

2j
.

First note, that within the same tree this holds since the
number of block codes equals the rank of all coefficients. To
ensure that it also holds for all trees we have to choose the
coding vectors. These vectors are the entries of the matrix
in Figure 7 at the non-zero positions. It is well known that
a Vandermonde matrix fulfills this property.
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Figure 7: The resulting coefficient matrix of joining
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The following theorem solves the open problem stated
in [10], where for the complexity of Tree Coding a bound
of O(n) for the case k = 1 has been shown. Here, we show
that every strategy which relies on Tree Coding with small
number of trees can be performed efficiently.

Theorem 6. In Tree Coding with k trees each peer has
worst case read/write complexity of O(kn log2 n + ns) and
average complexity O(kn log2 n).

Proof. The seeds (peers in depth 0) calculate all k trees
and store them. This takes O(kn) read and write opera-
tions. Note that by definition nr = n and hence we face the
complexity of O(knr) + ns for sending ns code blocks in all
rounds.

Each other peer follows the following strategy. The main
goal is to construct all inner nodes of the k trees. The peers
store code blocks in a complete binary tree T of height logn.
Here, in every node of depth d at most k(d+ 1) code blocks
are stored. These code blocks are linear combinations of all
original blocks according to the presentation introduced for
Tree Coding.

This tree T is initialized with all the received code blocks
and will be updated after each round as follows: If a new
code blocks has been received it will be added at the cor-
responding position of the tree. The other positions will be
filled up with tree nodes of the same form, i.e. in sub-tree
T ji the vectors have the form

( 0, . . . , 0︸ ︷︷ ︸
(i−1)n/2j

, h1, . . . , hn/2j , 0, . . . , 0︸ ︷︷ ︸
n−in/2j

).

After downloading the blocks of the current round the peer
starts the following computation from the top of the tree to
the leaves.

• Store all received code blocks into the tree at the cor-
responding positions.

• For j = 1 to logn,
for i = 1 to 2j ,
for all unmarked blocks b of the parent node of T ji , i.e

the root node T j−1
b(i+1)/2c

– Find a vector v of form gji which is linearly inde-

pendent from all vectors in the sub-tree T ji such
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Figure 8: Complete tree level code of depth 2.

that it preserves the rank of the matrix of the
parent tree T j−1

b(i+1)/2c if it is replaced with b.

– If such a vector v exists store v into the tree and
mark b.

The number of disk read/write operations for computing v in
depth j is bounded by n/2j−1 because this is the maximum
number of linearly independent vectors with n/2j−1 non-
zero entries. By the marking mechanism it is clear that
the maximum number of k(j + 1) code blocks in depth d is
an upper bound (in fact it is also upper-bounded by n/2j).
Furthermore, each entry is computed only once, which leads
to the following complexity for constructing the tree:

logn∑
j=1

k(j + 1)2j
n

2j−1
= 2kn

logn∑
j=1

(j + 1)

= kn(3 + logn) logn

As an additional term we have to consider the number ns
of sent code blocks which are read from the data struc-
ture, resulting in the worst case read/write complexity of
O(ns + kn log2 n) and the average read/write complexity of
O(kn log2 n).

Note that for some policies smaller read/write complexity
can be achieved. For some communication graphs it is ad-
vantageous to use only a special subset of all possible tree
codes. A Tree Coding is called a tree level coding if for
each of the k trees only codes bji for one level j are used. We
call a tree level coding complete if for each tree all or no
block codes of a level are available at each peer, see Figure 8.

Theorem 7. Tree Coding performs perfectly for

1. communication graphs of depth 1 in the online model
with one tree with a policy with worst case read/write
complexity nr + ns.

2. communication graphs of depth 2 in the online model
with k = 2pt logn trees where p is the number of peers
in depth 1, t is the number of rounds and n the num-
ber of blocks with a policy with an average read/write
complexity O(ptn log3 n).
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Figure 9: Recursive application of complete tree
level coding generating for w = 3 new complete level
tree codes of depth 0 and 1.

Proof. The first claim follows from the observation that
BitTorrent is a degenerated version of Tree Coding and is
thus implied by Theorem 2.

For the second claim we consider the following strategy.
Seeds use complete tree level codes by sending in each round
at most logn new trees to each peer in depth 1. In particular,
if w is the bandwidth between seed S and leech P and w =∑logn
j=0 wj2

j is the binary representation, then the seed S

sends a new tree with a complete level of 2j code blocks to
P for all wj = 1 in this round.

After t rounds a node in communication depth 1 has col-
lected only complete levels of various depths. We denote
by mj(P ) the number of complete tree level codes of coding
tree level j of a peer P . On request of a peer Q with commu-
nication depth 2 peer P will only send complete levels. For
this, P may construct new tree codes out of a received level
code. Later on, P may construct further new tree codes out
of the same level for Q. Therefore, Q has to remember the
amount of codes received from P for each level code.

The construction of an encoding over the code blocks of a
level is done by an recursive approach of complete tree level
coding. If w′ is the number of blocks requested by Q for
this level in this round, then tree level codes at height w′j
are generated if w′j = 1 (w′ =

∑logn
j=0 w′j2

j) using given code
blocks, see Figure 9.

Furthermore, we want to restrict the generation of new
code blocks to two levels per round and communication part-
ner. For this, between P and Q there is only one tree level
that currently serves as basis for the generation of new tree
level codes in every round. Q greedily requests as many

x1 x2 x3 x4

c1 c2 c3 c4

+ + + +

+ +

. . . . . . . .

x1 x2 x3 x4

c1 c2 c3 c4''''

x1 x2 x3 x4

 p c1 + q c'1

+ +

+

. . . .

 p c2 + q c'2

 p c4 + q c'4

 p c3 + q c'3

Figure 10: Tree Network Coding describes the gen-
eration of new tree codes from different existing tree
codes.

complete unsent levels of P as possible. For the residual
bandwidth, it acquires as much independent new tree level
codes from the currently used new tree level code. If this
level has been exhausted, then a new tree level code will be
started. So, the number of new trees used in this round is
bounded by 2 logn, since the complete level codes are just
copies of existing trees built for P .

By Lemma 1 it follows that the rank of the coding ma-
trix of Q equals the number of received block nodes if not
more than n block nodes have been received. From this, the
optimal performance follows.

The overall number of trees at any peer is bounded by
2pt logn and the read/write complexity follows by Theo-
rem 6.

Up to now different trees have not been used to produce new
tree codes. If we allow peers to produce new tree codes we
refer to it as Tree Network Coding.

As an example consider two tree codes T (c) and T (c′) in
Figure 10. An intermediate node has received the tree nodes
b11(c), b12(c) and b11(c′), b12(c′). Then the node can produce
some blocks of the new tree code T (pc+ qc′), since

bji (pc+ qc′) = pbji (c) + qbji (c
′) .

Clearly, it is not always possible to produce all code blocks
of the new code tree from this limited input. On the other
hand, re-encoding helps in the case of deeper communication
graphs.

We will now prove that Tree Coding can efficiently deal
with any communication graph if the number of rounds is
sub-logarithmic. Again, we use complete tree level codes.



In each round new complete tree levels are generated, where
the objective is to build only a small number of trees to keep
the read/write complexity small.

We will only sketch the lengthy and involved proof for the
optimal performance, which will appear in the full paper.

Theorem 8. Tree Coding performs optimally for all com-
munication graphs in the online model with k = p(δ +
1)t−1 log2 n trees where p is the number of peers in depth
1, t is the number of rounds, δ is the in-degree of the com-
munication graph and n the number of blocks. The av-
erage read/write communication complexity is bounded by
O(pn(δ + 1)t−1 log3 n).

Proof. The following strategy is used for each node.
When a peer requests information from a seed, the node
receives in each round at most logn new complete tree level
codes similar to the proof of Theorem 7.

If a peer Q requests w blocks from a non-seeding peer P ,
we consider the following cases:

1. If the request w is larger than the amount of available
independent code blocks at P , then P forwards all its
block nodes to Q.

2. In all other cases P produces new complete tree level
codes according to the following description.

Let mj denote the number of complete tree level codes of

depth j at P . Then, the node has
∑logn
j=0 mj2

j code blocks.
First Q calculates the number of independent complete level
trees m′1, . . . ,m

′
logn, i.e. the minimum number of tree levels

which can maximize the rank of the receiver’s matrix.
Now given m′j complete tree level codes of depth j choose

the largest ` with
∑`
j=0m

′
j2
j ≤ w. Let r = w−

∑`
j=0m

′
j2
j .

Choose s = br/2`c and let q = r mod 2` with binary rep-
resentation

∑
i qi2

i. For the transmission the complete tree
level codes zj = m′j +qj for depth j < ` and z` = m′`+q`+s
for depth ` are constructed as linear combinations of all tree
levels of smaller depth. See Figure 11 for an example.

Now each of the zj new tree level codes is constructed by

a linear combination of all
∑logn
ν=j m

′
ν2ν−j code blocks in the

corresponding sub-tree of P .
For the read/write complexity we count the number of

trees after each round. By induction assume that the maxi-
mum number of different trees in each level M = maxi{mi}
in round t is bounded by M(t) = 2(δ + 1)t−1 − 1, which is
true for the first round. In round t + 1 each peer receives
at most δM(t) + δ trees in each level from all sending peers.
Thus the maximum entry in the next round is

M(t+ 1) = M(t) + δM(t) + δ

= (M(t) + 1)(δ + 1)− 1

= 2(δ + 1)t − 1

proving the induction.
Since there are at most logn levels the maximum num-

ber of trees is (2(δ + 1)t−1 − 1) logn. Applying Theorem 6
proves the claimed average read/write complexity of O(n(δ+
1)t−1 log3 n).

We consider a peer Pi in a fixed round t. The maximum
flow f(Pi,t) in the communication graph from the seeds to
Pi,t describes the optimal information flow. In [4] it is shown
that the rank of the linear vectors equals this flow when Net-
work Coding is used. Now, we will show that Tree Network

m'0 = 2 m'1 = 0 m'2 = 2 m'3 = 1 m'4 = 1
.
! = 3

q0 = 1 q1 = 1 q2 = 1
s = 0

q = 7 = 1112

r = 7

w = 25

q2 = 0

Figure 11: Dynamic generation of new tree level
codes.

Coding achieves the same rank as the original Network Cod-
ing.

We prove this by an induction over a series of minimum
cuts of weight f(Pi,t). First we choose the cut which sepa-
rates all seeds from their successors in round 1. Then, we
successively move each of the peers of the next round from
one side of the cut to the other until we establish the cut
which separates all peers in round 2. This way we continue
until we have reached the t-th round. Clearly, each of these
cuts has weight of at least f(Pi,t) since the communication
graph is a directed acyclic graph, see Figure 12.

Now, we consider the series of matrices defined by all vec-
tors which are affected by a cut and show that the rank of
each of the matrices is at least f = f(Pi,t). In the first
round the seeds transmit independent complete tree level
codes with at least f blocks. By Lemma 1 the rank of this
vector is at least f .

Assume that the rank of the matrix of all vectors on a
given cut is at least f . Then, consider the vectors corre-
sponding to the incoming edges of the node Q which will
be flipped from one side to the other side of the cut. Let
r be the flow which these edges contribute to the flow from
the seeds to the peer Pi,t. Of course the weight of these
edges must be at least r and by induction the matrix can be
reduced to r code blocks on these incoming edges without
decreasing the rank of the overall matrix below f . Now con-
sider a remaining code block of the highest level. For each
outgoing edge of Q with non-zero weight this code block
contributes to a new encoding. So, for each possible flow to
the next peer, we can find a new created code block which
can replace this code block in the cut of the matrix. This
argument can be repeated for the next highest code block.

Of course, the linear combinations have to be chosen with
care. However, using the probabilistic method it can be
shown that such rank-preserving linear combinations exist
(and if the basis of the Galois field is large enough this can
be guaranteed with high probability).
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Coding Depth Average R/W
Method Complexity

BT, TC 1 O(n)

TC 2 O(ptn log3 n)

TC any O(p(δ + 1)t−1n log3 n)

NC any O(n2)

Table 1: Upper bounds

5. SUMMARY AND OUTLOOK
In this paper we have shown that certain restricted linear

network coding schemes can provide optimal performance.
For this, we have presented strategies for communication
networks with a restricted depth or a very small number of
rounds. If the number of rounds is bounded by O(log log n)
then the read/write complexity of these network codes is
only a polylogarithmic factor slower than BitTorrent. How-
ever, it is better than Network Coding, if the number of
rounds is at most o((logn−log p)/ log δ) for p peers, n blocks
and in-degree δ.

Optimal Performance.
Table 1 summarizes the results for BitTorrent (BT), Tree

Coding (TC) and Network Coding (NC). Note that the max-
imum average read/write complexity is in any case O(n2)
since they constitute special cases of Network Coding.

The contribution in this paper is two-fold. First we have
shown that Tree Coding is in fact efficient for a small num-
ber of trees using a divide-and-conquer strategy. Then, we
have shown that a clever use of dynamic re-encoding al-
lows optimal performance like full Network Coding. These
observations hold for an online model where only the cur-
rent round is known to the peers. Furthermore, only local
knowledge is necessary for the strategies, i.e. the knowledge
of data available at the sender and receiver side. For this we

have introduced a dynamic version of Tree Coding and have
restricted ourselves to use only complete levels of the trees,
which allows a perfect balance.

Lower bounds.
We have also shown that BitTorrent fails for some com-

munication graphs of depth 2 even in the offline model where
all future communication is known.

Outlook.
The main open question is whether there is an efficient

network coding with optimal performance for all commu-
nication graphs. If it does not exist one might hope for a
network coding with nearly optimal performance and good
efficiency, since users would rather compromise on the data
distribution than the performance.

The knowledge of the number of transmitted blocks dur-
ing a round is not very realistic. BitTorrent and Network
Coding already work in a stronger online setting where the
bandwidth of the current round is not known. It is an open
question whether efficient network coding schemes exist in
this strong online model.
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