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ABSTRACT

Energy consumption by computer systems has emerged as
an important concern. However, the energy consumed in
executing an algorithm cannot be inferred from its perfor-
mance alone: it must be modeled explicitly. This paper an-
alyzes energy consumption of parallel algorithms executed
on shared memory multicore processors. Specifically, we de-
velop a methodology to evaluate how energy consumption
of a given parallel algorithm changes as the number of cores
and their frequency is varied. We use this analysis to estab-
lish the optimal number of cores to minimize the energy con-
sumed by the execution of a parallel algorithm for a specific
problem size while satisfying a given performance require-
ment. We study the sensitivity of our analysis to changes
in parameters such as the ratio of the power consumed by
a computation step versus the power consumed in accessing
memory. The results show that the relation between the
problem size and the optimal number of cores is relatively
unaffected for a wide range of these parameters.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Sorting and
searching; B.2.1 [Arithmetic and Logic Structures]: De-
sign Styles— Parallel; B.3.2 [Memory Structures|: Design
Styles—Cache memories

General Terms

Theory, Measurement

Keywords

Energy, Performance, Parallel Algorithms, Shared Memory
Architectures

INTRODUCTION

Our work is motivated by two facts. First and foremost,
computers consume a significant amount of energy: in the
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US alone, they are estimated to already consume 13% of
the total electricity [21]. Thus computer use represents a
significant source of greenhouse gasses, a critical problem
for sustainability in an era of climate change, and the emis-
sions they cause have become an increasing cause for concern
globally [1]. Second, the limited energy storage capacity of
batteries is a critical problem for mobile devices.

As CPUs hit the power wall, multicore architectures have
been proposed as a way to increase computation cycles while
keeping power consumption constant. It turns out that in
multicore architectures, it is possible to scale the speed of the
individual cores or leave them idle, thus reducing their en-
ergy consumption. Because the relation between the power
consumed by a core and the frequency at which the core op-
erates is nonlinear, there is an interesting trade-off between
the energy and performance.

We examine the relation between performance of parallel
algorithms and their energy requirements on shared mem-
ory multicore processors. We believe this sort of analysis
can provide programmers with intuitions about the energy
required by the parallel algorithms they are using—thus guid-
ing the choice of algorithm, architecture and the number of
cores used for a particular application. Moreover, the anal-
ysis could help in the design of more energy efficient parallel
algorithms. We believe that the energy efficiency of parallel
algorithms should be considered just as important as their
performance.

The paper focuses on the current generation of multicore
architectures, specifically, multicore processors which use
a hierarchical shared memory. The Parallel Random Ac-
cess Machine (PRAM) provides an abstract model of shared
memory architectures [14]. However, the PRAM model con-
tains no notion of a memory hierarchy; i.e., PRAM does not
model the differences in the access speeds between the pri-
vate cache on a core and the shared memory that is address-
able by all cores. Thus, PRAM cannot accurately model the
actual execution time of the algorithms on modern multicore
architectures. More recently, several models emphasizing
memory hierarchies have been proposed [6, 4, 3]. In par-
ticular, the Parallel External Memory (PEM) model is an
extension of the PRAM model which includes a single level
of memory hierarchy [3]. A more general model is the Mul-
ticore model [6] which models multiple levels of the memory
hierarchy. In our analysis, we choose to use the PEM model.
Our choice is motivated by the fact that the PEM model is
simpler, and we believe it is sufficient to illustrate the trade-
offs that we are interested in analyzing.

Parallel algorithms are parameterized by the number of



cores on which they may be executed (usually from a single
core to some large number). Problems are parameterized by
the size of their input, and a problem instance is the problem
for a fixed input value. We define the performance of a
parallel algorithm as the time required for the completion of
a problem instance. The problem of energy scalability under
iso-performance of a parallel algorithm as follows. Given a
problem instance and a fized performance requirement, what
is the number of cores which minimizes energy consumption
in executing the parallel algorithm on the problem instance .
In order to focus on some essential aspects of the problem,
and given the space limitations, we make a few simplifying
assumptions. We assume that all cores are homogeneous
and that cores that are idle consume no power. Moreover,
we assume that shared memory access time is constant i.e.,
there are no memory bottle necks.
Contributions of the paper: This paper is the first one
to propose a methodology to analyze energy scalability for
parallel algorithms running on shared memory architectures.
We illustrate our methodology by analyzing several algo-
rithms such as parallel addition, parallel prefix sums and
parallel mergesort. Not surprisingly, the energy require-
ments for an instruction and for memory accesses are critical
factors in determining the energy required by an algorithm.
For each of our examples, we analyze the sensitivity of en-
ergy scalability is to these energy parameters.
Outline of the paper. The next section discusses related
work. Sec. 3 provides the background for our analysis, a jus-
tifications for our assumptions and the description of con-
stants that are used in the analysis. Sec. 4 explains our
methodology for evaluating the energy scalability of parallel
algorithms through an example. Sec. 6 applies our method-
ology to other parallel algorithms: namely, parallel prefix
sums and parallel mergesort. Finally, Sec. 7 discusses the
results and future work.

2. RELATED WORK

In [15] we presented a methodology to evaluate energy
scalability under iso-performance of parallel algorithms run-
ning on message passing parallel architectures.’ In this pa-
per, we evaluate the same metric for parallel algorithms run-
ning on shared memory based multicore architectures. Our
current work extends the previous model in two ways. First,
we extend the energy model to include leakage power, a sig-
nificant component of the total energy consumed. Second,
we use the parallel external memory model (PEM) [3] which
extends the standard PRAM model with memory hierarchies
at cores. Note that we evaluate the energy scalability metric
for a different class of algorithms—viz., algorithms designed
for the PEM model.

Previous research has studied software-controlled dynamic
power management in multicore processors. Researchers
have taken two approaches for dynamic power management.
Specifically, they have used one or both of two control knobs
for runtime power performance adaptation: namely, dynamic
concurrency throttling, which adapts the level of concurrency
at runtime, and dynamic voltage and frequency scaling [9,
19, 13, 23, 10]. This body of work provides runtime tools
which may be used with profilers for the code. By contrast,
we develop methods for theoretically analyzing parallel al-

Note that the much of the description of related work in
this section is similar to that given in our earlier paper [15].
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gorithms in order to statically determine how to minimize
the energy consumed under a fixed performance budget.

Li and Martinez develop an analytical model relating the
power consumption and performance of a parallel applica-
tion running on a multicore processors [18]. This model con-
siders parallel efficiency, granularity of parallelism, and volt-
age/frequency scaling in relating power consumption and
performance. However, the model does not consider total
energy consumed by an entire parallel application, or even
the structure of the parallel algorithm. Instead, it is as-
sumed that the algorithmic structure (communication and
computation) of a parallel algorithm can be represented by
a parallel efficiency metric. A generic analysis based on this
metric is then used—irrespective of the algorithmic structure.

The notion of energy scalability under iso-performance is
in some ways analogous to performance scalability under
iso-efficiency as defined by Kumar et al. [16]; The latter
is a measure of an algorithm’s ability to effectively utilize
an increasing number of processors in a multicomputer ar-
chitecture. Recall that efficiency measures the ratio of the
speed-up obtained by an algorithm to the number of pro-
cesses used. Kumar measures scalability by observing how
large a problem size has to grow as a function of the number
of processors used in order to maintain constant efficiency.

Wang and Ziavras have analyzed performance energy trade
offs for matrix multiplication on an FPGA based mixed-
mode chip multiprocessor [24]. Their analysis is based on a
specific parallel application executed on a specific multipro-
cessor architecture. In contrast, our general methodology of
evaluating energy scalability can be used for a broad range
of parallel applications and multicore architectures.

Cho and Melhem studied the interaction between paral-
lelization and energy consumption in a parallelizable appli-
cation [8]. Given the ratio of serial and parallel portion in
an application and the number of processors, they derive
the optimal frequencies allocated to the serial and parallel
regions in the application to minimize the total energy con-
sumption, while the execution time is preserved. This analy-
sis is less detailed compared to our energy scalability analysis
in the sense that they divide the whole parallel application
execution into serial and parallel regions and express total
energy as a function of the length of these regions. In other
words, they do not consider the structure (shared memory
synchronization and computation) and problem size of the
parallel application.

Bingham and Greenstreet have proposed a generic energy
complexity metric, BT, for modeling energy-time trade-offs
of CMOS technology [5]. Prior to this, various researchers
have promoted the use of the ET [11] and ET? [20] metrics
for modeling the trade-offs. These models try to abstract
away the voltage/frequency scaling issues from the program-
mer, while reasoning about energy complexity of the com-
putation. In contrast, we explicitly represent frequency in
our model and view both concurrency throttling and volt-
age/frequency scaling as two orthogonal control knobs to
control energy. Moreover, these models do not account for
the energy required for memory accesses (or for message
passing), which forms a significant proportion of the total
energy consumed.

3. MODEL AND ASSUMPTIONS

We first define the parallel computation model and the
energy model we use in our analysis.



3.1 Parallel Computation Model

The Parallel External Memory (PEM) model [3] is a com-
putational model with P cores and a two-level memory hier-
archy. The memory hierarchy consists of the external mem-
ory (main memory) shared by all the cores and P internal
memories (caches). Each cache is of size M, is partitioned in
blocks of size B and is exclusive to a core, i.e., cores cannot
access other caches belonging to a different core. To per-
form any operation on data, a core must have the data in its
cache. Data is transferred between the main memory and
the cache in blocks of size B (see Fig 1).

Caches

CPU1 M/B

Main
Memory

CPU1

=T

CPU1

Figure 1: The PEM model

Multiple cores can access distinct blocks of the shared
memory concurrently. There are three variants of the PEM
model (as in the case with PRAM model); these variants
determine how the same block of shared memory may be
accessed by different cores.

e Concurrent Read, Concurrent Write (CRCW): multi-
ple cores can read and write the same block in the
main memory concurrently.

e Concurrent Read, Ezclusive Write (CREW): multiple
cores can only read the same block concurrently, but
cannot write to it.

o Ezclusive Read, Exclusive Write (EREW): there is no
simultaneous access of any kind to the same block of
the main memory by multiple cores.

In this paper, we consider only the CREW PEM model.
We leave concurrent writes and their energy scalability un-
der iso-performance in the PEM model for future work. To
simplify the presentation, we also make the following archi-
tectural assumptions

1. All active cores operate at the same frequency and the
frequency of the cores can be varied using a frequency
(voltage) probe and cores switch to idle state if there
is no computation left at them.

2. The computation and cache access time of the cores
can be scaled by scaling the frequency of the cores.

3. Shared memory access (both read and write) cannot
be scaled and thus takes constant time.
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The computation time Ty,sy on a given core is propor-
tional to the number of cycles, including cache accesses p,
executed on the core. Let X be the frequency of a core,
then:

(1)

We denote the time for which a given core is active (not idle)
as Tacti'ue~

3.2 Energy Model

The following equation approximates power consumption
in a CMOS circuit:

P=CV*f+1,V

1
Tousy = (number of cycles) x d

(2)

where Cp, is the load capacitance, V is the supply volt-
age, I, is the leakage current, and f is the operational fre-
quency. The first term corresponds to the dynamic power-
consumption component of the total power consumption,
while the second term corresponds to the leakage power con-
sumption.

Recall that a linear increase in the voltage supply leads
to a linear increase in the frequency of the core. However, a
linear increase in the voltage supply also leads to a nonlinear
(typically cubic) increase in power consumption. Thus, for
simplicity, we model the dynamic and leakage energies con-
sumed by a core, F, to be the result of the above mentioned
critical factor:

Edynamic = Ed . Tbusy . X3 (3)

Eleakagc = El . Tacti'ue - X (4)

where E4 and E; are some hardware constants [7].

In order to reason about energy in the PEM model, we as-
sume that shared memory accesses (both reads and writes)
consume a constant amount of energy. Because recent pro-
cessors have introduced efficient support for low power modes
that can reduce the power consumption to near zero, it is
reasonable to assume that the energy consumed by idle cores
is zero.

The following parameters and constants are used in the
rest of the paper.

e E,, : Energy consumed for single memory access (both
read and write).

e F': Maximum frequency of a single core
e N : Input size of the parallel application

e P : Number of cores allocated for the parallel applica-
tion.

e M. : Number of cycles executed at maximum fre-
quency for single shared memory access time

4. METHODOLOGY

We now present our methodology to evaluate energy scal-
ability under iso-performance for a given parallel algorithm
A in the PEM model:

Step 1 Find the critical path w4 in the execution of A.
Note that the critical path is the longest path through the
task dependency graph (where edges represents task seri-
alization) of parallel algorithm. The length of the critical



path can be determined by measuring the execution of the
longest thread. Note that the critical path length gives a
lower bound on execution time of a parallel algorithm.

Step 2 Partition 7 4 into memory accesses (reads and writes),
synchronization breaks and computation steps.

Step 3 Scale the computation steps of w4 so that the par-
allel performance of A matches the specified performance
requirement. We do this by scaling the computation time
of 74 to the difference between (a)the required performance
and (b) the time taken for memory accesses and synchro-
nization breaks in the critical path. We thus obtain the new
reduced frequency at which all P cores should run.

Step 4 Evaluate the sum total of computation cycles at all
cores.

Step 5 Evaluate the memory complexity (total number of
memory accesses) of A. The example algorithms we dis-
cuss later show that the message complexity of parallel al-
gorithms may depend on both the input size and the number
of cores used.

Step 6 Evaluate the total active time at all the cores assum-
ing the frequency obtained in Step 3. Observe that, scaling
w4 may lead to an increase in active time in other paths (at
other cores).

Step 7 Frame an expression for energy consumption of the
parallel algorithm using the energy model. The energy ex-
pression is the sum of the energy consumed by 1) compu-
tation, Ecomp, 2) memory accesses, Fmem and 3) leakage,
Eleak

Ecomp = FEq-(Total no. of computation cycles) - X?(S)
Emem = Emn - (Total number of memory accesses) (6)
Ereak = Ep-Toctive - X (7)

Note that Ecomp is lower if the cores run at a lower fre-
quency, while Ejcqr may increase as the active cores take
longer to finish. Ep,em may increase as more cores are used
since the computation is more distributed.

Step 8 Analyze the equation to obtain the number of cores
required for minimum energy consumption as a function of
input size. In particular, we compute the appropriate num-
ber of cores that are required to guarantee a required level
of performance.

Example: Adding Numbers.

We illustrate our methodology using a simple parallel ad-
dition algorithm. Initially, all N numbers are stored con-
tiguously in the main memory and caches of all P cores are
empty. Without loss of generality, we assume that the in-
put size N is a multiple of the number of cores P. In the
first phase of the algorithm, each core transfers (N/P) num-
bers from memory to their own caches and computes their
sum. The transfer and summation of (N/P) numbers by
each core happens in a series of steps. In each step, a core
transfers a block of numbers B from main memory to its
cache and computes the sum of B numbers and the result
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obtained in the previous step. At the end of the first phase,
each of P cores possesses a partial sum. With access to a
distinct additional auxiliary block of main memory by each
core, in the CREW PEM model, the sum of P partial sums
is efficiently computed in parallel in a tree fashion in log(P)
steps (for simplicity, we assume P to be a power of 2). In
the first step, half of the cores transfer their partial sums in
parallel to their respective auxiliary blocks in main memory.
The other half of the cores then read in parallel the elements
that were stored in the auxiliary blocks of the first half, and
sum it with their local partial sum. The same step is re-
cursively performed until there is only one core left. At the
end of the computation, one core will store the sum of all
N numbers. Figure 2 depicts the execution of the parallel
addition algorithm for the case P = 4.

2

3 4

N/4B memory reads
+ (MN/4-1) additions

1 Memory write

—q—

-]

1 Memory read

1 addition

==

1 Memory write

A== = ===

1 Memory read

1 addition

——--

Figure 2: Example scenario: Adding N numbers us-
ing 4 cores; execution of 4th core represents the crit-
ical path

Now we describe the steps needed to evaluate the energy
scalability under iso-performance. In the above algorithm,
the critical path is easy to find: it is the execution path of
the core that has the sum of all numbers at the end (Step 1).
We can see that there are N/(B- P)+log(P) memory reads,
log(P) synchronization breaks and ((N/P) — 1 + log(P))
computation steps (step 2). Now, we obtain a reduced fre-
quency at which all P cores should run to complete in time
T (Step 3):

. (F —1+log(P)) B
T-F— (&5 +2-log(P)) M.

X' =F (8)
where (3 represents number of cycles required per addition.
In order to achieve energy savings, we require 0 < X' < F.
Note that this restriction provides a lower bound on the
input size as a function of P and M.. The total number of
computational cycles of the parallel algorithm evaluates to
(N/JP—-1)-P+ (P—1))-Bie, (N—1)-0 (step 4).

We next evaluate the total number of memory accesses by
the parallel algorithm (Step 5). It is trivial to see that the
number of memory accesses for this parallel algorithm when
running on P cores is (N/B)+2- (P —1). Note that in this
algorithm, the message complexity is both dependent on P
and on the input size N. We now evaluate the total active
time at all the cores, running at new frequency X’ (Step 5).



Under the assumption that cores switch to idle state when
there is no computation left at them, the total active time
evaluates to:
M. N 8

—4+3-(P-1 — - (N—-1 9
T R S V)
where the first term represents the total active time spent by
all the cores during memory transfers and the second term
represents the total active time spent by all cores performing
computations.

Tactive =

We derive the equation for energy consumption using Equa-

tion 5 (Step 6). The energy consumed for computation,
memory accesses and leakage while the algorithm is running
on P cores at reduced frequency X' is:

Eeomp = Eq-(N—-1)-8-X" (10)
Eme'm. = Em ((N/B)"‘Z(P- 1)) (11)
Elcak = El . Tactive . X/ (12)

Finally, Step 7 involves analysis of the equation obtained.
We do this in the next section.

S. ANALYZING ENERGY CONSUMPTION

We now analyze the energy expression obtained above for
the addition algorithm to evaluate energy scalability under
iso-performance. While we could differentiate the function
with respect to the number of cores to compute the mini-
mum, this results in a rather complex expression. Instead,
we analyze the graphs expressing energy scalability under
iso-performance.

Note that the energy expression is dependent on many
variables such as N (input Size), P (number of cores), 3
(number of cycles per addition), M. (number of cycles ex-
ecuted at maximum frequency for single memory accesses
time), E,, (energy consumed for single memory accesses),
and F (maximum frequency of a core). We can simplify
a couple of these parameters without loss of generality. In
most architectures, the number of cycles involved per ad-
dition is just two (one cache transfer and one addition op-
eration), so we assume 8 = 3. We also set leakage energy
constant as £ = 1. We express all energy values with re-
spect to this normalized energy value.

In order to graph the required differential, we must make
some assumptions about the other parameters. While these
assumptions compromise generality, we discuss the sensitiv-
ity of the analysis to a range of values for these parameters.
One such parameter is the the energy consumed for single
cycle at maximum frequency as a multiple of leakage energy
constant. We assume this ratio to be 10, i.e., that Eq- F? =
10- E;. It turns out that this parameter is not very significant
for our analysis; in fact, large variations in the parameter do
not affect the shapes of the graphs significantly. Another pa-
rameter, k, represents the ratio of the energy consumed for
single memory accesses, Ey,, and the energy consumed for
executing a single instruction at the maximum frequency.
Thus, Em =k - Eq - F2. We fix the required performance T
to be that of the running time of the sequential algorithm
at maximum frequency F' and analyze the sensitivity of our
results to a range of values of both k and M.. The sequential
algorithm for this problem is trivial: it takes (N/B) mem-
ory accesses and N — 1 additions to compute the sum of NV
numbers. The running time of the sequential algorithm is
given by Tuey = - (N —1) - (1/F) + (N/B) - (M./F).

Optimal Number of Cores

200 30 0

g Ul B0 Size
Number of Cores

Figure 3: Addition: Energy curve with energy on
Z axis, number of cores on X axis and input size
on Y axis with k£ = 1000, 8 = 2, M. = 1000. Black
curve on the XY plane is the plot of optimal number
of cores required for minimum energy consumption
with varying input size(10” to 10°).

Fig. 3 plots energy F as a function of input size and num-
ber of cores. We can see that for any input size NV, initially
energy decreases with increasing M and later on increases
with increasing M. As explained earlier, this behavior can
be understood by the fact that energy for computation de-
creases with an increase in number of cores running at re-
duced frequencies, and energy for memory accesses increases
with increasing cores. Furthermore, we can see that increas-
ing the input size leads to an increase in the optimal number
of cores required for minimum energy consumption.

We now consider the sensitivity of this analysis with re-
spect to the ratio k. Fig. 4 plots the optimal number of cores
required for minimum energy consumption by varying k for
an input size 108. The results show that for a given input
size in the range considered, the optimal number of cores
required for minimum energy consumption decreases with
increasing k. (The curve approximates ¢/k, where c is some
constant). We observe that this trend remains the same for
whole of the input range (107 to 10°).

Fig. 5 plots the optimal number of cores required for min-
imum energy consumption by varying M. for an input size
108. The results show that for a given input size in the
range considered, the optimal number of cores required for
minimum energy consumption increases with increasing M..
(The curve approximates a negative exponential curve with
positive coefficient). We observe that this trend also remains
the same for whole of the input range (107 to 10°).

The above graph analysis depicts the exact behavior of
optimal number of cores as function of input size for the
given input range and appears to generalize to larger input
sizes. However, we have been unable to give an analytic ex-
pression for the asymptotic behavior of the optimal number
of cores as a function of input size as the energy expression
is very complex.

6. CASE STUDIES

We now analyze parallel prefix sums and parallel mergesort
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Figure 4: Sensitivity analysis: optimal number of
cores on Y axis, and k (ratio of the energy consumed
for single memory accesses and the energy consumed
for executing a single instruction at the maximum
frequency) on X axis with input size N = 10® and
M. = 500.

algorithms that have an optimal I/O complexity under the
PEM model [3]. The prefix sums algorithm we consider
is cache oblivious, whereas the mergesort algorithm is not
cache oblivious.

6.1 Parallel Prefix Sums

Given an ordered set A of N elements, the all-prefix-sums
operation returns an ordered set B of N elements, such that
it" element in B is the sum of all elements of A whose index
is less than or equal to . For this specific problem, a PRAM
based algorithm is also an efficient PEM algorithm as it is,
without any modifications [3]. Without loss of generality,
we assume N to be multiple of P and P to be some power
of 2. The PRAM algorithm by Ladner and Fischer [17] is
as follows: First, every core sums N/P elements serially.
At this stage, every core contains a partial sum (there are
P partial sums). Next, every odd numbered core sends its
partial sum to its adjacent (right) even numbered core using
auxiliary blocks (as in the parallel addition algorithm). The
even numbered cores then sum their partial sum with the ob-
tained partial sum (from odd numbered cores) yielding P/2
partial sums at P/2 cores. The algorithm then recursively
evaluates the prefix sums of the P/2 partial sums. Next,
with the exception of the P core, every even numbered
core sends its computed prefix sum to its adjacent (right)
odd numbered core. Odd numbered cores (except for first)
then sum their partial sums with the obtained prefix sums
to obtain their prefix-sums. Thus all-prefix-sums of the ini-
tial P partial sums of P cores is computed. Finally, every
core distributes its prefix sum across N/P elements serially
to obtain the all-prefix-sums of the ordered set A.

Now we describe the steps needed to evaluate the energy
scalability under iso-performance. Since P is some power of
2, the critical path of the algorithm is the execution path of
the P core. (Step 1). We see that there are 2- N/(B- P)+
2 -log(P) — 1 memory reads, 2 - log(P) — 1 synchronization
breaks and (2- (N/P —1)+2-log(P)— 1) computation steps
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Figure 5: Sensitivity analysis: optimal number of
cores on Y axis, and M. (no of cycles executed
at maximum frequency for single memory accesses
time) on X axis with input size N = 10® and k = 500.

(step 2). Now, we obtain a reduced frequency at which all
P cores should run to complete in time 7" (Step 3):

(2-(F-1)+2-log(P)-1)-8

X' = F. R
T-F—(2 55 +4-log(P)—2)- M.

(13)

where (3 represents number of cycles required per addition or
subtraction. In order to achieve energy savings, we require
0 < X' < F. Note that this restriction provides a lower
bound on the input size as a function of P and M.. The total
number of computational cycles of the parallel algorithm
evaluates to 2- ((N/P —1)- P+ (2P —log(p) —2)) - 8, which
is (2N — log(p) — 2) - B (step 4).

We next evaluate the sum total of memory accesses in to-
tal required by the parallel algorithm (Step 5). It is trivial
to see that number of memory accesses for this parallel al-
gorithm when running on P cores is 2 - (N/B) + 2 - (2P —
log(P) — 2). We now evaluate the total active time at all
the cores, running at the new frequency X’ (Step 5). Since
all the cores are active all along the critical path, the total
active time evaluates to:

M.

N
Tacive 2. —— 4-1 P)—-2 - P
t ( B~P+ og(P) ) F
N g
+(2~(F—1)+2.1og(1>)—1>.F P

We frame an equation for energy consumption using equa-
tion 5 (Step 6). The energy consumed for computation,
memory accesses and leakage while the algorithm is running
on P cores at reduced frequency X' is:

Eeomp = Eq-(2N —log(P)—2)-3-X" (14)
Emen = En-(2: 35 +2- (2P —log(P) = 2)) (15)
Eleak = El . Tactive . X/ (16)

Energy Analysis We use the same assumptions that were
used earlier for analyzing the energy scalability of the paral-
lel addition algorithm. In particular, we assume the required



performance to be the running time of the sequential algo-
rithm at maximum frequency F. The sequential algorithm is
very much similar to that of the addition algorithm except
that we output all intermediate sums (prefix sums) along
the execution. Thus, it takes (IN/B) memory accesses and
N — 1 additions to compute the all-prefix-sums of N num-
bers. The running time of the sequential algorithm is given
by Toeq = B+ (N — 1) - (1/F) + (N/B) - (Mc/F).

Optimal Number of Cores

Number of Cores

Figure 6: Prefix-Sums: Energy curve with energy
on Z axis, number of cores on X axis and input size
on Y axis with k£ = 1000, 8 = 2, M. = 1000. Black
curve on the XY plane is the plot of optimal number
of cores required for minimum energy consumption
with varying input size.(10” to 10°).

Observation: Fig. 6 shows that for any input size N, ini-
tially energy decreases with increasing P and later on in-
creases with increasing P. As explained earlier, this behav-
ior can be understood by the fact that energy for computa-
tion decreases with an increase in number of cores running
at reduced frequencies, and energy for memory accesses in-
creases with increasing cores. However, for the same valua-
tions of the constants and the input range, optimal number
of cores for minimal energy consumption for parallel addi-
tion algorithms is far less compared to that of the parallel
prefix sum algorithm. Furthermore, we can see that increas-
ing the input size leads to an increase in the optimal number
of cores required for minimum energy consumption.

We now consider the sensitivity of this analysis with re-
spect to the ratio k. Fig. 7 plots the optimal number of
cores required for minimum energy consumption by fixing
the input size (10%) and varying k. The plot shows that for
a fixed input size, the optimal number of cores required for
minimum energy consumption decreases with increasing k.
Furthermore, we observe that this trend remains the same
for whole of the input range (107 to 10°). Note that this
graph differs from the one obtained for the parallel addition
algorithm.

Fig. 8 plots the optimal number of cores required for mini-
mum energy consumption by fixing the input size (10%) and
varying M.. The plot shows that for a fixed input size,
the optimal number of cores required for minimum energy
consumption initially decreases and later on increases with
increasing M.. We also observe that this trend remains the
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Figure 7: Sensitivity analysis: optimal number of
cores on Y axis, and k (ratio of the energy consumed
for single memory accesses and the energy consumed
for executing a single instruction at the maximum
frequency) on X axis with input size N = 10® and

M. = 500.

same for the entire range of the input values plotted (107 to
10°). Note that this structure of the sensitivity curve is very
different from that of the parallel addition algorithm. Look-
ing at the energy and the sensitivity curves, we conjecture
that the asymptotic nature of the required metric is quite
different for both the algorithms.

6.2 Parallel Merge Sort

We consider a pipelined d-way mergesort algorithm devel-
oped by Lars Arge et al. for the PEM model [3]. It is similar
to the sorting algorithm of Goodrich [12].

A d-way mergesort partitions the input into d subsets,
sorts each subset recursively and then merges them. To
achieve optimal parallel speedup, the sorted subsets are sam-
pled and these sample sets are merged first. Each level of the
recursion is performed in multiple rounds with each round
producing progressively finer samples until eventually a list
of samples is the whole sorted subset of the corresponding
level of recursion. The samples retain information about
the relative order of the other elements of the set through
rankings. These rankings allow for a quick merge of future
finer samples at higher levels of recursion. Each round is
pipelined up the recursion tree to maximize parallelism (see
[3] for details).

THEOREM 1. (Lars Arge et al. [3]) Given a set S of N
items stored contiguously in memory, one can sort S in
CREW PEM model using P < N/B2 processors each having

a private cache of size M = B 4n O(% log% %) par-

allel memory accesses, O(%log N) internal computational
complezity per processor and O(N) total memory. [

Recall that the best known sequential algorithm for the
mergesort algorithm in the external memory model (EM)
takes O(% log% &) memory accesses and O(N log N) com-

putational steps [2]. Considering the assumptions of Theo-

rem 1, we now evaluate energy scalability under iso-performance
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Figure 8: Sensitivity analysis: optimal number of
cores on Y axis, and k (no of cycles executed at max-

imum frequency for single memory accesses time) on
X axis with input size N = 10® and k = 500.

of the parallel mergesort algorithm assuming the required
performance to be that of the sequential algorithm. Since
all cores are active until the end of the computation, the crit-
ical path of the algorithm is the execution sequence on any
one of the cores. By Theorem 1, critical path comprises of
O(55 log M &) memory accesses and O(% log N) compu-
tation steps (step 2). Note that reduced frequency at which
all P cores should run to complete in time Ts., decreases
with P.

Since each core performs an equal amount of computation,
the total number of computational cycles of the parallel al-
gorithm is O(N log(N)) (not dependent on P). Thus by
Equation 3, the energy consumed for computation Ecomp by
the algorithm decreases with P. However, since the total

number of memory accesses at all P cores is O(% log M %)

(also not dependent on P), the energy consumed for mem-
ory accesses Fmem does not vary with increasing cores. Fur-
ther, by Equation 4, the leakage energy FEj.qr dissipated at
the cores running at the reduced frequency also decreases
with P. Using the above three observations, we see that
the energy consumed by the parallel algorithm to maintain
the same performance as the sequential algorithm decreases
with increasing cores under the restriction P < N/B2. One
could easily generalize the above observation to a general
class of parallel algorithms which pocesses optimal compu-
tational cost and optimal I/O complexity.

7. CONCLUSIONS

Our analysis confirms that energy and performance char-
acteristics of algorithms on shared memory multicore ar-
chitectures differ considerably from each other. While the
analysis we presented is limited to a few parallel algorithms,
these algorithms are very different in nature. Moreover, for
purposes of interpreting our results concretely, we fixed some
values of parameters for values of relative computation ver-
sus memory access time and energy required. These values
will vary depending on the architecture. Interestingly, the
analysis is fairly robust over a wide range of parameter val-
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ues. However, some of our simplifying assumptions, such as
constant time and energy for a memory access, will not hold
as we scale up the architecture. However, we do not believe
it is necessarily useful to consider more complicated models
for shared memory architectures, given that shared memory
architectures are themselves not scalable [22].

We observe that the performance and energy behavior of
algorithms in the shared memory model we use is signifi-
cantly different from the behavior of comparable algorithms
in message-passing architectures (see used our earlier anal-
ysis for message-passing architectures [15]). This is because
in our current work, we model communication as well as lo-
cal accesses through a hierarchical shared memory. In fact,
the results in this paper would be similar if we were to re-
place communication through shared memory with message
passing, while modeling the local memory hierarchy at each
core.

Because the energy expressions are rather complicated, it
is not straight-forward to obtain the asymptotic energy scal-
ability under iso-performance for many algorithms. How-
ever, because of memory bottlenecks, as we observed ear-
lier, shared memory multicore architectures cannot scale ar-
bitrarily [22]. Thus an asymptotic analysis would not nec-
essarily be very insightful.

A variant of our analysis would tell us how to maximize
energy efficiency (i.e., performance/energy ratio), or some
related utility functions, by changing the number and fre-
quency at which the cores operate. We believe parallel ap-
plications in mobile multicore devices may benefit from this
type of an analysis.
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