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ABSTRACT
We investigate the use of autonomically created small-world
graphs as a framework for the long term storage of digi-
tal objects on the Web in a potentially hostile environment.
We attack the classic Erdos — Renyi random, Barabási and
Albert power law, Watts — Strogatz small world and our
Unsupervised Small World (USW) graphs using different at-
tacker strategies and report their respective robustness. Us-
ing different attacker profiles, we construct a game where
the attacker is allowed to use a strategy of his choice to re-
move a percentage of each graph’s elements. The graph is
then allowed to repair some portion of its self. We report
on the number of alternating attack and repair turns un-
til either the graph is disconnected, or the game exceeds the
number of permitted turns. Based on our analysis, an attack
strategy that focuses on removing the vertices with the high-
est betweenness value is most advantageous to the attacker.
Power law graphs can become disconnected with the removal
of a single edge; random graphs with the removal of as few
as 1% of their vertices, small-world graphs with the removal
of 14% vertices, and USW with the removal of 17% vertices.
Watts — Strogatz small-world graphs are more robust and
resilient than random or power law graphs. USW graphs
are more robust and resilient than small world graphs. A
graph of USW connected WOs filled with data could outlive
the individuals and institutions that created the data in an
environment where WOs are lost due to random failures or
directed attacks.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.6.8 [Simulation and Modeling]: Types of Simulation;
E.m [Data]: Miscellaneous

General Terms
Algorithms, Experimentation, Reliability, Theory
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1. INTRODUCTION
We are exploring the creation of web objects (WO) that

establish and maintain links between themselves and can
live without the intervention of conventional repositories.
We are investigating how data inside the WOs could outlive
the individuals and institutions that created the data with
little or no external guidance or direction making them ideal
for use in environments where the stewardship of the data is
paramount. WOs can be thought of as having all the prop-
erties Kahn-Wilensky Framework digital objects [17] except
that they live directly in the Web Architecture [15] and do
not require an explicit repository system (e.g., DSpace, Fe-
dora) for management, nor do they require global knowledge
of the entire network.

These WOs send messages back and forth between each
other and have the desirable small-world characteristics of
relatively high clustering coefficients (where there is a high
probability that “a friend of a friend is my friend as well”)
and a short average path length between any two nodes in
the graph. We have developed an Unsupervised Small World
(USW) algorithm that creates graphs with the desired char-
acteristics by adding one node at a time to an existing graph.
Edges between nodes are created based on local information
that each new node discovers from nodes already part of
the graph. A graph of these WOs is robust and individual
WOs can communicate with one another even when the un-
derlying infrastructure has been damaged or disabled using
their internal and locally maintained data structures. Some
of the messages that the WOs could exchange might include
the location of a service that wold migrate data in an “old”
format to a “new” one (migration from GIFF to JPEG), the
location of a new server willing and ready accept additional
WOs for storage (refreshing of the bits), etc. to support
preservation efforts.

This is an extension of our prior work on self-contained
digital objects [25] and earlier investigations into the cre-
ation of self-arranging networks [8]. In this paper we present
the simulation results of an algorithm for digital objects to
create a small-world Graph without direct supervision by an
administrator or repository. Although assistance from ad-
ministrators or repositories is possible in this model, it is not
required. The motivation for and scenarios of how a network
of WOs could engage in digital preservation tasks is covered
in [9]; this paper presents only the analysis of an algorithm
to test the robustness and resilience of such a network.

http://arxiv.org/abs/1004.4296v1


Milgram [22] is credited with formulating the idea that
in a social network, the path length between any two ran-
domly selected individuals in the US in the 1960 was on
average between 5 and 6, leading to the phrase “6 degrees
of freedom.” An algorithmic technique from a totally or-
dered k-degree lattice to a random graph passing through a
phase that exhibited Milgram’s small-world characteristics
was made popular by Watts — Strogatz [32]. Their tech-
nique required a k degree lattice as a foundation before a
small-world could be constructed.

We would prefer if the WOs could self-organize into a
graph exhibiting small-world properties without first creat-
ing a regular or random graph as a starting point. Small-
world graphs are interesting because they occur frequently
in a variety of different fields. They have been found in
cellular metabolism, Hollywood actor relationships, Inter-
net routers, protein regulatory networks, research collabo-
rations, sexual relations and World Wide Web page linkages
[3]. Furthermore, current methods for small-world graph
creation are based on an outside view of the network and an
omnipresent/omnipotent view of the graph structure.

We test the robustness and resilience of classical random,
power law, small-world and our USW graphs by subjecting
each to a set of strategies that an attacker might use to dis-
connect the graph. We test these graphs by using a game
where the attacker and the graph alternate turns. The at-
tacker will be able to inflict damage on the graph (as a test
of the graph’s robustness), after which the graph will be
able to repair and strengthen itself (as a test of the graph’s
resilience). Our efforts are focusing on the performance of
the graphs during different stress tests. We are primarily
interested in the autonomic processes that create and pre-
serve the graph. By expanding the contents of the node from
purely maintenance data to payload data (files, images, or
other binary information), the contents of a USW graph
could be preserved from loss even in the face of repeated
censorship attacks.

2. TYPES OF GRAPHS BASED ON DEGREE
DISTRIBUTIONS

Graphs can be classified by many different and overlap-
ping criteria including the presence or absence of well defined
structural elements. Randić and DeAlba [30] provide an ex-
tensive list of different classifications. Within this paper, we
are interested in the classifying graphs by their degree dis-
tributions. Those processes can be purely random, power
law, classical Watts — Strogatz small-world, or our USW
construction process.

Each of these processes generates a graph with distinc-
tively different degree distributions, clustering coefficients
(CC) and expected average path lengths. Figure 1 is a plot
of representative degree distributions for each of these types
of graphs. In Figure 1, the red circles are characteristic of
a power law distribution. The black x’s are from a small-
world graph and look very much like a random distribution
because the underlying methodology for creating the edges is
random. The difference between a small-world distribution
and a random one is the smallness of the degree distribu-
tion σ and having a mean µ that is same as the underlying
lattice that was used as the base. While this small-world
distribution is ± 4, a similar random one is ± 10. A random
graph degree distribution is shown with the green triangles,
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Figure 1: Histogram of representative degree dis-
tributions of 1000 node graphs built using random,
power law, small-world and USW processes.

whose µ is centered at p ∗ n and a Poisson distribution for
the rest of the degreed nodes. The USW construction pa-
rameters will affect the center of the blue crosses and where
that center lies on the x-axis. USW parameters β and γ

were set to 0.95 each in order to separate the USW graph
from the other graphs. USW γ affects the left-right location
of the center, while β affects the height of the center. The
CC for random and small-world graphs are C(G) ∼ k

n
and

C(G) ∼ 3
4

respectively. While the average path lengths are

L(G) ∼ ln(n)
ln(k)

and L(G) ∼ n
2k

respectively [32]. The CC and

average path length of power law and USW graphs are not
tractable and do not have a closed form solution.

2.1 Random
A random graph is one that is generated by some ran-

dom process [16, 4]. These graphs can be created by many
non-equivalent techniques. At the end of the random graph
construction process, the graph may not be connected.

2.2 Power law
Power law graphs are characterized by the fraction of

their vertices that have a specified degree k. In general,
the degree distribution of a power law graph is given by:
p(k) = ck−δ|c, δ > 0. Preferential attachment graphs are a
special case of Power Law graphs. Preferential attachment
graphs grow over time by the addition of new vertices.

2.3 Small-world
Small-world graphs introduced in [32, 28] begin with a k-

lattice and rewiring each edge with a probability p. Small-
world graphs may be planar or non-planar and there is a
greater than 0 probability that the resulting graph will be
neither simple and nor connected. Small-world graphs have
distinctive average path length and clustering coefficient prop-
erties.

The average distance between any two vertices is small
(growing logarithmically with the number of vertices in G).
The average clustering coefficient for the graph is high. A
clustering coefficient is the fraction of vertices that any two
vertices have in common over the complete set of adjacent
vertices that the two original vertices have. Random graphs



have low average path distances, but their average clustering
coefficients tend towards 0.

2.4 Unsupervised Small World
Unsupervised Small World (USW) graphs are simple, con-

nected non-planar built by the autonomous actions of each
node as it is added to the existent graph. USW graphs are
characterized by a clustering coefficient and average path
length comparable to that of traditional small-world graphs,
but markedly different in how they are constructed. The
autonomous algorithm that each independent node uses to
locate itself within, and thereby grow the USW is detailed
in [9, 8].

3. ATTACKER PROFILES
The selection of an attack profile involves is a decision

based on many different pieces of data. Included in this list
of data is:

• The goal of the attack (for instance complete removal
of the graph, or inflicting enough damage to the graph
to cause the graph to become disconnected),

• Which metric to use to measure the progress of the
attack,

• What type of graph component (edge or vertex) to
remove,

• What technique to use to select the most “central” or
“vital” component of the graph to remove,

• When the components are ranked based on their cen-
trality, which specific one to select.

3.1 Attack progress metrics
The following metrics will be collected because they relate

directly to the ability of the graph to communicate effec-
tively between its WOs, and will change depending on the
amount of damage the graph sustains.

Average inverse path length is the inverse of the mean
of all the shortest paths in the graph. Because the shortest
path between vertices in two different components is ∞, the
inverse is 0 and therefore is a valid value that does not cause
the computation to fail. A larger average inverse path length
means that the distance between nodes is on average shorter
[14].

L(G)−1 ≡ 〈
1

d(v, w)
〉 ≡

1

n(n− 1)

∑

v∈V

∑

w 6=v∈V

1

d(v,w))
(1)

Average path length is the mean of the all the shortest
(geodesic) paths in the graph

L(G) =
1

| V |2 − | V |

∑

u 6=v∈V |0<d(u,v)<∞

d(u, v) (2)

Clustering Coefficient is the likelihood that two neigh-
bors of v are connected [27, 29]

C(G) =
3 ∗ ΣNumber Of Triangles In The Graph

Number Of Connected Triples
(3)

Density is the ratio for the edges and nodes that are
members of the connected graph [30]

ρ(G) = (
n2

2m
− 1)(1 −

1

n
) (4)

Damage is the ratio of the largest component to the en-
tire graph [7]

∆(G) = 1 −
max(| Ci |) : ∀C ∈ {C}

n
(5)

Diameter is the maximal shortest path between any ver-
tices u and v

D(G) = max{d(u, v) : u, v ∈ V } (6)

Where n is the number of nodes in the entire graph, m is
the number of edges in the entire graph, p is a probability
of connection or rewiring (based on the type of graph).

During the course of the simulation, we expect the fol-
lowing changes in each of the above metrics when the graph
conducts maintenance:

Average inverse path length to remain nearly the same
or to growly slowly as the graph becomes more and
better connected,

Average path length to decrease as more alternative paths
are created,

Clustering Coefficients to increase as more triads are cre-
ated because of the increasing edges,

Density to increase because the graph creates more edges,

Damage to remain nearly static, and

Diameter to decrease as the graph becomes more and bet-
ter connected.

3.2 Centrality measurements
A centrality measurement is a way of quantifying the no-

tion that some components of a graph are more important
than others. Some centrality measurements are based purely
on data that is available at the graph component level and
are invariant with respect to the rest of the graph; these are
called local centrality measurements. Other measurements
are dependent on the structure of the graph in to-to. These
are called global centrality measurements. The difference
between local and global knowledge is fundamentally one
of degree using the idea of k − neighborhood. In the mini-
mal case where k = 1, all knowledge is based on edges and
vertices that are 1 edge away. In the maximal case where
k = D(G), all knowledge is based on total knowledge of the
graph. Values of k from 1 and D(G) reflecting increasing
knowledge of G.

3.2.1 Betweenness
Betweenness is a global centrality measurement. Between-

ness is a measure of how many geodesic paths from any ver-
tices s, t ∈ V use a either an edge (see Equation 7) or a
vertex (see Equation 8). Removal of a graph component
based on its betweenness is a direct attack on the global
structure of the graph.

cB(e) =
∑

s6=t∈V

σst(e)

σst

(7)

cB(V ) =
∑

s6=v 6=t∈V

σst(v)

σst

(8)



3.2.2 Closeness
Closeness is a global centrality measurement. Closeness

quantifies the idea that a vertex has a shortest average geodesic
distance when compared to all geodesic distances.

cC(u) =
∑

v∈V

d(u, v) (9)

3.2.3 Degreeness
Degreeness is a local centrality measurement. Degreeness

is the number of edges that are incident to a vertex (see
Equation 10). Degreeness only makes sense for vertices. A
vertex with a high degreeness is central to a local portion of
the graph, but not necessarily to the graph in to-to.

cD(v) = d(v) (10)

3.3 Extremal values
Selection of an attack profile is dependent on an appro-

priately selected centrality measurement, the type of graph
component (either E or V ) to delete and which of these
components to delete based on the centrality measurement
selected. Any centrality measurement will result in an un-
ordered list of numerical values. Depending on the type
of measurement selected, either of the extremal values of
Highest or Lowest will result in the most disruption to the
graph.

3.4 Sample profiles
Attacker profiles are described with a three character to-

ken created from permuting three disjointed sets. The sets
are: {D,B,C} representing the centrality measurements De-
greeness, Betwenneess and Closeness; {E,V} representing
graph component to be removed Edge and Vertex, and
{L,H} representing which extremal value to use when select-
ing the component to be removed Low and High. An exam-
ple of one permutation is: B-E-L meaning that betweenness
centrality measurement is being computed, an edge will be
selected for removal and the lowest valued edge will be re-
moved.

Each of the different attack profiles is presented with the
same graph (see Figure 3). The attack profile continues to
execute until the graph is disconnected. In those cases where
there are multiple graph components with the same value
(vertices of the same degreeness, edges with the same be-
tweenness, etc.), the attack profile is recursively applied and
the total number of deletions is reported. Figure 2 shows
the sample graph is prior to the deletion of the first attack
profile specific element. Each attack profile assumes that the
attacker has complete (i.e., global) knowledge of the graph
and so is able to make decisions that are most advantageous
to the attacker. How this knowledge is obtained is out-
side this discussion. The goal of each attack profile is the
disconnection of the graph, where disconnection is defined
as the inability of vertex i to send a message to vertex j

i 9 j : ∃i,j ∈ V . Therefore a graph with only one vertex is
still connected and that removing a vertex that is connected
to only one other vertex does not disconnect the graph.

3.5 Efficacy of different attack profiles
Attacker profiles were used recursively against the sample

graph until the graph was disconnected. Table 1 reports the
efficacy of different attacker profiles used against the sample
graph when vertices (or edges) are removed. Computing the

Figure 3: The sample graph presented to each of
the attack profile. This graph is used because it has
enough interesting vertices and edges so that each
attack profile would select a different graph compo-
nent to remove.

centrality value may result in more than one vertex (or edge)
having the same value. Having the same value for two mea-
surements is treated as creating two different graphs that are
treated in a recursive manner. For each profile, the number
of unique graphs is reported as well as the maximum and
minimum recursion depth. A mean (µ) and standard devia-
tion (σ) depths for all profiles are reported. Smaller values
for the maximum and minimum depths and σ points to a
profile that is always aggressive and effective. Good attack
profiles (from the attacker’s perspective) are D-V-H, B-
E-H, or C-V-L because these attack the “core” elements of
the graph, while the other profiles “nibble at the edges.” The
best attack profile is B-V-H because it is most destructive
at the core. The other attack profiles focus on the periphery
and will result in disconnecting the graph or may result in a
connected graph that has only one vertex. These peripheral
attack profiles take much longer than an attack on the core.

4. IMPLEMENTING RESILIENCY IN
GRAPHS OF DIFFERENT FLAVORS

The words robustness and resilience are used almost inter-
changeably when talking about graphs. But, they are very
different attributes that should not be confused.

Robustness [18] is the ability of a graph to keep its basic
functionality even under the failure of some of its compo-
nents. These components can be any combination of the
graph’s edges or vertices. A graph G = (V,E) is robust if
messages can be sent from i → j : ∀i,j ∈ V .

Resilience is the ability of a graph to recover readily from
damage and, in a sense to become more robust.

Implementing resiliency in support of the Game resolved
itself into two different categories based on the underlying
mechanisms that were used to create the graph. The “stan-
dard” graphs (random, power law, and small-world) have a
relatively simple underlying mathematical foundation, while
the USW graph is created via a series of algorithmic steps.
This division is also reflected in how resilience is imple-
mented.
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(f) D-V-H
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(g) C-V-L
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Figure 2: The first graph component that will be removed based on different attack profiles. Each profile
selects a different component to be removed. In each of these figures, the first component to be removed
is shown in red. In cases where more than one component has the appropriate qualities to qualify it for
removal; selection of which component to remove is based on random selection.



Attack # of unique Max. Min. Mean Std. Dev.
profile graphs depth depth (µ) depth (σ) depth
D-V-L 428,580 20 4 15.57 3.65
D-V-H 8 2 1 1.87 0.35
B-E-L 7 6 6 6 0.00
B-E-H 2 2 2 2 0.00
B-V-L 53,155 20 15 19.56 0.82
B-V-H 1 2 2 2 n/a
C-V-L 2,634 20 17 19.89 0.36
C-V-H 4 2 2 2 0.00

Table 1: The efficacy of different recursive attacker profiles against the same sample graph.

4.1 Non-unsupervised small-world
Resilience for all “standard”graphs is implemented via the

use of R igraph library routines. For all “standard” graphs,
it is assumed that 10% of the nodes will be re-activated (via
a manner that is outside this discussion) and will attempt to
form links to other nodes in the graph. Further it is assumed
that only 90% of these attempts will be successful. Connec-
tion attempts are not 100% successful in order to simulate
downtime at the host where a node lives and timeouts in the
communications channels.

4.2 Unsupervised Small World
Unsupervised Small World (USW) graphs are created us-

ing a number of control parameters. These parameters au-
tonomously create a graph that has small-world character-
istics using only locally gained knowledge. The parameters
that were used to create the graph are the same ones that
are used to implement resilience.

During the simulation, when the USW graph is written to
the database, all the control parameters (α, β, γ and others)
are also written. When the USW graph is to be reconsti-
tuted, the original control parameters are used to reconsti-
tute the graph.

5. THE GAME
A Game is a competitive activity involving skill, chance,

or endurance between two or more players who play accord-
ing to a set of rules to achieve some goal. There are two
players in this game: Alice (the person responsible for re-
pairing the graph) and Mallory (the attacker).

A graph may be subject to different types of damage.
Damage resulting from a random event or occurrence can
be classified as is an error [1]. While, damage from some-
thing other than a random act, is classified as an attack. For
example, loss of a single router in a computer network could
be viewed as a random event. Loss of all routers at the same
time would be called an attack. Structurally different types
of graphs (random, power law, small-world) [20, 24, 10, 31,
33, 18, 6, 26, 5] are robust in different ways when the same
number of graph components are lost.

Albert, Jeong and Barabási [1] focus on power law, net-
works such as the World-Wide Web, the Internet, social net-
works and cells. They conclude that these networks have are
tolerant to many random failures, but are very susceptible
to the failure of a few critical elements because of their un-
derlying structure. This type of sensitivity is common to
power law networks. USW is not a power law graph and is
not sensitive to targeted attacks.

Moreno, Pastor-Satorras et al, [23] focus on the effects
of a cascading failure in a power law network. Using their
analysis, they identified a critical load in the traffic through
a failed network component above which the resulting traf-
fic congestion will destroy network communications. This
critical threshold is based on the idea that each compo-
nent has a communications tolerance that when exceeded
causes the component to fail. By keeping these limitations
in mind, USW graphs have been designed without tolerances
and are able to send as much traffic as the underlying Web
architecture can support. Zio and Sansavini [33] expand on
the ideas of Moreno and Pastor-Satorras by exploring small-
world graphs as well. Zio and Sansavini go on to quantify
the amount of excess capacity (of a normalized loading) that
each node in both types of graphs must have to prevent cas-
cading failures.

Guillaume, Latapy and Magnien [13] extend Albert, Jeong
and Barabási investigation to include random graphs. They
show that the removal of a similar number of edges for the
two graph types will result in a disconnected graph, and
then propose an efficient attack strategy based on removal
of edges. The attack ideas were incorporated into the attack
profiles used to test the robustness and resilience of the USW
graphs.

Motter and Lai [24] focus on the effects of cascading fail-
ures due to overloading of the Internet and power grids. In
these types of graphs the traffic when a component fails, the
traffic (be it either packets or electrical power) being ser-
viced by that component is transfered to other components
of the same type to which the failed component was con-
nected. Their analysis shows that an attack, or a failure of
an exceptionally heavily loaded component may have a cas-
cading failure affect on other components. Traffic between
USW components are not bound or limited except by the
underlying Web Architecture and are those immune from
these types of cascading failures.

Farkas, Antal, et al. [12] proposed imbuing an ethernet
network with a distributed resilient architecture based on
the use of multiple static routes stored in routers spread
across the network. In the event that a router were to fail,
or become unavailable, the connected routers would immedi-
ately begin using the secondary spanning tree routes. These
secondary routes would be maintained in addition to the
primary routes. The USW model does not maintain static
or dynamic routes.

Criado, Flores, et al. [10] propose two measures to assess
the robustness of a graph to random and intentional attacks.
These measures take into account the graph’s topology and



is computable in polynomial time. Their measures can be
viewed as another type of centrality where the node (or edge)
whose presence means that the graph is less vulnerable and
whose absence wold make the graph more vulnerable. The
evaluation of the vulnerability of USW graphs will take their
ideas into consideration.

Netotea and Pongor [26] take as input a graph and through
evolution increase it’s efficiency and robustness by rewiring
the graph. They take existing an existing edge and move one
end to a different node and then measuring the efficiency of
the graph at each stage. Their definition of efficiency is:

E(G) =
1

n(n + 1)

∑

i6=j∈V

1

dij
(11)

whereby the average distance between all nodes decreases.
They define robustness at time t as R(G) = Et

E
. Within

USW, once edges are created, they are not removed or al-
tered. The efficiency of the USW graph will increase by the
addition of more nodes and edges.

5.1 The goal
Our goal for the game is to determine the robustness of

selected graph types in the face of different types of attacks
(attacker profiles) and how resilient each graph type is when
given an opportunity to recover from some of the damage
suffered in the attack. The game seeks to answer the ques-
tion: how many edges or nodes can the attacker remove
before the graph was disconnected? Different attack profiles
will be exercised and the worst type of attack (i.e., the one
with the highest likelihood of success from the attacker’s per-
spective) will be identified. Each of the graphs described in
Section 2 will compete against a set of attack profiles. Each
attack will use a different and unchanging profile against the
graph. The game is over when either: the graph is discon-
nected, or the simulation runs to an end.

5.2 The players
During the game; Mallory will have global knowledge of

the graph (how this knowledge was obtained is not part of
the game) and can choose to remove any graph component
(either edge or vertex) that he feels is to his benefit. Alice
has only local knowledge and does not know how or where
the next attack will occur. After the Mallory’s turn, Alice
will have a turn to reconstitute the graph in preparation for
the next attack. Mallory and Alice will alternate turns until
one wins. The goal of the game from the Mallory’s per-
spective is to cause the graph to become disconnected and
therefore Alice would not be able to use the graph to send
a message to Bob. The goal from the Alice’s perspective is
to remain connected as long as possible.

5.3 The rules
There are few rules in this game. They are:

1. The graph is created without any interference from
Mallory.

2. Once Mallory chooses an attack profile, he must use
that same profile for the duration of the game.

3. The number (or percentage) of graph components that
Mallory can damage per turn is fixed at the start of
the game.

4. The number (or percentage) of graph components that
Alice can reconstitute per turn remains fixed for the
duration of the game.

5. The game is over if the graph is disconnected at the
end of Mallory’s turn, or the number of game turns
reaches the maximum number allowed.

If at the end of the game the graph is disconnected then
Mallory has won, otherwise Alice has won.

5.4 A sample game
Data are collected and analyzed during the course of the

game between Mallory and Alice. A specific instance of a
10 turn game is shown in Figures 4 and 5. A power law
degree distribution graph was created and a D-V-H attack
profile was used for 10 turns against the graph. As can be
seen in Figure 4 the induced subgraph was severely damaged
during the first 3 turns and then less damaged later. Two
of nine turns are highlighted. During turn 2, the damaged
induced by vertex deletion increases during the turn and
the overall damage to the graph is shown at the end of the
turn. During turn 4, there is minimal damage to the sub-
graph and the overall damage to the total graph is low. The
worst damage was done to graph be the end of the fourth
turn, after which the graph had reconstituted itself enough
to withstand future attacks.

6. GRAPHS TAKEN TO DISCONNECTION

6.1 What data was collected
At the end of each turn, the following measurements or

characteristics are collected and presented: average path,
clustering coefficient, density and diameter.

The y-axis is normalized from 0 to 1 for all figures. The x-
axis is linear and represents the “shot” taken by the Mallory
at the graph. Mallory had 100 shots (10% of a 1000 vertex
graph) per turn.

6.2 How graphs were created
The R igraph package [11] was used to create the “stan-

dard” graphs from Section 2. The USW graph creator pro-
gram was set up to run with all possible combinations of first
attachment, node visitation and queue processing policies
and 4 values each for β and γ. Every graph was attacked
based on degreeness, betweenness and closeness for either
edge or node as appropriate and for each possible extremal
value

6.2.1 Non-unsupervised small-world
The R package igraph functions erdos.renyi.game(),

barabasi.game() and watts.strogatz.game() were used to cre-
ate random, power law and small-world graphs respectively
of 1000 nodes each. Each graph was checked to ensure that
it was simple and connected.

6.2.2 Unsupervised Small World graphs
A complete description of the USW construction process

can be found in [9, 8]. The dominant control parameters for
the destruction game are:

b (β) the threshold that a locally generated random num-
ber must exceed before an edge can be created between
two nodes
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Figure 5: Turn by turn plot of damage to a power law degree distribution graph. The red line presents the
damage to the graph at the end of a turn. The blue line is the damage at the start of a turn.



Degreeness Betweenness Closeness
Edge Node

Graph type Lowest Highest Lowest Highest Lowest Highest Lowest Highest
Random (Erdos — Renyi) 99 31 344 6 99 14 99 23
Power law(Barabasi) 99 1 1 1 99 1 99 1
Small-world (Watts — Strogatz) 99 65 355 85 99 10 99 21
USW 99 65 — 99 1100 — 31000 13 — 60 99 35 — 99 99 70 — 90

Table 2: A comparison of how many graph elements (either edges or vertices) must be removed before the
graph becomes disconnected.

Attack profile Efficacy this is the one
[BD][EV]L “Nibbles” away at the least important component, gnawing at the graph until a critical

component (or the last node) is reached.
[BD][EV]H Attacks the most critical/needed part of the graph and is able to disconnect the graph

after a relatively few number of removals.
CVL Removes the node that is “closest” to all nodes and forcing another to become the closest.
CVH “Nibbles” away at the periphery (in a closeness sense) of the graph and continues to do so

until there is only one component left or a disconnection.

Table 3: A summary of efficacy of different attack profiles.

p (γ) the percentage of nodes that failed or have never been
considered for a connecting edge that will be used once
the β threshold test has been satisfied

t the percentage of the graph selected for re-constitution
to support resiliency corrective actions will attempt to
connect to using both the initial β and γ values

L the number of nodes that will be randomly selected for
re-constitution actions

Table 2 itemizes the results of the various attack profiles
against the “standard” and USW graphs.

7. DISCUSSION
Mallory is in a much stronger position than Alice. Mal-

lory’s knowledge of the graph is only limited by the amount
of time and energy that he wishes to expend exploring the
graph. If the depth of the graph that Mallory wishes to ex-
plore is called path length (PL), then the range on the size
of the induced subgraph he will discover could grow expo-
nentially based on PL (see Equation 12).

S =







(2 ∗ PL,D(G)) if Power Law

〈k〉PL if Random
(2 ∗ PL,D(G)) if Watts—Strogatz small-world

(12)
Where 〈k〉 = 2m

n
= p(n − 1) ≈ pn is the average number

of edges adjacent to any node in the graph.
Even modest increases in PL (for example from 2 to 5)

can have profound effect on the size of the induced subgraph.
By way of illustration, it has been estimated that the entire
Internet is no more that 19 clicks (edges or PL) in size [2].

Alice is a severe disadvantage. She is limited to purely lo-
cal knowledge (i.e., PL = 1), and can only randomly select
which nodes to use to reconstitute the graph. The percent-
age of vertices that she can activate has to be high enough
to have a reasonable expectation of overlapping those graph
components that Mallory has attacked. If Alice can cover
those components that Mallory has affected then the graph

will continue to survive, otherwise it is inevitable that the
graph will become disconnected.

Data from Table 2 was used to bound the region where the
USW graphs are most vulnerable (most vulnerable means
that the attacker can remove the fewest elements and dis-
connect the graph). Table 3 summarizes the comments in
the previous subsections about the efficacy of the different
attack profiles. After evaluating the efficacy of the various
attacker profiles; B-V-H was selected as best (from the at-
tacker’s perspective).

8. CONCLUSIONS
We have demonstrated that a graph of WOs created based

on the USW algorithm is both robust and resilient in a sim-
ulation environment. The next major step will be to take it
from the theoretical environment and to a real-world imple-
mentation. One possible implementation is to further the
ideas in [21] by writing and fielding a Firefox plugin using
the Open Archives Initiative (OAI) Object Reuse and Ex-
change (ORE) model from [19] to identify data that could be
submitted to a digital library for preservation. These WOs
would be monitored for some length of time in order to see
how well reality matches the simulations.

We investigated the efficacy of various attack profiles on
a graph of web objects. The most effective (i.e., the most
destructive) is when the attacker uses a Betweenness Vertex
High centrality measurements to select which vertex to re-
move. The size of the subgraph that the attacker can focus
on is dependent on the graph’s average degree connectivity
δ(G) and is exponential on the Path Length from a root
node. If the number of graph components an attacker can
remove is greater than the number that can be reconstituted
then the graph will eventually be destroyed. Based on sim-
ulations, the Unsupervised Small World (USW) graphs are
more robust and resilient then those constructed using clas-
sical random, power law, or Watt—Strogatz techniques. A
graph of USW connected WOs filled with data could out-
live the individuals and institutions that created the data



even in an environment where WOs are lost due to random
failures or directed attacks.
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