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ABSTRACT
Analysis of aggregate and individual Web traffic has shown that
PageRank is a poor model of how people navigate the Web. Us-
ing the empirical traffic patterns generated by a thousand users, we
characterize several properties of Web traffic that cannot be repro-
duced by Markovian models. We examine both aggregate statistics
capturing collective behavior, such as page and link traffic, and in-
dividual statistics, such as entropy and session size. No model cur-
rently explains all of these empirical observations simultaneously.
We show that all of these traffic patterns can be explained by an
agent-based model that takes into account several realistic browsing
behaviors. First, agents maintain individual lists of bookmarks (a
non-Markovian memory mechanism) that are used as teleportation
targets. Second, agents can retreat along visited links, a branch-
ing mechanism that also allows us to reproduce behaviors such as
the use of a back button and tabbed browsing. Finally, agents are
sustained by visiting novel pages of topical interest, with adjacent
pages being more topically related to each other than distant ones.
This modulates the probability that an agent continues to browse or
starts a new session, allowing us to recreate heterogeneous session
lengths. The resulting model is capable of reproducing the collec-
tive and individual behaviors we observe in the empirical data, rec-
onciling the narrowly focused browsing patterns of individual users
with the extreme heterogeneity of aggregate traffic measurements.
This result allows us to identify a few salient features that are nec-
essary and sufficient to interpret the browsing patterns observed in
our data. In addition to the descriptive and explanatory power of
such a model, our results may lead the way to more sophisticated,
realistic, and effective ranking and crawling algorithms.
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1. INTRODUCTION
Despite its simplicity, PageRank [6] has been a remarkably ro-

bust model of human Web browsing characterizing it as a random
surfing activity. Such models of Web surfing have allowed us to
speculate how people interact with the Web. As ever more peo-
ple spend a growing portion of their time online, their Web traces
provide an increasingly informative window into human dynam-
ics. The availability of large volumes of Web traffic data enables
systematic testing of PageRank’s underlying navigation assump-
tions [20]. Traffic patterns aggregated across users have revealed
that some of its key assumptions—uniform random walk and uni-
form random teleportation—are widely violated, making PageRank
a poor predictor of traffic. Such results leave open the question of
how to design a better Web navigation model. Here we expand on
our previous empirical analysis [20, 19] by considering also indi-
vidual traffic patterns [14]. Our results provide further evidence
for the limits of simple (memoryless) Markovian models such as
PageRank. They suggest the need for an agent-based model with
more realistic features, such as memory and topicality, to account
for both individual and aggregate traffic patterns observed in real-
world data.

Models of user browsing also have important practical applica-
tions. First, the traffic received by pages and Web sites has a direct
impact on the financial success of many companies and institutions.
Indirectly, understanding traffic patterns has consequences for pre-
dicting advertising revenues and on policies used to establish ad-
vertising prices [11]. Second, realistic models of Web navigation
could guide the behavior of intelligent crawling algorithms, im-
proving the coverage of important sites by search engines [8, 25].
Finally, improved traffic models may lead to enhanced search rank-
ing algorithms [6, 28, 17].
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Contributions and outline
In the remainder of this paper, after some background on related
and prior work, we describe a data set collected through a field
study from over a thousand users on the main campus of Indiana
University. We previously introduced a model of browsing be-
havior, called BookRank [3], which extends PageRank by adding
a memory mechanism. Here we introduce a novel agent-based
model, which also accounts for the topical interests of users. We
compare the traffic patterns generated by these models with both
aggregated and individual Web traffic data from our field study.
Our main contributions are summarized below:

• We show that the empirical diversity of pages visited by in-
dividual users, as measured by Shannon entropy, is not well
predicted by either PageRank or BookRank. This suggests
that a typical user has both focused interests and recurrent
habits, meaning that the diversity apparent in many aggre-
gate measures of traffic must be a consequence of the diver-
sity across individual interests.

• When we build logical sessions by assembling requests based
on referrer information and initiating sessions based on link-
independent jumps [19], we find that endowing the model
with a simple memory mechanism such as bookmarks (as in
the BookRank model) is sufficient to correct the mismatch
between PageRank and the distributions of aggregate mea-
sures of traffic, but not to capture the broad distributions of
individual session size and depth.

• We introduce an agent-based navigation model, ABC, with
three key, realistic ingredients: (1) bookmarks are managed
and used as teleportation targets, defining boundaries between
logical sessions and allowing us to capture the diverse pop-
ularity of starting pages; (2) a back button is available to
account for tabbed browsing and explain the branching ob-
served in empirical traffic; and (3) topical interests drive an
agent’s decision to continue browsing or start a new session,
leading to diverse session sizes. The model also takes into
consideration the topical locality of the Web, so that an in-
teresting page is likely to link to other interesting pages.

• Finally, we demonstrate that the novel ingredients of ABC al-
low it to match or exceed PageRank and BookRank in repro-
ducing the empirical distributions of page traffic, link traffic,
and of the popularity of session starting pages, while out-
performing both PageRank and BookRank in modeling user
traffic entropy and size and depth of sessions.

2. BACKGROUND
There have been many empirical studies of Web traffic patterns.

The most common approach is the analysis of Web server logs.
These have ranged from small samples of users from a few arbi-
trarily selected Web server logs [16] to large samples of users from
the logs of large organizations [14]. One advantage of this method-
ology is that it allows us to distinguish individual users though their
IP addresses (even if they may be anonymized), thus capturing in-
dividual traffic patterns [14]. Conversely, the methodology has the
drawback of biasing both the sample of users and the sample of the
Web graph being observed based on the choice of target server.

An alternative source of Web traffic data is browser toolbars,
which gather traffic information based on the surfing activity of
many users. While the population is larger in this scenario, it is
still biased by users who have opted to install a particular piece of

software. Moreover, traffic information from toolbars is not gen-
erally available to researchers. Adar et al. [1] used this approach
to study the patterns of revisitation to pages, but did not consider
whether pages are revisited within the same session or across dif-
ferent sessions. A related approach is to identify a panel of users
based on desired characteristics, then ask them to install tracking
software. This eliminates many sources of bias but incurs signif-
icant experimental costs. Such an approach has been used to de-
scribe the exploratory behavior of Web surfers [4]. These studies
did not propose models to explain the observed traffic patterns.

The methodology adopted in the study reported here captures
traffic data directly from a running network. This approach was
first adopted by Qiu et al. [27], who used captured HTTP packet
traces in the UCLA computer science department to investigate
how browsing behavior is driven by search engines. Our study re-
lies on a larger sample of users.

One of the important traffic features we study here is the statis-
tical characterization of browsing sessions. A common assumption
is that long pauses correspond to breaks between sessions. Based
on this assumption, many researchers have relied on timeouts as a
way of defining sessions, a technique we have recently found to be
flawed [19]. This has led to the definition of time-independent log-
ical sessions, based on the reconstruction of session trees rooted at
pages requested without a referrer. The model presented here is in
part aimed at explaining the broad distributions of size and depth
empirically observed for these logical sessions.

An aspect of Web traffic that has not received much attention in
the literature is the role of page content in driving users’ browsing
patterns. A notable exception is a study of the correlation between
changes in page content and revisit patterns [2].

On the modeling side, the most basic notion of Web navigation
is that users move erratically, performing a random walk through
pages in the Web graph. PageRank [6] is a random walk modi-
fied by the process of teleportation (random jumps), modeling how
users start new browsing sessions by a Poissonian process with uni-
formly random starting points. This Markovian process has no
memory, no way to backtrack, and no notion of user interests or
page content. The stationary distribution of visitation frequency
generated by PageRank can be compared with empirical traffic data.
We have shown that the fundamental assumptions underlying Page-
Rank—uniform link selection, uniform teleportation sources and
targets—are all violated by actual user behavior, making PageRank
a poor model of actual users [20]. Such results leave open the ques-
tion of how to design a better Web navigation model. That is the
goal of the present paper; we use such a random walk as a null
model to evaluate our alternative model.

More realistic models have been introduced in recent years to
capture potentially relevant features of real Web browsing behav-
ior, such as the back button [18, 5]. There have also been attempts
to model the role of the interplay between user interests and page
content in shaping browsing patterns. Huberman et al. proposed a
model in which pages visited by a user have interest values de-
scribed by a random walk; the navigation continues as long as
the current page has a value above a threshold [15]. This kind of
model is closely related to algorithms designed to improve topical
crawlers [21, 24, 25].

We previously proposed a model in which the users maintain
a list of bookmarks from which they start new sessions, provid-
ing memory of previously visited pages [3]. We called this model
BookRank, since the bookmark selection is carried out according to
a ranking based on the frequency of visits to each bookmark. This
model is able to reproduce a fair number of characteristics observed
in empirical traffic data, including the page and link traffic distribu-



tions. Unfortunately, BookRank fails to account for features related
to the navigation patterns of individual users, such as entropy and
session characteristics. This failure is not remedied by the introduc-
tion of a back button into the model. In the remainder of this paper,
we extend the BookRank model to address these shortcomings.

3. EMPIRICAL TRAFFIC DATA

3.1 Data acquisition
The HTTP request data we use in this study was gathered from

a dedicated FreeBSD server located in the central routing facility
of the Bloomington campus of Indiana University [19]. This sys-
tem had a 1 Gbps Ethernet port that received a mirror of all out-
bound network traffic from one of the undergraduate dormitories.
This dormitory is home to just over a thousand undergraduates split
roughly evenly between men and women. To the best of our knowl-
edge this is the largest population sample whose every click has
been recorded and studied over an extended period of time.

To identify individual requests, we first capture only packets des-
tined for TCP port 80. While this does eliminate Web traffic run-
ning on non-standard ports, it allows for an improved rate of cap-
ture that more than offsets the lost data. We make no attempt to
capture or analyze encrypted (HTTPS) traffic using TCP port 443.
For each packet we capture, we use a regular expression search to
determine whether it contains an HTTP GET request. If we do find
a request, we analyze the packet further and log the request, mak-
ing note of the MAC address of the client, a timestamp, the virtual
host and path requested, the referring URL, and a flag indicating
whether the user agent matches a mainstream browser. We record
the MAC address only in order to distinguish the traffic of indi-
vidual users. We thus assume that most computers have a single
primary user, which is reasonable: most students own computers,
and only a few public workstations are available in the dormitory.
Furthermore, as long as users do not replace their network interface
card, this information remains constant.

The aggregate traffic was low enough to permit full rate of col-
lection without dropping packets. While this collection system of-
fers a rare opportunity to capture the complete browsing activity of
a large population, we do recognize some potential disadvantages.
Because we do not perform TCP stream reassembly, we can only
analyze requests that fit in a single Ethernet frame. The vast major-
ity of requests do so, but some GET-based Web services do generate
extremely long URLs. Without stream reassembly, we also cannot
log the Web server’s response to each request, making us unaware
of failed requests and redirects. A user can spoof the HTTP refer-
rer field; we assume that few students do so. Finally, although they
are in a residential setting, the students are at an academic institu-
tion and represent a biased sample of the population of Web users
at large. This is an inevitable consequence of any local study of a
global and diverse system such as the Web.

The click data was collected over a period of about two months,
from March 5, 2008 through May 3, 2008. This period included a
week-long vacation during which no students were present in the
building. During the full data collection period, we detected nearly
408 million HTTP requests from a total of 1,083 unique MAC ad-
dresses.

Only a minority of HTTP requests reflect an actual human being
trying to fetch a Web page for display. We retain only requests that
are likely to be for actual Web pages, as opposed to media files,
style sheets, Javascript code, images, and so forth. We make this
determination based on the extension of the URL requested, which
is imprecise but a reasonable heuristic in the absence of access to
the MIME type of the server response. We also filtered out a small

Table 1: Approximate dimensions of the filtered and
anonymized data set.

Page requests 29,494,409
Unique users 967
Unique URLs 2,503,002
Unique target URLs 2,084,031
Unique source URLs 864,420
Number of sessions 11,174,254
Mean sessions per user 11,556

subset of users with negligible (mostly automated) activity. Finally,
we removed some spoofed requests generated by an anonymization
service that attempted to obscure traffic to an adult chat site.

Privacy concerns and our agreement with the Human Subjects
Committee of our institution also obliged us to strip off all identi-
fiable query parameters from the URLs. Applying this anonymiza-
tion procedure affects roughly one-third of the remaining requests.
This procedure means that two URLs with different CGI variables
will be treated as the same. While this is a mistaken assumption for
sites in which the identity of the page being requested is a query
parameter, it helps in the common case that the parameters affect
some content within a largely static framework.

Once we have a filtered set of HTTP requests (“clicks”), we or-
ganize each user’s clicks into a set of sessions. These sessions are
not based on a simple timeout threshold; our prior work demon-
strates that most statistics of timeout-based sessions are functions
of the particular timeout used, which turns out to be arbitrary [19].
Instead, we organize the clicks into tree-based logical sessions us-
ing the referrer information associated with each request, accord-
ing to an algorithm described formally in our previous work [19].
The basic notions are that new sessions are initiated by requests
with an empty referrer field; that each request represents a directed
edge from a referring URL to a target URL; and that requests are
assigned to the session in which their referring URL was most re-
cently requested.

The session trees built in this way offer several advantages. First,
they mimic the multitasking behavior of users in the age of tabbed
browsing: a user may have several active sessions at a time. Sec-
ond, the key properties of these session trees, such as size and
depth, are relatively insensitive to an additional timeout constraint
introduced for the sake of plausibility [19]. In the current analysis,
we impose a half-hour timeout as we form the sessions: a click can-
not be associated with a session tree that has not received additional
requests within thirty minutes.

Most importantly, the tree structure allows us to infer how users
backtrack as they browse. Because modern browsers follow so-
phisticated caching mechanisms to improve performance, unless
overridden by HTTP options, a browser will generally not issue
another request for a recently accessed page. This prevents us from
observing multiple links pointing to the same page (within a single
logical session) and gives us no direct way of determining when
the user presses the back button. However, session trees allow us to
infer information about backwards traffic: if the next request in the
tree comes from a URL other than the most recently visited one,
the user must have navigated to that page, or opened it in a separate
tab.

The dimensions of the resulting data set are shown in Table 1.
In § 3.2, we present the most relevant properties of this data for
the discussion that follows; more detailed analysis of the empirical
sessions can be found in [19].



3.2 Data descriptors
Any statistical description strives to achieve a compromise be-

tween the need to summarize the behavior of the data and the need
to describe such behavior accurately. In the case of many human ac-
tivities, including those on the Web, we know that the data does not
behave in a normal (Gaussian) fashion, but rather fits into heavy-
tailed distributions approximated best by power laws [7, 20]. In
many cases, the mean and median are not a sufficient description
of the data, as shown by a large and diverging variance and heavy
skew. The next best description of any quantity is a histogram of its
values. We therefore present these distributions in terms of their es-
timated probability density functions rather than measures of cen-
tral tendency. To characterize the properties of our traffic data and
evaluate the models proposed later in this paper, we focus on the
distributions of the six quantities outlined below.

Page traffic The total number of visits to each page. Because of
caching mechanisms, the majority of revisits to a page by a
single user beyond the first visit within each session will not
be represented in the data.

Link traffic The total number of times each link between pages
has been traversed by a user, as identified by the referrer and
destination URLs in each request. Again, because of caching
behavior, we typically observe only the first click to a desti-
nation page within each session.

Empty referrer traffic The number of times each page is used to
initiate a new session. We assume that a request without a re-
ferring page corresponds to the user initiating a new session
by using a bookmark, opening a link from another applica-
tion, or manually entering an address.

Entropy Shannon information entropy. For an individual user j,
the entropy is defined as Sj = −

∑
i ρij log2 ρij where ρij

is the fraction of visits of user j to site i aggregated across
sessions.

Session size The number of unique pages visited in a logical ses-
sion tree.

Session depth The maximum tree distance between the starting
page of a session and any page visited within the same ses-
sion. (Recall that session graphs have a tree-like structure
because requests that go back to a previously visited page
are usually served from the browser cache.)

We have already characterized some of these distributions in pre-
liminary work [3, 19]. Another feature sometimes used to charac-
terize random browsing behavior is the distribution of return time,
which in this case would be the number of clicks between two con-
secutive visits to the same page by a given user [14, 3]. However,
cache behavior and overlapping sessions mean that this information
cannot be retrieved in a reliable way from the empirical data.

3.3 Reference models
To properly analyze these distributions, we compare them with

those generated by two reference models based on PageRank-like
modified random walkers with teleportation probability pt = 0.15.
To obtain a useful reference model for traffic data that is based on
individuals, we imagine a population of PageRank random walk-
ers, as many as the users in our study. The first reference model
(PageRank) is illustrated in Fig. 1. Each walker browses for as
many sessions as there were empirical sessions for the correspond-
ing real-world user. The PageRank sessions are terminated by the

pt

Teleport to 
random page

1–pt

New 
Session? Forward

Figure 1: Schematic illustration of the PageRank model.

Ranked 
Bookmark 

List
pt

Pick Start 
Bookmark

1–pt

New 
Session? Forward

P(R)~R–β

Update

Figure 2: Schematic illustration of the BookRank model.

constant-probability jumps, so the total number of pages visited
by a walker may differ from the corresponding user. Teleportation
jumps lead to session-starting pages selected uniformly at random.

The second reference model (BookRank) is illustrated in Fig. 2.
The key realistic ingredient that differentiates this model from Page-
Rank is related to memory: agents maintain individual lists of book-
marks that are chosen as teleportation targets based on the number
of previous visits. Initially, each agent randomly selects a start-
ing page (node). Then, agents navigate the Web by repeating the
following steps:

1. With probability 1−pt, the agent navigates locally, following
a link from the present node selected with uniform probabil-
ity. Unless previously visited, the new node is added to the
bookmark list. The frequency of visits is recorded, and the
list of bookmarks is kept ranked from most to least visited.

2. Otherwise, with probability pt, the agent teleports (jumps) to
a previously visited page (bookmark). The bookmark with
rank R is chosen with probability P (R) ∝ R−β .

The above mechanism mimics the use of frequency ranking in
various features of modern browsers, such as URL completion in
the address bar and suggested starting pages in new windows. The
functional formP (R) for the bookmark choice is motivated by data
on selection among a ranked list of search results [13].

In our simulations, browsing occurs on scale-free networks with
N nodes and degree distributionP (k) ∼ k−γ , generated according
to the growth model of Fortunato et al. [29]. We used a large graph
with N = 107 nodes to ensure that the network would be larger
than the number of pages visited in the empirical data (cf. Table 1).
We also set γ = 2.1 to match our data set. This graph is constructed
with symmetric links to prevent dangling links; as a result, each
node’s in-degree is equal to its out-degree.

Within a reference model’s session, we simulate the browser’s
cache by recording traffic for links and pages only when the target
page has not been previously visited in the same session. This way
we can measure in the models the number of unique pages visited
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in a session, which we can compare with the empirical session size.
We assume that that cached pages are reset between sessions.

3.4 Data analysis
We first consider the aggregate distribution of traffic received by

individual pages, as shown in Fig. 3. The empirical data show a
very broad power-law distribution for page traffic, P (T ) ∼ T−α,
with exponent α ≈ 1.75,1 which is consistent with our prior results
for host-level traffic [20, 19].

Theoretical arguments [26] suggest that PageRank should be-
have in a similar fashion. If we disregard teleportation, a node
of in-degree k may expect a visit if one of its neighbors has been
visited in the previous step. The traffic it will receive will be there-
fore proportional to its degree, if no degree-degree correlations are
present in the graph. This intuition, as well as prior empirical re-
sults [20], lead us to expect that PageRank’s prediction of the dis-
tribution of traffic received by a Web page is described by a power
law P (T ) ∼ T−α where α ≈ 2.1 is the same exponent observed
in the distribution of the in-degree [7, 12]. Indeed this is consistent
with the distribution generated by the PageRank reference model
in Fig. 3. On the other hand, the traffic generated by BookRank is
biased toward previously visited pages (bookmarks), and therefore
has a broader distribution (by three orders of magnitude) in better
agreement with the empirical data, as shown in Fig. 3.

The distribution of weights ω across links between pages allows
us to consider the diversity of traffic crossing each hyperlink in the
Web graph. In Fig. 4, we compare the distribution of link traffic re-
sulting from the reference models with that from the empirical data.
The data reveals a very wide power law for P (ω) with degree 1.9.
This is consistent with our prior results for host-level traffic [20].

The comparison with PageRank and BookRank in Fig. 4 is a
vivid illustration of the diversity of links when we consider their
probability of actually being clicked. A rough argument may again
help to make sense of the PageRank reference model’s poor perfor-
mance at reproducing the data. If we disregard teleportation, the

1The fact that α < 2 is significant: in this case, both the variance
and the mean of the distribution diverge in the limit of an infinite-
size network.
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traffic to a page is roughly proportional to the page in-degree. The
traffic expected on a link would be thus proportional to the traffic
to the originating page and inversely proportional to the out-degree
of the page if we assume that links are chosen uniformly at random.
Since a node’s in-degree and out-degree are equal in our simulated
graphs, this would lead to a link traffic that is independent of the de-
gree and therefore essentially constant for all links. This is reflected
in the quickly decaying distribution of link traffic for PageRank. In
the case of BookRank, the stronger heterogeneity in the probabil-
ity of visiting pages is reflected in a heterogeneous choice of links,
resulting in a broad distribution that fits the empirical data well as
shown in Fig. 4.

Our empirical data in Fig. 5 show clearly that all pages are not
equally likely to be chosen as the starting point of a browsing ses-
sion. Their popularity as starting points is roughly distributed as a
power law with an exponent close to 1.8 (consistent with prior re-
sults for host-level traffic [20]), implying a diverging variance and
mean when the number of sessions considered increases. While not
unexpected from a qualitative point of view, this demonstrates how
off the mark is one of the basic hypotheses underlying the Page-
Rank class of browsing processes, namely uniform teleportation.
PageRank assumes a uniform probability for a page to be chosen
as a starting point, and its failure to reproduce the empirical data
is evident in Fig. 5. The bookmarking mechanism, on the other
hand, captures well the non-uniform probability of starting pages,
so that the distribution generated by BookRank is a good match to
the empirical data, as shown in Fig. 5.

We now turn from the aggregate properties of the system and
attempt to characterize individual users. The simplest hypothesis
would be that the broad distributions characterizing aggregate user
behavior are a reflection of extreme variability within the traffic
generated by single users, thus concluding that there is no such
thing as a “typical” user from the point of view of traffic gener-
ated. To capture how diverse is the behavior in a group of users, we
adopt Shannon’s information entropy of a user as defined above.
Entropy directly measures the focus of a user’s interests, offer-
ing a better probe into single user behavior than, for instance, the
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number of distinct pages visited; two users who have visited the
same number of pages can have very different measures of entropy.
Given an arbitrary number of visits Nv , the entropy is maximum
(S = Nv log(Nv)) when Nv pages are visited once, and minimum
(S = 0) when all visits have been paid to a single page. The dis-
tribution of entropy across users is shown in Fig. 6. We observe
that the reference PageRank model produces higher entropy than
observed in the empirical data. One can interpret this by the way
a PageRank walker picks starting pages with uniform probability,
while a real user is more likely to start from a previously visited
page, and therefore to revisit neighboring pages. BookRank is more
similar to such repetitive behavior, and indeed we observe lower
entropy values in Fig. 6. However, BookRank underestimates the
entropy as well as its variability across users.

Finally, we can consider the distributions that characterize logi-
cal sessions, namely the size (number of unique pages) and depth
(distance from a session’s starting page) distributions. Figs. 7 and 8
show that both empirical distributions are rather broad, spanning
three orders of magnitude, which is a surprisingly large proportion
of very long sessions. In contrast, both PageRank and BookRank
reference models generate very short sessions. The probabilistic
teleportation mechanism that determines when a PageRank walker
starts a new session is incapable of capturing broadly distributed
session sizes. In fact, session size is upper-bounded by the length
` (number of clicks) of a session, which exhibits a narrow, expo-
nential distribution P (`) ∼ (1− pt)`. Note that the exponentially
short sessions are not inconsistent with the high entropy of Page-
Rank walkers (Fig. 6), which is a result of the frequent jumps to
random targets rather than the browsing behavior.

4. ABC MODEL
The empirical analysis in the previous section demonstrates that

a more sophisticated model of user behavior is needed to capture
individual navigation patterns. We build upon the BookRank model
by adding two additional ingredients.

First, we provide agents with a back button. A backtracking

mechanism is needed to capture the tree-like structure of sessions
(see also top row of Fig. 9). Our data also indicates that the in-
coming and outgoing traffic of a site are seldom equal. Indeed,
the ratio between incoming and outgoing clicks is distributed over
many orders of magnitude [20]. This violation of flow conserva-
tion cannot be explained by teleportation alone, demonstrating that
users’ browsing sessions have many branches. Finally, our prior
results show that the average node-to-depth ratio of session trees is
almost two. All of these observations are consistent with the use of
tabs and the back button. Other studies have shown that the back
button is used frequently [9, 30]. We therefore use the back button
to model any branching behavior.

The second ingredient has to do with the fact that the BookRank
model fails to predict individual statistics: all agents are identical,
session size has a narrow, exponential distribution, and the com-
parison with the empirical entropy distribution is unsatisfactory. In
the real world, the duration of a session depends on the intentions
(goals) and interests of a user; different users have different inter-
ests. Visiting relevant pages, those whose topics match the user’s
interests, will lead to more clicks and thus longer sessions. We
therefore introduce the elements of different agents with distinct in-
terests and page topicality into the model. The idea is that an agent
spends some attention when navigating to a new page, and attention
is gained when visiting pages whose topics match the user’s inter-
ests. To model this process, we imagine that each agent stores some
“energy” (units of attention) while browsing. Visiting a new page
incurs a higher energy cost than going back to a previously visited
page. Known pages yield no energy, while unseen pages may in-
crease the energy store by some random amount that depends on
the page’s relevance to the agent. Agents continue to browse until
they run out of energy, whereupon they start a new session.

We call the resulting model ABC for its main ingredients: agents,
bookmarks and clicks. Clicks are driven by the topicality of pages
and agent interests, in a way that is in part inspired by the InfoSpi-
ders algorithms for topical crawlers [21, 24, 25]. InfoSpiders were
designed to explore the Web graph in an adaptive and intelligent
fashion, driven by the similarity between search topics and page
content. Better matches led to more energy and more exploration
of local link neighborhoods. Irrelevant pages led to agents running
out of energy and dying, so that resources would be allocated to
more promising neighborhoods. In ABC, this idea is used to model
browsing behavior.

The ABC model is illustrated in Fig. 10. Each agent starts at a
random page with an initial amount of energy E0. Then, for each
time step:

1. If E ≤ 0, the agent starts a new session by teleporting to a
bookmark chosen as in BookRank.

2. Otherwise, if E > 0, the user continues the current session,
following a link from the present node. There are two alter-
natives:

(a) With probability pb, the back button is used, leading
back to the previous page. The agent’s energy is de-
creased by a fixed cost cb.

(b) Otherwise, with probability 1 − pb, a forward link is
clicked with uniform probability. The agent’s energy is
updated to E − cf + ∆ where cf is a fixed cost and ∆
is a stochastic value representing the new page’s rele-
vance to the user. As in BookRank, the bookmark list is
updated with new pages and ranked by visit frequency.

The dynamic variable ∆ in the ABC model is a measure of rele-
vance of a page to a user’s interests. The simplest way to model rel-



Figure 9: Representation of a few typical and representative session trees from the empirical data (top) and from the ABC model
(bottom). Animations are available at cnets.indiana.edu/groups/nan/webtraffic.
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Figure 10: Schematic illustration of the ABC model.

evance is by a random variable, for example drawn from a Gaussian
distribution. In this case the amount of stored energy behaves as a
random walk. It has been shown that the session duration ` (number
of clicks until the random walk reaches E = 0) has a power-law
tail P (`) ∼ `−

3
2 [15]. However, our empirical results suggest a

larger exponent [19]. More importantly, we know from empirical
studies that the content similarity between two Web pages is corre-
lated with their distance in the link graph, and so is the probability
that a page is relevant with respect to some given topic [10, 23, 22].
Therefore, two neighbor pages are likely to be related topically, and
the relevance of a page t to a user is related to the relevance of a
page r that links to t. To capture such topical locality, we introduce
correlations between the ∆ values of consecutively visited pages.
For the starting page we use an initial value ∆0 = 1. Then, when
a page t is visited for the first time in a given session, ∆t is deter-
mined by

∆t = ∆r(1 + ε)

where r is the referrer page, ε is a random variable uniformly dis-
tributed in [−η, η] and η is a parameter controlling the degree of
topical locality. In a new session we assume a page can again be
interesting and thus provide the agent with energy, even if it was

visited in a previous session. However, the same page will yield
different energy in different sessions, based on changing user inter-
ests.

5. MODEL EVALUATION

5.1 Simulation of ABC model
We ran two sets of simulations of the ABC model, in which

agents navigate two distinct scale-free graphs. One (G1) is the ar-
tificial network discussed in § 3.3. Recall that N = 107 nodes
and the degree distribution is a power law with exponent γ = 2.1
to match our data set. The second graph (G2) is derived from an
independent, empirical, anonymous traffic data set. The data is ob-
tained by extracting the largest strongly connected component from
a traffic network generated by the entire Indiana University system
population (about 100,000 people) [20]. This way there are no dan-
gling links, but the nodes correspond to actual visited pages and the
edges to actual traversed links. G2 is based on three weeks of traf-
fic in November 2009; it has N = 8.14× 106 nodes and the same
degree distribution with exponent γ ≈ 2.1.

Within each session we simulate the browser’s cache as discussed
in § 3.3 so that we can measure the number of unique pages visited
by the model agents and compare it with the empirical session size.

The proposed models have various parameters. In prior work [29],
we have shown that the distribution of traffic with empty referrer
generated by our models is related to the parameter β (cf. BookRank
description in § 3.3). Namely, the distribution is well approxi-
mated by a power law P (T0) ∼ T−α

0 , where α = 1 + 1/β.
To match the empirical exponent α ≈ 1.75 we set the parame-
ter β = 1/(α− 1) = 1.33. We also fit the back button probability
pb = 0.5 from the data.

The ABC model contains a few additional free parameters: the
initial energy E0, the forward and backward costs cf and cb, and
the topical locality parameter η. The initial energy and the costs
are closely related, and together they control session durations. We
therefore set E0 = 0.5 arbitrarily and use an energy balance argu-
ment to find suitable values of the costs. Empirically, the average
session size is close to two pages. The net loss per click of an
agent is −δE = pbcb + (1 − pb)(cf − 〈∆〉) where 〈∆〉 = 1
is the expected value of the energy from a new page. By set-

cnets.indiana.edu/groups/nan/webtraffic
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Figure 11: Distribution of page traffic generated by ABC model
versus data and baseline.
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Figure 12: Distribution of link traffic generated by ABC model
versus data and baseline.

ting cf = 1 and cb = 0.5, we obtain an expected session size
1 − (1 − pb)E0/δE = 2 (counting the initial page). In general,
higher costs lead to shorter sessions and lower entropy. We ran a
number of simulations to explore the sensitivity of the model to
the parameter η, settling on η = 0.15. Smaller values mean that
all pages have similar relevance, and the session size and depth
distributions become too narrow. Larger values imply more noise
(absence of topical locality), and the session distributions become
too broad. The results shown below refer to this combination of
parameters.

The number of users in the simulation, and the number of ses-
sions for each user, are taken from the empirical data. Because the
model is computationally intensive, we partitioned the simulated
users into work queues of roughly equal session counts, which we
executed in parallel on a high-performance computing cluster.

5.2 Comparison of model with empirical data
The simulations of the ABC model users generate session trees

that can be compared visually to those in the empirical data, as
shown in Fig. 9. For a more quantitative evaluation of our model,
we compare its results with empirical findings described in § 3. For
each of the distributions discussed earlier, we also compare ABC
with the reference BookRank model. The latter is simulated on the
artificial G1 network.

A first aspect to check is whether the model is able to reproduce
the general features of the traffic distributions. In Fig. 11 we plot
the number of visits received by each page. Agreement between the
ABC model and data is as good as or better than for the BookRank
reference model. Similarly, the distributions of link traffic (Fig. 12)
and teleportation traffic (Fig. 13) show that the ABC model repro-
duces the empirical data as accurately as BookRank.

The good agreement between both BookRank and ABC models
and the data provides further support for our hypothesis that the
rank-based bookmark choice is a sound cognitive mechanism to
capture session behavior in Web browsing.

Let us now consider how our model captures the behavior of sin-
gle users. The entropy distribution across users is shown in Fig. 14,
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where the model predictions are compared with the distribution
found in the empirical data. The ABC model yields entropy dis-
tributions that are somewhat sensitive to the underlying network,
but that in any case fit the empirical entropy data much better than
BookRank, in terms of both the location of the peak and the vari-
ability across users. This result suggests that bookmark memory,
back button, and topicality are crucial ingredients in explaining the
focused habits of real users.

Having characterized traffic patterns from aggregating across user
sessions, we can study the sessions one by one and analyze their
statistical properties. In Fig. 15, we show the distribution of session
size as generated by the ABC model. The user interests and topi-
cal locality ingredients account for the broad distribution of session
size, capturing that of the empirical data much better that the short
sessions generated by the BookRank reference model. Agents visit-
ing relevant pages tend to keep browsing, and relevant pages tend to
lead to other interesting pages, explaining the longer sessions. We
argue that the diversity apparent in the aggregate measures of traffic
is a consequence of this diversity of individual interests rather than
the behavior of extremely eclectic users who visit a wide variety of
Web sites — as shown by the narrow distribution of entropy.

The entropy distribution discussed above depends not only on
session length, but also on how far each user navigates away from
the initial bookmark where a session is initiated. One way of an-
alyzing this is by the distribution of session depth, as shown in
Fig. 16. The agreement between the empirical data and the ABC
model is excellent and significantly better than the one observed
with the BookRank baseline. Once again topicality is shown to be
a key ingredient to understand real user behavior on the Web.

6. CONCLUSIONS
Several previous studies have shown that memoryless Marko-

vian processes, such as PageRank, cannot explain many patterns
observed in real Web browsing. In particular, the diversity of ses-
sion starting points, the global diversity on link traffic, and the het-
erogeneity of session sizes. The picture is further complicated by
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the fact that, despite such diverse aggregate measurements, individ-
ual behaviors are quite focused. These observations call for a non-
Markovian agent-based model that can help explain the empirical
data by taking into account several realistic browsing behaviors.
Here we proposed three novel ingredients for such a model. First,
agents maintain individual lists of bookmarks (a memory mecha-
nism) that are used as teleportation targets. Second, agents have
access to a back button (a branching mechanism) that also allows
to reproduce tabbed browsing behavior. Finally, agents have topical
interest that are matched by page content, modulating the probabil-
ity that an agent continues to browse or starts a new session and
thus allowing to capture heterogeneous session sizes.

We have shown that the resulting ABC model is capable of repro-
ducing with remarkable accuracy the aggregate traffic patterns we
observe in our empirical data. More importantly, our model offers
the first account of a mechanism that can generate key properties of
logical sessions. This allows us to argue that the diversity apparent
in page, link, and bookmark traffic is a consequence of the diver-
sity of individual interests rather than the behavior of very eclectic
users. Our model is able to capture, for the first time, the extreme
heterogeneity of aggregate traffic measurements while explaining
the narrowly focused browsing patterns of individual users.

Of course, the ABC model is more complex than prior models
such as PageRank or even BookRank. However, its greater pre-
dictive power suggests that bookmarks, tabbed browsing, and top-
icality are salient features in interpreting how we browse the Web.
In addition to the descriptive and explanatory power of an agent-
based model with these ingredients, our results may lead the way
to more sophisticated, realistic, and hence more effective ranking
and crawling algorithms.

The ABC model relies on several key parameters, and while we
have attempted to make reasonable, realistic choices for some of
these parameters and explored the sensitivity of our model with re-

spect to some others, further work is needed to achieve a complete
picture of the combined effect of the multiple parameters. We al-
ready know, for example, that some parameters such as network
size, costs, and topical locality play a key role in modulating the
balance between individual diversity (entropy) and session size.

While, in its current incarnation, the ABC model is a clear step in
the right direction, it still shares some of the limitations present in
previous efforts. The most notable example is the uniform choice
among outgoing links from a page, which may be responsible for
the imperfect match between the individual entropy values of our
model agents and those of actual users.

Future work can also explore intrinsic, node-dependent jump
probabilities to model the varying intrinsic relevance that users at-
tribute to sites; for example, well-known sites such as CNN or
Wikipedia are likely to be seen as more reliable or credible than
unknown personal blogs. Restrictions on the subset of nodes reach-
able by each user, in the form of disconnected components for in-
dividual sessions, can be used to model different areas of interest.
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