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problem was that I wasn’t thinking 
clearly yet about algebra. My introduc-
tion at age 15 to teacher James R. Har-
key put me on the road to solving that 
problem.

In high school Mr. Harkey taught 
us what he called an axiomatic ap-
proach to solving algebraic equa-
tions. He showed us a set of steps that 
worked every time (and he gave us 
plenty of homework to practice on). In 
addition, by executing those steps, we 
necessarily documented our thinking 
as we worked. Not only were we think-
ing clearly, using a reliable and repeat-
able sequence of steps, but we were 
also proving to anyone who read our 

Recently, I’ve been introduced to the 
world of “MySQL tuning,” and the 
situation seems very similar to what I 
saw in Oracle more than 20 years ago.

It reminds me a lot of how difficult 
beginning algebra seemed when I was 
about 13 years old. At that age, I had 
to appeal heavily to trial and error to 
get through. I can remember looking 
at an equation such as 3x + 4 = 13 and 
basically stumbling upon the answer, 
x = 3.

The trial-and-error method 
worked—albeit slowly and uncomfort-
ably—for easy equations, but it didn’t 
scale as the problems got tougher—
for example, 3x + 4 = 14. Now what? My 

W h e n  I  jo  i n e d  Oracle Corporation in 1989, 
performance—what everyone called “Oracle tuning”—
was difficult. Only a few people claimed they could 
do it very well, and those people commanded high 
consulting rates. When circumstances thrust me into 
the “Oracle tuning” arena, I was quite unprepared. 
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work that we were thinking clearly. 
Our work for Mr. Harkey is illustrated 
in Table 1.

This was Mr. Harkey’s axiomatic 
approach to algebra, geometry, trigo-
nometry, and calculus: one small, log-
ical, provable, and auditable step at a 
time. It’s the first time I ever really got 
mathematics.

Naturally, I didn’t realize it at the 
time, but of course proving was a skill 
that would be vital for my success 
in the world after school. In life I’ve 
found that, of course, knowing things 
matters, but proving those things to 
other people matters more. Without 
good proving skills, it’s difficult to be 
a good consultant, a good leader, or 
even a good employee.

My goal since the mid-1990s has 
been to create a similarly rigorous ap-
proach to Oracle performance optimi-
zation. Lately, I have been expanding 
the scope of that goal beyond Oracle 
to: “Create an axiomatic approach to 
computer software performance op-
timization.” I’ve found that not many 
people like it when I talk like that, so 
let’s say it like this: “My goal is to help 
you think clearly about how to opti-
mize the performance of your com-
puter software.”

What is Performance?
Googling the word performance re-
sults in more than a half-billion hits 
on concepts ranging from bicycle rac-
ing to the dreaded employee review 
process that many companies these 
days are learning to avoid. Most of the 
top hits relate to the subject of this 
article: the time it takes for computer 
software to perform whatever task you 
ask it to do. 

And that’s a great place to begin: 
the task, a business-oriented unit of 
work. Tasks can nest: “print invoices” 
is a task; “print one invoice”—a sub-
task—is also a task. For a computer 

user, performance usually means the 
time it takes for the system to execute 
some task. Response time is the ex-
ecution duration of a task, measured 
in time per task, such as “seconds 
per click.” For example, my Google 
search for the word performance had 
a response time of 0.24 seconds. The 
Google Web page rendered that mea-
surement right in my browser. That is 
evidence to me that Google values my 
perception of Google performance.

Some people are interested in an-
other performance measure: through-
put, the count of task executions that 
complete within a specified time in-
terval, such as “clicks per second.” 
In general, people who are respon-
sible for the performance of groups of 
people worry more about throughput 
than does the person who works in a 
solo contributor role. For example, 
an individual accountant is usually 
more concerned about whether the 
response time of a daily report will 
require that accountant to stay late 
after work. The manager of a group 
of accounts is additionally concerned 
about whether the system is capable 
of processing all the data that all of 
the accountants in that group will be 
processing.

Response Time versus Throughput
Throughput and response time have 
a generally reciprocal type of relation-
ship, but not exactly. The real relation-
ship is subtly complex.

Example 1. Imagine that you have 
measured your throughput at 1,000 
tasks per second for some benchmark. 
What, then, is your users’ average re-
sponse time? It’s tempting to say that 
the average response time is 1/1,000 = 
.001 seconds per task, but it’s not neces-
sarily so.

Imagine that the system processing 
this throughput had 1,000 parallel, in-
dependent, homogeneous service chan-

nels (that is, it’s a system with 1,000 
independent, equally competent service 
providers, each awaiting your request 
for service). In this case, it is possible 
that each request consumed exactly 1 
second.

Now, you can know that average re-
sponse time was somewhere between 
0 and 1 second per task. You cannot 
derive response time exclusively from 
a throughput measurement, however; 
you have to measure it separately (I 
carefully include the word exclusively in 
this statement, because there are math-
ematical models that can compute re-
sponse time for a given throughput, but 
the models require more input than just 
throughput).

The subtlety works in the other di-
rection, too. You can certainly flip this 
example around and prove it. A scarier 
example, however, will be more fun.

Example 2. Your client requires a 
new task that you’re programming 
to deliver a throughput of 100 tasks 
per second on a single-CPU computer. 
Imagine that the new task you’ve writ-
ten executes in just .001 seconds on the 
client’s system. Will your program yield 
the throughput the client requires?

It’s tempting to say that if you can 
run the task once in just one thousandth 
of a second, then surely you’ll be able to 
run that task at least 100 times in the 
span of a full second. And you’re right, 
if the task requests are nicely serialized, 
for example, so that your program can 
process all 100 of the client’s required 
task executions inside a loop, one after 
the other.

But what if the 100 tasks per second 
come at your system at random, from 
100 different users logged into your cli-
ent’s single-CPU computer? Then the 
gruesome realities of CPU schedulers 
and serialized resources (such as Ora-
cle latches and locks and writable ac-
cess to buffers in memory) may restrict 
your throughput to quantities much less 
than the required 100 tasks per second. 
It might work; it might not. You cannot 
derive throughput exclusively from a re-
sponse time measurement. You have to  
measure it separately.

Response time and throughput are 
not necessarily reciprocals. To know 
them both, you need to measure them 
both. Which is more important? For 
a given situation, you might answer 
legitimately in either direction. In 

Table 1. The axiomatic approach as taught by Mr. Harkey. 

3.1x + 4	 = 13	 problem statement
3.1x + 4 – 4	 = 13 – 4	 subtraction property of equality
3.1x	 = 9	 additive inverse property, simplification
3.1x ∕ 3.1	 = 9 ∕ 3.1	 division property of equality
x	 ≈ 2.903	 multiplicative inverse property, simplification
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many circumstances, the answer is 
that both are vital measurements re-
quiring management. For example, 
a system owner may have a business 
requirement not only that response 
time must be 1.0 second or less for a 
given task in 99% or more of execu-
tions but also that the system must 
support a sustained throughput of 
1,000 executions of the task within a 
10-minute interval.

Percentile Specifications
Earlier, I used the phrase “in 99% 
or more of executions” to qualify a 
response time expectation. Many 
people are more accustomed to such 
statements as “average response time 
must be r seconds or less.” The per-
centile way of stating requirements 
maps better, though, to the human 
experience.

Example 3. Imagine that your re-
sponse time tolerance is 1 second for 
some task that you execute on your com-
puter every day. Imagine further that 
the lists of numbers shown in Table 2 
represent the measured response times 
of 10 executions of that task. The aver-
age response time for each list is 1.000 
second. Which one do you think you 
would like better?

Although the two lists in Table 2 
have the same average response time, 
the lists are quite different in charac-
ter. In list A, 90% of response times were 
one second or less. In list B, only 60% of 
response times were one second or less. 
Stated in the opposite way, list B repre-
sents a set of user experiences of which 
40% were dissatisfactory, but list A 
(having the same average response time 
as list B) represents only a 10% dissatis-
faction rate.

In list A, the 90th percentile response 
time is .987 seconds; in list B, it is 1.273 
seconds. These statements about per-
centiles are more informative than 
merely saying that each list represents 
an average response time of 1.000 sec-
ond.

As GE says, “Our customers feel the 
variance, not the mean.”1 Expressing 
response-time goals as percentiles 
makes for much more compelling re-
quirement specifications that match 
with end-user expectations: for exam-
ple, the “Track Shipment” task must 
complete in less than .5 seconds in at 
least 99.9% of executions.

Problem Diagnosis
In nearly every performance problem 
I’ve been invited to repair, the stated 
problem has been about response 
time: “It used to take less than a sec-
ond to do X; now it sometimes takes 
20+.” Of course, a specific statement 
like that is often buried under veneers 
of other problems such as: “Our whole 
[adjectives deleted] system is so slow 
we can’t use it.”2

Just because something happened 
often for me doesn’t mean it will hap-
pen for you. The most important thing 
to do first is state the problem clearly, 
so you can think about it clearly.

A good way to begin is to ask, 
what is the goal state that you want 
to achieve? Find some specifics that 
you can measure to express this: for 
example, “Response time of X is more 
than 20 seconds in many cases. We’ll 
be happy when response time is one 
second or less in at least 95% of execu-
tions.” That sounds good in theory, 
but what if your user doesn’t have such 
a specific quantitative goal? This par-
ticular goal has two quantities (1 and 
95); what if your user doesn’t know 
either one of them? Worse yet, what 
if your user does have specific ideas, 
but those expectations are impossible 
to meet? How would you know what 

“possible” or “impossible” even is?
Let’s work our way through those 

questions.

The Sequence Diagram
A sequence diagram is a type of graph 
specified in UML (Unified Modeling 
Language), used to show the interac-
tions between objects in the sequen-
tial order that those interactions 
occur. The sequence diagram is an ex-
ceptionally useful tool for visualizing 
response time. Figure 1 shows a stan-
dard UML sequence diagram for a 
simple application system composed 

Table 2. The average response time for 
each of these two lists is 1.000 second.

List A List B

1 .924 .796

2 .928 .798

3 .954 .802

4 .957 .823

5 .961 .919

6 .965 .977

7 .972 1.076

8 .979 1.216

9 .987 1.273

10 1.373 1.320

Figure 1. This UML sequence diagram shows the interactions among a browser,  
an application server, and a database.
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of a browser, application server, and a 
database.

Imagine now drawing the sequence 
diagram to scale, so that the distance 
between each “request” arrow coming 

in and its corresponding “response” 
arrow going out are proportional to 
the duration spent servicing the re-
quest. I have shown such a diagram 
in Figure 2.  This is a good graphical 

representation of how the compo-
nents represented in your diagram are 
spending your user’s time. You can 
“feel” the relative contribution to re-
sponse time by looking at the picture.

Sequence diagrams are just right 
for helping people conceptualize how 
their responses are consumed on a 
given system, as one tier hands con-
trol of the task to the next. Sequence 
diagrams also work well to show how 
simultaneous processing threads 
work in parallel, and they are good 
tools for analyzing performance out-
side of the information technology 
business.1 

The sequence diagram is a good 
conceptual tool for talking about per-
formance, but to think clearly about 
performance, you need something 
else. Here’s the problem. Imagine 
the task you’re supposed to fix has a 
response time of 2,468 seconds (41 
minutes, 8 seconds). In that period of 
time, running that task causes your 
application server to execute 322,968 
database calls. Figure 3 shows what 
the sequence diagram for that task 
would look like.

There are so many request and re-
sponse arrows between the applica-
tion and database tiers that you can’t 
see any of the detail. Printing the se-
quence diagram on a very long scroll 
isn’t a useful solution, because it 
would take weeks of visual inspection 
before you would be able to derive use-
ful information from the details you 
would see.

The sequence diagram is a good 
tool for conceptualizing flow of con-
trol and the corresponding flow of 
time. To think clearly about response 
time, however, you need something 
else.

The Profile
The sequence diagram does not scale 
well. To deal with tasks that have huge 
call counts, you need a convenient ag-
gregation of the sequence diagram 
so that you understand the most im-
portant patterns in how your time has 
been spent. Table 3 shows an exam-
ple of a profile, which does the trick. 
A profile is a tabular decomposition 
of response time, typically listed in 
descending order of component re-
sponse time contribution. 

Example 4. The profile in Table 3 

Figure 2. A UML sequence diagram drawn to scale, showing the response time consumed  
at each tier in the system.
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Figure 3. This UML sequence diagram shows 322,968 database calls executed by  
the application server. 
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is rudimentary, but it shows exactly 
where your slow task has spent your us-
er’s 2,468 seconds. With the data shown 
here, for example, you can derive the 
percentage of response time contribu-
tion for each of the function calls iden-
tified in the profile. You can also derive 
the average response time for each type 
of function call during your task.

A profile shows where your code has 
spent your time and—sometimes even 
more importantly—where it has not. 
There is tremendous value in not hav-
ing to guess about these things.

From the data shown in Table 
3, you know that 70.8% of your us-
er’s response time is consumed by 
DB:fetch() calls. Furthermore, if 
you can drill down in to the individual 
calls whose durations were aggregat-
ed to create this profile, you can know 
how many of those App:await _
db _ netIO() calls corresponded to 
DB:fetch() calls, and you can know 
how much response time each of 
those consumed. With a profile, you 
can begin to formulate the answer to 
the question, “How long should this 
task run?”… which, by now, you know 
is an important question in the first 
step (section 0) of any good problem 
diagnosis.

Amdahl’s Law
Profiling helps you think clearly about 
performance. Even if Gene Amdahl 
had not given us Amdahl’s Law back 
in 1967, you would probably have 
come up with it yourself after the first 
few profiles you looked at. 

Amdahl’s Law states: Performance 
improvement is proportional to how 
much a program uses the thing you 
improved. If the thing you’re trying 
to improve contributes only 5% to 
your task’s total response time, then 
the maximum impact you’ll be able 
to make is 5% of your total response 
time. This means that the closer to 
the top of a profile that you work (as-
suming that the profile is sorted in 
descending response-time order), the 
bigger the benefit potential for your 
overall response time.

This doesn’t mean that you always 
work a profile in top-down order, 
though, because you also need to con-
sider the cost of the remedies you’ll be 
executing.3

Example 5. Consider the profile in 

Table 4. It’s the same profile as in Table 
3, except here you can see how much 
time you think you can save by imple-
menting the best remedy for each row in 
the profile, and you can see how much 
you think each remedy will cost to im-
plement.

Which remedy action would you im-
plement first? Amdahl’s Law says that 
implementing the repair on line 1 has 
the greatest potential benefit of saving 
about 851 seconds (34.5% of 2,468 sec-
onds). If it is truly “super expensive,” 
however, then the remedy on line 2 may 
yield better a net benefit—and that is 
the constraint to which you really need 
to optimize—even though the potential 
for response time savings is only about 
305 seconds.

A tremendous value of the profile is 
that you can learn exactly how much 
improvement you should expect for 
a proposed investment. It opens the 
door to making much better deci-
sions about what remedies to imple-
ment first. Your predictions give you 

a yardstick for measuring your own 
performance as an analyst. Finally, it 
gives you a chance to showcase your 
cleverness and intimacy with your 
technology as you find more efficient 
remedies for reducing response time 
more than expected, at lower-than-
expected costs.

What remedy action you implement 
first really boils down to how much 
you trust your cost estimates. Does 
“dirt cheap” really take into account 
the risks that the proposed improve-
ment may inflict upon the system? 
For example, it may seem dirt cheap 
to change that parameter or drop that 
index, but does that change poten-
tially disrupt the good performance 
behavior of something out there that 
you’re not even thinking about right 
now? Reliable cost estimation is an-
other area in which your technologi-
cal skills pay off.

Another factor worth considering is 
the political capital that you can earn 
by creating small victories. Maybe 

Table 3. This profile shows the decomposition of a 2,468.000-second response time. 

Function Call R (sec) Calls

1 DB: fetch() 1,748.229 322,968

2 App: await _ db _ netIO() 338.470 322,968

3 DB: execute() 152.654 39,142

4 DB: prepare() 97.855 39,142

5 Other 58.147 89,422

6 App: render _ graph() 48.274 7

7 App: tabularize() 23.481 4

8 App: read() 0.890 2

Total 2,468.000

Table 4. This profile shows the potential for improvement and the corresponding cost  
(difficulty) of improvement for each line item from Table 2.

Potential improvement % and cost of investment R (sec) R (%)

1 34.5% super expensive 1,748.229 70.8%

2 12.3% dirt cheap 338.470 13.7%

3 Impossible to improve 152.654 6.2%

4 4.0% dirt cheap 97.855 4.0%

5 0.1% super expensive 58.147 2.4%

6 1.6% dirt cheap 48.274 2.0%

7 Impossible to improve 23.481 1.0%

8 0.0% dirt cheap 0.890 0.0%

Total 2,468.000



60    communications of the acm    |   september 2010  |   vol.  53  |   no.  9

practice

cheap, low-risk improvements won’t 
amount to much overall response-
time improvement, but there’s value 
in establishing a track record of small 
improvements that exactly fulfill your 
predictions about how much response 
time you’ll save for the slow task. A 
track record of prediction and fulfill-
ment ultimately—especially in the 
area of software performance, where 
myth and superstition have reigned 
at many locations for decades—gives 
you the credibility you need to influ-
ence your colleagues (your peers, your 
managers, your customers…) to let 
you perform increasingly expensive 
remedies that may produce bigger 
payoffs for the business.

A word of caution, however: don’t 
get careless as you rack up successes 
and propose ever-bigger, costlier, 
riskier remedies. Credibility is fragile. 
It takes a lot of work to build it up but 
only one careless mistake to bring it 
down. 

Skew
When you work with profiles, you re-
peatedly encounter sub-problems 
such as this:

Example 6. The profile in Table 3 re-
vealed that 322,968 DB: fetch() calls 
had consumed 1,748.229 seconds of re-
sponse time. How much unwanted re-
sponse time would be eliminated if you 
could eliminate half of those calls? The 
answer is almost never, “Half of the re-
sponse time.” Consider this far simpler 
example for a moment:

Example 7. Four calls to a subroutine 
consumed four seconds. How much un-
wanted response time would be elimi-
nated if you could eliminate half of 
those calls? The answer depends upon 

the response times of the individual 
calls that we could eliminate. You might 
have assumed that each of the call dura-
tions was the average 4/4 = 1 second, but 
nowhere did the statement tell you that 
the call durations were uniform.

Imagine the following two possi-
bilities, where each list represents the 
response times of the four subroutine 
calls:

A = {1, 1, 1, 1}
B = {3.7, .1, .1, .1}

In list A, the response times are uni-
form, so no matter which half (two) of 
the calls you eliminate, you will reduce 
total response time to two seconds. In 
list B, however, it makes a tremendous 
difference which two calls are eliminat-
ed. If you eliminate the first two calls, 
then the total response time will drop 
to .2 seconds (a 95% reduction). If you 
eliminate the final two calls, then the 
total response time will drop to 3.8 sec-
onds (only a 5% reduction).

Skew is a nonuniformity in a list of 
values. The possibility of skew is what 
prohibits you from providing a precise 
answer to the question I asked at the 
beginning of this section. Let’s look 
again:

Example 8. The profile in Table 3 
revealed that 322,968 DB: fetch() 
calls had consumed 1,748.229 seconds 
of response time. How much unwanted 
response time would you eliminate by 
eliminating half of those calls? With-
out knowing anything about skew, the 
most precise answer you can provide is, 
“Somewhere between 0 and 1,748.229 
seconds.”

Imagine, however, that you had 
the additional information available 

in Table 5. Then you could formulate 
much more precise best-case and 
worst-case estimates. Specifically, if 
you had information like this, you 
would be smart to try to figure out how 
specifically to eliminate the 47,444 
calls with response times in the .01- to 
.1-second range.

Summary
In Part 1, I have tried to link togeth-
er some of the basic principles that 
I have seen people trip over in my 
travels as a software performance 
analyst. In Part 2, I will describe how 
competition for shared resources 
influences performance by cover-
ing the concepts of efficiency, load, 
queuing delay, and coherency delay. I 
will also explain how to think clearly 
about performance during the de-
sign, build, and test phases of an ap-
plication, so that you’ll be much more 
likely to create fast software that can 
become even faster throughout its 
production lifespan. 	
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Table 5. A skew histogram for the 322,968 calls from Table 2.

Range {min ≤ e < max} R (sec) Calls

1 	 0 0.000001 0.000 0

2 	 0.000001 0.00001 0.002 397

3 0.00001 0.0001 0.141 2,169

4 0.0001 0.001 31.654 92,557

5 0.001 0.01 389.662 180,399

6 0.01 0.1 1,325.870 47,444

7 0.1 1 0.900 2

Total 1,748.229 322,968




