
september 2010 | vol. 53 | no. 9 | communications of the acm 55

problem was that I wasn’t thinking
clearly yet about algebra. My introduc-
tion at age 15 to teacher James R. Har-
key put me on the road to solving that
problem.

In high school Mr. Harkey taught
us what he called an axiomatic ap-
proach to solving algebraic equa-
tions. He showed us a set of steps that
worked every time (and he gave us
plenty of homework to practice on). In
addition, by executing those steps, we
necessarily documented our thinking
as we worked. Not only were we think-
ing clearly, using a reliable and repeat-
able sequence of steps, but we were
also proving to anyone who read our

Recently, I’ve been introduced to the
world of “MySQL tuning,” and the
situation seems very similar to what I
saw in Oracle more than 20 years ago.

It reminds me a lot of how difficult
beginning algebra seemed when I was
about 13 years old. At that age, I had
to appeal heavily to trial and error to
get through. I can remember looking
at an equation such as 3x + 4 = 13 and
basically stumbling upon the answer,
x = 3.

The trial-and-error method
worked—albeit slowly and uncomfort-
ably—for easy equations, but it didn’t
scale as the problems got tougher—
for example, 3x + 4 = 14. Now what? My

W h e n I jo i n e d Oracle Corporation in 1989,
performance—what everyone called “Oracle tuning”—
was difficult. Only a few people claimed they could
do it very well, and those people commanded high
consulting rates. When circumstances thrust me into
the “Oracle tuning” arena, I was quite unprepared.

Thinking
Clearly About
Performance,
Part 1

doi:10.1145/1810891.1810909

 Article development led by
 queue.acm.org

Improving the performance of complex
software is difficult, but understanding some
fundamental principles can make it easier.

by Cary Millsap

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1810891.1810909&domain=pdf&date_stamp=2010-09-01

56 communications of the acm | september 2010 | vol. 53 | no. 9

practice

work that we were thinking clearly.
Our work for Mr. Harkey is illustrated
in Table 1.

This was Mr. Harkey’s axiomatic
approach to algebra, geometry, trigo-
nometry, and calculus: one small, log-
ical, provable, and auditable step at a
time. It’s the first time I ever really got
mathematics.

Naturally, I didn’t realize it at the
time, but of course proving was a skill
that would be vital for my success
in the world after school. In life I’ve
found that, of course, knowing things
matters, but proving those things to
other people matters more. Without
good proving skills, it’s difficult to be
a good consultant, a good leader, or
even a good employee.

My goal since the mid-1990s has
been to create a similarly rigorous ap-
proach to Oracle performance optimi-
zation. Lately, I have been expanding
the scope of that goal beyond Oracle
to: “Create an axiomatic approach to
computer software performance op-
timization.” I’ve found that not many
people like it when I talk like that, so
let’s say it like this: “My goal is to help
you think clearly about how to opti-
mize the performance of your com-
puter software.”

What is Performance?
Googling the word performance re-
sults in more than a half-billion hits
on concepts ranging from bicycle rac-
ing to the dreaded employee review
process that many companies these
days are learning to avoid. Most of the
top hits relate to the subject of this
article: the time it takes for computer
software to perform whatever task you
ask it to do.

And that’s a great place to begin:
the task, a business-oriented unit of
work. Tasks can nest: “print invoices”
is a task; “print one invoice”—a sub-
task—is also a task. For a computer

user, performance usually means the
time it takes for the system to execute
some task. Response time is the ex-
ecution duration of a task, measured
in time per task, such as “seconds
per click.” For example, my Google
search for the word performance had
a response time of 0.24 seconds. The
Google Web page rendered that mea-
surement right in my browser. That is
evidence to me that Google values my
perception of Google performance.

Some people are interested in an-
other performance measure: through-
put, the count of task executions that
complete within a specified time in-
terval, such as “clicks per second.”
In general, people who are respon-
sible for the performance of groups of
people worry more about throughput
than does the person who works in a
solo contributor role. For example,
an individual accountant is usually
more concerned about whether the
response time of a daily report will
require that accountant to stay late
after work. The manager of a group
of accounts is additionally concerned
about whether the system is capable
of processing all the data that all of
the accountants in that group will be
processing.

Response Time versus Throughput
Throughput and response time have
a generally reciprocal type of relation-
ship, but not exactly. The real relation-
ship is subtly complex.

Example 1. Imagine that you have
measured your throughput at 1,000
tasks per second for some benchmark.
What, then, is your users’ average re-
sponse time? It’s tempting to say that
the average response time is 1/1,000 =
.001 seconds per task, but it’s not neces-
sarily so.

Imagine that the system processing
this throughput had 1,000 parallel, in-
dependent, homogeneous service chan-

nels (that is, it’s a system with 1,000
independent, equally competent service
providers, each awaiting your request
for service). In this case, it is possible
that each request consumed exactly 1
second.

Now, you can know that average re-
sponse time was somewhere between
0 and 1 second per task. You cannot
derive response time exclusively from
a throughput measurement, however;
you have to measure it separately (I
carefully include the word exclusively in
this statement, because there are math-
ematical models that can compute re-
sponse time for a given throughput, but
the models require more input than just
throughput).

The subtlety works in the other di-
rection, too. You can certainly flip this
example around and prove it. A scarier
example, however, will be more fun.

Example 2. Your client requires a
new task that you’re programming
to deliver a throughput of 100 tasks
per second on a single-CPU computer.
Imagine that the new task you’ve writ-
ten executes in just .001 seconds on the
client’s system. Will your program yield
the throughput the client requires?

It’s tempting to say that if you can
run the task once in just one thousandth
of a second, then surely you’ll be able to
run that task at least 100 times in the
span of a full second. And you’re right,
if the task requests are nicely serialized,
for example, so that your program can
process all 100 of the client’s required
task executions inside a loop, one after
the other.

But what if the 100 tasks per second
come at your system at random, from
100 different users logged into your cli-
ent’s single-CPU computer? Then the
gruesome realities of CPU schedulers
and serialized resources (such as Ora-
cle latches and locks and writable ac-
cess to buffers in memory) may restrict
your throughput to quantities much less
than the required 100 tasks per second.
It might work; it might not. You cannot
derive throughput exclusively from a re-
sponse time measurement. You have to
measure it separately.

Response time and throughput are
not necessarily reciprocals. To know
them both, you need to measure them
both. Which is more important? For
a given situation, you might answer
legitimately in either direction. In

Table 1. The axiomatic approach as taught by Mr. Harkey.

3.1x + 4	 = 13	 problem statement
3.1x + 4 – 4	 = 13 – 4	 subtraction property of equality
3.1x	 = 9	 additive inverse property, simplification
3.1x ∕ 3.1	 = 9 ∕ 3.1	 division property of equality
x	 ≈ 2.903	 multiplicative inverse property, simplification

practice

september 2010 | vol. 53 | no. 9 | communications of the acm 57

many circumstances, the answer is
that both are vital measurements re-
quiring management. For example,
a system owner may have a business
requirement not only that response
time must be 1.0 second or less for a
given task in 99% or more of execu-
tions but also that the system must
support a sustained throughput of
1,000 executions of the task within a
10-minute interval.

Percentile Specifications
Earlier, I used the phrase “in 99%
or more of executions” to qualify a
response time expectation. Many
people are more accustomed to such
statements as “average response time
must be r seconds or less.” The per-
centile way of stating requirements
maps better, though, to the human
experience.

Example 3. Imagine that your re-
sponse time tolerance is 1 second for
some task that you execute on your com-
puter every day. Imagine further that
the lists of numbers shown in Table 2
represent the measured response times
of 10 executions of that task. The aver-
age response time for each list is 1.000
second. Which one do you think you
would like better?

Although the two lists in Table 2
have the same average response time,
the lists are quite different in charac-
ter. In list A, 90% of response times were
one second or less. In list B, only 60% of
response times were one second or less.
Stated in the opposite way, list B repre-
sents a set of user experiences of which
40% were dissatisfactory, but list A
(having the same average response time
as list B) represents only a 10% dissatis-
faction rate.

In list A, the 90th percentile response
time is .987 seconds; in list B, it is 1.273
seconds. These statements about per-
centiles are more informative than
merely saying that each list represents
an average response time of 1.000 sec-
ond.

As GE says, “Our customers feel the
variance, not the mean.”1 Expressing
response-time goals as percentiles
makes for much more compelling re-
quirement specifications that match
with end-user expectations: for exam-
ple, the “Track Shipment” task must
complete in less than .5 seconds in at
least 99.9% of executions.

Problem Diagnosis
In nearly every performance problem
I’ve been invited to repair, the stated
problem has been about response
time: “It used to take less than a sec-
ond to do X; now it sometimes takes
20+.” Of course, a specific statement
like that is often buried under veneers
of other problems such as: “Our whole
[adjectives deleted] system is so slow
we can’t use it.”2

Just because something happened
often for me doesn’t mean it will hap-
pen for you. The most important thing
to do first is state the problem clearly,
so you can think about it clearly.

A good way to begin is to ask,
what is the goal state that you want
to achieve? Find some specifics that
you can measure to express this: for
example, “Response time of X is more
than 20 seconds in many cases. We’ll
be happy when response time is one
second or less in at least 95% of execu-
tions.” That sounds good in theory,
but what if your user doesn’t have such
a specific quantitative goal? This par-
ticular goal has two quantities (1 and
95); what if your user doesn’t know
either one of them? Worse yet, what
if your user does have specific ideas,
but those expectations are impossible
to meet? How would you know what

“possible” or “impossible” even is?
Let’s work our way through those

questions.

The Sequence Diagram
A sequence diagram is a type of graph
specified in UML (Unified Modeling
Language), used to show the interac-
tions between objects in the sequen-
tial order that those interactions
occur. The sequence diagram is an ex-
ceptionally useful tool for visualizing
response time. Figure 1 shows a stan-
dard UML sequence diagram for a
simple application system composed

Table 2. The average response time for
each of these two lists is 1.000 second.

List A List B

1 .924 .796

2 .928 .798

3 .954 .802

4 .957 .823

5 .961 .919

6 .965 .977

7 .972 1.076

8 .979 1.216

9 .987 1.273

10 1.373 1.320

Figure 1. This UML sequence diagram shows the interactions among a browser,
an application server, and a database.

Track Shipment

prepare()

execute()

fetch()

Browser

Browser

App

App

DB

DB

58 communications of the acm | september 2010 | vol. 53 | no. 9

practice

of a browser, application server, and a
database.

Imagine now drawing the sequence
diagram to scale, so that the distance
between each “request” arrow coming

in and its corresponding “response”
arrow going out are proportional to
the duration spent servicing the re-
quest. I have shown such a diagram
in Figure 2. This is a good graphical

representation of how the compo-
nents represented in your diagram are
spending your user’s time. You can
“feel” the relative contribution to re-
sponse time by looking at the picture.

Sequence diagrams are just right
for helping people conceptualize how
their responses are consumed on a
given system, as one tier hands con-
trol of the task to the next. Sequence
diagrams also work well to show how
simultaneous processing threads
work in parallel, and they are good
tools for analyzing performance out-
side of the information technology
business.1

The sequence diagram is a good
conceptual tool for talking about per-
formance, but to think clearly about
performance, you need something
else. Here’s the problem. Imagine
the task you’re supposed to fix has a
response time of 2,468 seconds (41
minutes, 8 seconds). In that period of
time, running that task causes your
application server to execute 322,968
database calls. Figure 3 shows what
the sequence diagram for that task
would look like.

There are so many request and re-
sponse arrows between the applica-
tion and database tiers that you can’t
see any of the detail. Printing the se-
quence diagram on a very long scroll
isn’t a useful solution, because it
would take weeks of visual inspection
before you would be able to derive use-
ful information from the details you
would see.

The sequence diagram is a good
tool for conceptualizing flow of con-
trol and the corresponding flow of
time. To think clearly about response
time, however, you need something
else.

The Profile
The sequence diagram does not scale
well. To deal with tasks that have huge
call counts, you need a convenient ag-
gregation of the sequence diagram
so that you understand the most im-
portant patterns in how your time has
been spent. Table 3 shows an exam-
ple of a profile, which does the trick.
A profile is a tabular decomposition
of response time, typically listed in
descending order of component re-
sponse time contribution.

Example 4. The profile in Table 3

Figure 2. A UML sequence diagram drawn to scale, showing the response time consumed
at each tier in the system.

Track Shipment
prepare()

execute()
fetch()

Browser

Browser

App

App

DB

DB

Figure 3. This UML sequence diagram shows 322,968 database calls executed by
the application server.

Show Task prepare()execute()fetch()

Browser

Browser

App

App

DB

DB

practice

september 2010 | vol. 53 | no. 9 | communications of the acm 59

is rudimentary, but it shows exactly
where your slow task has spent your us-
er’s 2,468 seconds. With the data shown
here, for example, you can derive the
percentage of response time contribu-
tion for each of the function calls iden-
tified in the profile. You can also derive
the average response time for each type
of function call during your task.

A profile shows where your code has
spent your time and—sometimes even
more importantly—where it has not.
There is tremendous value in not hav-
ing to guess about these things.

From the data shown in Table
3, you know that 70.8% of your us-
er’s response time is consumed by
DB:fetch() calls. Furthermore, if
you can drill down in to the individual
calls whose durations were aggregat-
ed to create this profile, you can know
how many of those App:await _
db _ netIO() calls corresponded to
DB:fetch() calls, and you can know
how much response time each of
those consumed. With a profile, you
can begin to formulate the answer to
the question, “How long should this
task run?”… which, by now, you know
is an important question in the first
step (section 0) of any good problem
diagnosis.

Amdahl’s Law
Profiling helps you think clearly about
performance. Even if Gene Amdahl
had not given us Amdahl’s Law back
in 1967, you would probably have
come up with it yourself after the first
few profiles you looked at.

Amdahl’s Law states: Performance
improvement is proportional to how
much a program uses the thing you
improved. If the thing you’re trying
to improve contributes only 5% to
your task’s total response time, then
the maximum impact you’ll be able
to make is 5% of your total response
time. This means that the closer to
the top of a profile that you work (as-
suming that the profile is sorted in
descending response-time order), the
bigger the benefit potential for your
overall response time.

This doesn’t mean that you always
work a profile in top-down order,
though, because you also need to con-
sider the cost of the remedies you’ll be
executing.3

Example 5. Consider the profile in

Table 4. It’s the same profile as in Table
3, except here you can see how much
time you think you can save by imple-
menting the best remedy for each row in
the profile, and you can see how much
you think each remedy will cost to im-
plement.

Which remedy action would you im-
plement first? Amdahl’s Law says that
implementing the repair on line 1 has
the greatest potential benefit of saving
about 851 seconds (34.5% of 2,468 sec-
onds). If it is truly “super expensive,”
however, then the remedy on line 2 may
yield better a net benefit—and that is
the constraint to which you really need
to optimize—even though the potential
for response time savings is only about
305 seconds.

A tremendous value of the profile is
that you can learn exactly how much
improvement you should expect for
a proposed investment. It opens the
door to making much better deci-
sions about what remedies to imple-
ment first. Your predictions give you

a yardstick for measuring your own
performance as an analyst. Finally, it
gives you a chance to showcase your
cleverness and intimacy with your
technology as you find more efficient
remedies for reducing response time
more than expected, at lower-than-
expected costs.

What remedy action you implement
first really boils down to how much
you trust your cost estimates. Does
“dirt cheap” really take into account
the risks that the proposed improve-
ment may inflict upon the system?
For example, it may seem dirt cheap
to change that parameter or drop that
index, but does that change poten-
tially disrupt the good performance
behavior of something out there that
you’re not even thinking about right
now? Reliable cost estimation is an-
other area in which your technologi-
cal skills pay off.

Another factor worth considering is
the political capital that you can earn
by creating small victories. Maybe

Table 3. This profile shows the decomposition of a 2,468.000-second response time.

Function Call R (sec) Calls

1 DB: fetch() 1,748.229 322,968

2 App: await _ db _ netIO() 338.470 322,968

3 DB: execute() 152.654 39,142

4 DB: prepare() 97.855 39,142

5 Other 58.147 89,422

6 App: render _ graph() 48.274 7

7 App: tabularize() 23.481 4

8 App: read() 0.890 2

Total 2,468.000

Table 4. This profile shows the potential for improvement and the corresponding cost
(difficulty) of improvement for each line item from Table 2.

Potential improvement % and cost of investment R (sec) R (%)

1 34.5% super expensive 1,748.229 70.8%

2 12.3% dirt cheap 338.470 13.7%

3 Impossible to improve 152.654 6.2%

4 4.0% dirt cheap 97.855 4.0%

5 0.1% super expensive 58.147 2.4%

6 1.6% dirt cheap 48.274 2.0%

7 Impossible to improve 23.481 1.0%

8 0.0% dirt cheap 0.890 0.0%

Total 2,468.000

60 communications of the acm | september 2010 | vol. 53 | no. 9

practice

cheap, low-risk improvements won’t
amount to much overall response-
time improvement, but there’s value
in establishing a track record of small
improvements that exactly fulfill your
predictions about how much response
time you’ll save for the slow task. A
track record of prediction and fulfill-
ment ultimately—especially in the
area of software performance, where
myth and superstition have reigned
at many locations for decades—gives
you the credibility you need to influ-
ence your colleagues (your peers, your
managers, your customers…) to let
you perform increasingly expensive
remedies that may produce bigger
payoffs for the business.

A word of caution, however: don’t
get careless as you rack up successes
and propose ever-bigger, costlier,
riskier remedies. Credibility is fragile.
It takes a lot of work to build it up but
only one careless mistake to bring it
down.

Skew
When you work with profiles, you re-
peatedly encounter sub-problems
such as this:

Example 6. The profile in Table 3 re-
vealed that 322,968 DB: fetch() calls
had consumed 1,748.229 seconds of re-
sponse time. How much unwanted re-
sponse time would be eliminated if you
could eliminate half of those calls? The
answer is almost never, “Half of the re-
sponse time.” Consider this far simpler
example for a moment:

Example 7. Four calls to a subroutine
consumed four seconds. How much un-
wanted response time would be elimi-
nated if you could eliminate half of
those calls? The answer depends upon

the response times of the individual
calls that we could eliminate. You might
have assumed that each of the call dura-
tions was the average 4/4 = 1 second, but
nowhere did the statement tell you that
the call durations were uniform.

Imagine the following two possi-
bilities, where each list represents the
response times of the four subroutine
calls:

A = {1, 1, 1, 1}
B = {3.7, .1, .1, .1}

In list A, the response times are uni-
form, so no matter which half (two) of
the calls you eliminate, you will reduce
total response time to two seconds. In
list B, however, it makes a tremendous
difference which two calls are eliminat-
ed. If you eliminate the first two calls,
then the total response time will drop
to .2 seconds (a 95% reduction). If you
eliminate the final two calls, then the
total response time will drop to 3.8 sec-
onds (only a 5% reduction).

Skew is a nonuniformity in a list of
values. The possibility of skew is what
prohibits you from providing a precise
answer to the question I asked at the
beginning of this section. Let’s look
again:

Example 8. The profile in Table 3
revealed that 322,968 DB: fetch()
calls had consumed 1,748.229 seconds
of response time. How much unwanted
response time would you eliminate by
eliminating half of those calls? With-
out knowing anything about skew, the
most precise answer you can provide is,
“Somewhere between 0 and 1,748.229
seconds.”

Imagine, however, that you had
the additional information available

in Table 5. Then you could formulate
much more precise best-case and
worst-case estimates. Specifically, if
you had information like this, you
would be smart to try to figure out how
specifically to eliminate the 47,444
calls with response times in the .01- to
.1-second range.

Summary
In Part 1, I have tried to link togeth-
er some of the basic principles that
I have seen people trip over in my
travels as a software performance
analyst. In Part 2, I will describe how
competition for shared resources
influences performance by cover-
ing the concepts of efficiency, load,
queuing delay, and coherency delay. I
will also explain how to think clearly
about performance during the de-
sign, build, and test phases of an ap-
plication, so that you’ll be much more
likely to create fast software that can
become even faster throughout its
production lifespan. 	

 Related articles
 on queue.acm.org

You’re Doing It Wrong
Poul-Henning Kamp
http://queue.acm.org/detail.cfm?id=1814327

Performance Anti-Patterns
Bart Smaalders
http://queue.acm.org/detail.cfm?id=1117403

Hidden in Plain Sight
Bryan Cantrill
http://queue.acm.org/detail.cfm?id=1117401

References
1.	G eneral Electric Company. What is Six Sigma? The

roadmap to customer impact; http://www.ge.com/
sixsigma/SixSigma.pdf.

2.	 Millsap, C. My whole system is slow. Now what? 2009;
http://carymillsap.blogspot.com/2009/12/my-whole-
system-is-slow-now-what.html.

3.	 Millsap, C. On the importance of diagnosing before
resolving. 2009; http://carymillsap.blogspot.
com/2009/09/on-importance-of-diagnosing-before.
html.

4.	 Millsap, C. Performance optimization with Global
Entry. Or not? 2009; http://carymillsap.blogspot.
com/2009/11/performance-optimization-with-global.
html.

Cary Millsap is the founder and president of Method R
Corporation (http://method-r.com), a company devoted to
software performance. He is the author (with Jeff Holt) of
Optimizing Oracle Performance (O’Reilly) and a co-author
of Oracle Insights: Tales of the Oak Table (Apress). He is
the former vice president of Oracle Corporation’s System
Performance Group and is also an Oracle ACE Director
and a founding partner of the Oak Table Network, an
informal association of well-known “Oracle scientists.” He
blogs at http://carymillsap.blogspot.com, and he tweets at
http://twitter.com/CaryMillsap.

© 2010 ACM 0001-0782/10/0900 $10.00

Table 5. A skew histogram for the 322,968 calls from Table 2.

Range {min ≤ e < max} R (sec) Calls

1 	 0 0.000001 0.000 0

2 	 0.000001 0.00001 0.002 397

3 0.00001 0.0001 0.141 2,169

4 0.0001 0.001 31.654 92,557

5 0.001 0.01 389.662 180,399

6 0.01 0.1 1,325.870 47,444

7 0.1 1 0.900 2

Total 1,748.229 322,968

