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Abstract

We consider the problem of maintaining the Euclidean DedgurniangulationDT of a setP of n
moving points in the plane, along algebraic tranjectoriesomstant description complexity. Since the
best known upper bound on the number of topological chamgéaeifull Delaunay triangulation is only
nearly cubic, we seek to maintain a suitable portion of tlagdim that is less volatile yet retains many
useful properties of the full triangulation. We introdube notion of astable Delaunay graptwhich is
a dynamic subgraph of the Delaunay triangulation. The stBlelaunay graph (a) is easy to define, (b)
experiences only a nearly quadratic number of discretegdmr{c) is robust under small changes of the
norm, and (d) possesses certain useful properties forefuagbplications.

The stable Delaunay grap8I0G in short) is defined in terms of a parameter- 0, and consists of
Delaunay edgesg for which the (equal) angles at whigtandg see the corresponding Voronoi edgg
are at leastv. We show that (isDG always contains at least roughly one third of the Delaunaesdt
any fixed time; (ii) it contains thg-skeleton ofP, for 5 = 1 + Q(a?); (iii) it is stable, in the sense that
its edges survive for long periods of time, as long as thentai@ns of the segments connecting (nearby)
points of P do not change by much; and (iv) stable Delaunay edges rert@dlegwith an appropriate
redefinition of stability) if we replace the Euclidean norgndny sufficiently close norm.

In particular, if we approximate the Euclidean norm by a golyal norm (with a regulak-gon as
its unit ball, withk = ©(1/«)), we can define and keep track of a Euclid&&i: by maintaining the
full Delaunay triangulation of” under the polygonal norm (which is trivial to do, and whictkieown
to involve only a nearly quadratic number of discrete chahge

We describe two kinetic data structures for maintain#igG when the points ofP move along
pseudo-algebraic trajectories of constant descriptionptexity. The first uses the polygonal norm ap-
proximation noted above, and the second is slightly morelirad, but significantly reduces the depen-
dence of its performance en Both structures us@*(n) storage and proces®' (n?) events during the
motion, each ir0* (1) time. (Here theD*(-) notation hides multiplicative factors which are polynomia
in 1/« and polylogarithmic im.)
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1 Introduction

Delaunay triangulations and Voronoi diagrams. Let P be a (finite) set of points iiR%. Let VD(P) and
DT(P) denote the Voronoi diagram and Delaunay triangulatio pfespectively. For a poini € P, let
Vor(p) denote the Voronoi cell of. The Delaunay triangulatioDT = DT(P) consists of all triangles
whose circumcircles do not contain pointsifin their interior. Its edges form theelaunay graphwhich

is the straight-edge dual graph of the Voronoi diagranof hat is,pq is an edge of the Delaunay graph if
and only if Vor(p) andVor(¢) share an edge, which we denotedyy. This is equivalent to the existence of
a circle passing through andq that does not contain any point &fin its interior—any circle centered at
a point one,, and passing throughandg is such a circle. Delaunay triangulations and Voronoi diatg
are fundamental to much of computational geometry and idicgtions. See [5, 11] for a survey and a
textbook on these structures.

In many applications of Delaunay/Voronoi methods (e.g.simgeneration and kinetic collision de-
tection) the points are moving continuously, so these diagrneed to be efficiently updated as motion
occurs. Even though the motion of the nodes is continuowsctimbinatorial and topological structure
of the Voronoi and Delaunay diagrams change only at disdietes when certain critical events occur.
Their evolution under motion can be studied within the freuoik of kinetic data structuregKDS in short)
of Baschet al. [6, [12,/13], a general methodology for designing efficiegbathms for maintaining such
combinatorial attributes of mobile data.

For the purpose of kinetic maintenance, Delaunay trianiguig are nice structures, because, as men-
tioned above, they admit local certifications associatetth widividual triangles. This makes it simple to
maintainDT under point motion: an update is necessary only when oneesktempty circumcircle con-
ditions fails—this corresponds to cocircularities of eartsubsets of four poinﬂsWhenever such an event
happens, a single edge flip easily restores Delaunayhodimndiisig the number of such events, however,
has been elusive—the problem of bounding the number of auatdrial changes iDT for points moving
along semi-algebraic trajectories of constant descnptmmplexity has been in the computational geometry
lore for many years; seg [110].

Let n be the number of moving points iR. We assume that each point moves along an algebraic
trajectory of fixed degree or, more generally, along psealdebraic trajectory of constant description com-
plexity (see Sectionl2 for a more formal definition). Guibtale[14] showed a roughly cubic upper bound
of O(n?)\4(n)) on the number of discrete (also knowntapologica) changes irDT, where)(n) is the
maximum length of arin, s)-Davenport-Schinzel sequen¢e[22], and a constant depending on the mo-
tions of the points. A substantial gap exists between thieupound and the best known quadratic lower
bound [22].

It is thus desirable to find approaches for maintaining atsuitigl portion ofDT that provably expe-
riences only a nearly quadratic number of discrete charigasjs reasonably easy to define and maintain,
and that retains useful properties for further application

Polygonal distance functions. If the “unit ball” of our underlying norm ipolygonalthen things improve
considerably. In more detail, 1€) be a convex polygon with a constant numberpf edges. It induces a
convex distance function

do(z,y) = min{A |y € z + AQ};

dg is a metric if@ is centrally symmetric with respect to the origin.

"We assume that the motion of the points is sufficiently genen that no more than four points can become cocircularyat an
given time.



We can define thé)-Voronoi diagram of a seP of points in the plane in the usual way, as the par-
titioning of the plane into Voronoi cells, so that the c&tr®(p) of a pointp is {x € R? | dg(x,p) =
min, e p do(z, p')}. Assuming that the points d? are in general position with respect@ these cells are
nonempty, have pairwise disjoint interiors, and cover taa.

As in the Euclidean case, th@-Voronoi diagram ofP has its dual representation, which we refer to
as the@-Delaunay triangulationDT®(P) = DT®. A triple of points in P define a triangle iMT* if and
only if they lie on the boundary of some homothetic copy(dthat does not contain any point &f in
its interior. Assuming thaP is in general position, thes@-Delaunay triangles form a triangulation of a
certain simply-connected polygonal region that is comdim the convex hull oP. Unlike the Euclidean
case, it does not always coincide with the convex hull (sgered b an@ 23 for examples). See Chew and
Drysdale [8] and Leven and Shatiir [19] for analysis of Voriomed Delaunay diagrams of this kind.

For kinetic maintenance, polygonal Delaunay triangutetiare “better” than Euclidean Delaunay tri-
angulations because, as shown by CHew [7], when the poinismbve (in the algebraic sense assumed
above), the number of topological changes in h®elaunay triangulation is only nearly quadraticrin
One of the major observations in this paper is thatstiable portionsof the Euclidean Delaunay triangula-
tion and the)-Delaunay triangulation are closely related.

Stable Delaunay edges. We introduce the notion ef-stable Delaunay edgefor a fixed parametex > 0,
defined as follows. Lebg be a Delaunay edge under the Euclidean norm, and\}etr™ and Apgr— be
the two Delaunay triangles incidentpg. Thenpq is calleda-stableif its opposite angles in these triangles
satisfy Zprtq + Zpr—q < m — a. (The case whergq lies on the convex hull of is treated as if one of
rT,r~ lies at infinity, so that the corresponding anglgr*q or Zpr—q is equal t00.) An equivalent and
more useful definition, in terms of the dual Voronoi diagramthatpq is a-stable if the equal angles at
which p andg see their common Voronoi edgg, are at leastv. See Figuré]1.

Figure 1:The points p and ¢ see their common Voronoi edge ab at (equal) angles 3. This is equivalent to
the angle condition = + y = = — 3 for the two adjacent Delaunay triangles.

A justification for calling such edges stable lies in the daling observation: If a Delaunay edge
is a-stable then it remains iDT during any continuous motion a?P for which every angle/prq, for
r € P\ {p,q}, changes by at most/2. This is clear because at the timeis a-stable we have/pr*q +
/pr—q < m — « for any pair of pointsr™, »~ lying on opposite sides of the linesupportingpg, so, if
each of these angles change by at mo&? we still have/pr*q + Zpr—q < m, which is easily seen to
imply thatpq remains an edge ddT. (This argument also covers the cases when a poinbssed from
side to side: Since each point, on either sid€,deespq at an angle oK 7 — «, it follows that no point



can crosyyq itself — the angle has to increase fram- o to . Any other crossing of by a pointr causes
Zprq to decrease t0, and even if it increases t@/2 on the other side of, pq is still an edge oDT, as is
easily checked.) Hence, as long as the “small angle charayelition holds, stable Delaunay edges remain
a “long time” in the triangulation.

Informally speaking, the non-stable edgesof DT are those fop andq are almost cocircular with
their two common Delaunay neighbots, »—, and hence are more likely to get flipped “soon”.

Overview of our results. Let o > 0 be a fixed parameter. In this paper we show how to maintain a
subgraph of the full Delaunay triangulati@iI', which we call a(ca, a)-stable Delaunay grapfSDG in
short), so that (i) every edge 8DG is a-stable, and (ii) everya-stable edge aDT belongs t&8DG, where

¢ > 1is some (small) absolute constant. Note hla(: is not uniquely defined, even wheris fixed.

In Section 2, we introduce several useful definitions andvstihat the number of discrete changes in
the SDGs that we consider is nearly quadratic. What this analysis ahplies is that if the true bound for
kinetic changes in a Delaunay triangulation is really claseubic, then the overhelming majority of these
changes involve edges which never become stable and ju&rflicand out of the diagram by cocircularity
with their two Delaunay neighbors.

In Sectiond B anf]4 we show thaDG can be maintained by a kinetic data structure that uses only
near-linear storage (in the terminology of [6], itdempac}, encounters only a nearly quadratic number of
critical events (it isefficien}, and processes each event in polylogarithmic time (iesponsive For the
second data structure, described in Sedfion 4, can belgliglodified to ensure that each point appears at
any time in only polylogarithmically many places in the sture (it then becomdscal).

The scheme described in Sectidn 3 is based on a useful anekitig “equivalence” connection between
the (EuclideanpDG and a suitably defined “stable” version of the Delaunay gidation of P under the
“polygonal” norm whose unit balf) is a regulark-gon, fork = ©(1/a). As noted above, Voronoi and
Delaunay structures under polygonal norms are partigufasiorable for kinetic maintenance because of
Chew’s result[[7], showing that the number of topologicahiges inDT®(P) is O* (n?k*); here theO*(-)
notation hides a factor that depends sub-polynomially gh handk. In other words, the scheme simply
maintains the “polygonal” diagramT*(P) in its entirety, and selects from it those edges that aresaidie
edges of the Euclidean diagrddil.

The major disadvantage of the solution in Seclibn 3 is tHeerdtigh (proportional t®(1/a*)) depen-
dence orl /a(~ k) of the bound on the number of topological changes. We do mow/kmhether the upper
boundO*(n?k*) on the number of topological changesii®(P) is nearly tight (in its dependence @
To remedy this, we present in Sectldn 4 an alternative sciemmaintaining stable (Euclidean) Delaunay
edges. The scheme is reminiscent of the kinetic schemesrufgdor maintaining closest pairs and nearest
neighbors. It extract®*(n) pairs of points ofP that are candidates for being stable Delaunay edges. Each
pointp € P then runs0(1/«) kinetic and dynamic tournamenits/olving the other points in its candidate
pairs. Roughly, these tournaments correspond to sho6tiiga) rays fromP in fixed directions and find-
ing along each ray the nearest point equally distant fpand from some other candidate pojntVe show
thatpq is a stable Delaunay edge if and onlyifvins many (at least some constant number of) consecutive
tournaments op (or p wins many consecutive tournamentsy®f A careful analysis shows that the number
of events that this scheme processes (and the overall gingesme) is onlyO* (n?/a?).

Sectior[ b establishes several useful properties of stabl@ubay graphs. In particular, we show that at

any given time the stable subgraph contains at I%hst Wi—%] n Delaunay edges, i.e., at least about

one third of the maximum possible number of edges. In additiee show that at any moment t8®G
contains the closest pair, the so-calfg¢gkeletorof P, for 3 = 1 + Q(a?) (see[4[18]), and therustof a



sufficiently densely sampled point set along a smooth cwsee [3[ 4]). We also extend the connection in
Sectior{ B to arbitrary distance functiodg whose unit ball) is sufficiently close (in the Hausdorff sense)
to the Euclidean one (i.e., the unit disk).

2 Preliminaries

Stable edges in Voronoi diagrams. Let {ug,...,ux_1} C S' be a set ok = O(1/a) equally spaced
directions inR2. For concreteness take = (cos(2i/k), —sin(27i/k)), 0 < i < k (so our directionsy;

go clockwise as increasesj For a pointp € P and a unit vector, let u[p] denote the rayp+ Au | A > 0}
that emanates from in directionu. For a pair of pointg, g € P let b,, denote the perpendicular bisector
of p andgq. If by, intersectsy;[p], then the expression

2
llg — pl )

eilp.a] = 2(q — p, ui)

is the distance betwegnand the intersection point &, with «;[p]. If b,, does not interseet;|p] we define
@i[p,q] = oco. The pointg minimizesy;[p, ¢'], among all points;’ for which b, intersectsu;[p], if and

only if the intersection betweely,, andw;[p] lies on the Voronoi edge,,. We callq the neighbor ofp in

directionu;, and denote it by;(p); see Figurél2.

The (angular) extenbf a Voronoi edge:,,, of two pointsp, ¢ € P is the angle at which it is seen from
eitherp or ¢ (these two angles are equal). For a given angte , e, is calleda-long (resp.,a-shor) if
the extent ok, is at least (resp., smaller tham) We also say thaig € DT(P) is a-long (resp.,a-shory) if
epq IS a-long (resp.,a-shor). As noted in the introduction, these notions can also baeéfiequivalently)
in terms of the angles in the Delaunay triangulation: A Detauedgeyq, which is not a hull edge, is-long
if and only if Zpr+tq+ Zpr—q < ™ — a, whereApr+q andApr—q are the two Delaunay triangles incident
to pq. See Figuré€]l; hull edges are handled similarly, as disdusstae introduction.

Given parameters’ > « > 0, we seek to construct (and maintain under motion)@na«)-stable
Delaunay graph(or stable Delaunay graptfor brevity, which we further abbreviate 89G) of P, which
is any subgrapi®& of DT (P) with the following properties:

(S1) Everya/-long edge oDT(P) is an edge ofs.
(S2) Every edge o6 is ana-long edge oDT(P).

An (o/, «)-stable Delaunay graph need not be unique. In what follewsyill always be some fixed (and
reasonably small) multiple af.

Kinetic tournaments. Kinetic tournaments were first studied by Basthal. [6], for kinetically main-
taining the lowest point in a sd? of n points moving on some vertical line, say thexis, so that their
trajectories are algebraic of bounded degree, as aboveseTharnaments are a key ingredient in the data
structures that we will develop for maintaining stable Dekay graphs. Such a tournament is represented
and maintained using the following variant of a heap. Tdbe a minimum-height balanced binary tree,
with the points stored at its leaves (in an arbitrary ord€@r an internal node < T, let P, denote the
set of points stored in the subtree rooted.aft any specific time, each internal node stores the lowest

2The index arithmetic is modulb, i.e.,u; = Witk-



point among the points i, at timet, which is called thevinneratv. The winner at the root is the desired
overall lowest point ofP.

To maintainT we associate a certificate with each internal nodevhich asserts which of the two
winners, at the left child and at the right child wfis the winner ab. This certificate remains valid as long
as (i) the winners at the children ofdo not change, and (ii) the order along tht@xis between these two
“sub-winners” does not change. The actual certificate sairly to the second condition; the first will be
taken care of recursively. Each certificate has an assddailere time, which is the next time when these
two winners switch their order along theaxis. We store all certificates in another heap, using theréa
times as keyE.This heap of certificates is called tbeent queue

Processing an event is simple. When the two sub-winpgrsat some node change their order, we
compute the new failure time of the certificatevatthe first future time whep and ¢ meet again), update
the event queue accordingly, and propagate the new wirenep, sip the tree, revising the certificates at the
ancestors ob, if needed.

If we assume that the trajectories of each pair of pointgset at most times then the overall number
of changes of winners, and therefore also the overall numbevents, is at most_, |P(v)|5,(|P(v)|) =
O(npBy(n)logn). HerepB,.(n) = A-(n)/n, and A\.(n) is the maximum length of a Davenport-Schinzel
sequence of orderonn symbols; se€ [22].

This is larger by a logarithmic factor than the maximum ploieshumber of times the lowest point along
the y-axis can indeed change, since this latter number is boubglélde complexity of the lower envelope
of the trajectories of the points iR (which, as noted above, records the changes in the winnke abbt of
7).

Agarwal et al. [1] show how to make such a tournament atismamic supporting insertions and dele-
tions of points. They replace the balanced binary ey aweight-balanced BB(«)) tree[21] (and see
also [20]). This allows us to insert a new point anywhere wshwin 7', and to delete any point frof,
in O(logn) time. Each such insertion or deletion may chafyéog n) certificates, along the correspond-
ing search path, and therefore updating the event queus €feg? n) time, including the time for the
structural updates of (rotations it} heren denotes the actual number of points/ipat the step where we
perform the insertion or deletion. The analysis[df [1] is suanized in Theorern 2.1.

Theorem 2.1(Agarwal et al. [1]). A sequence ofn insertions and deletions into a kinetic tournament,
whose maximum size at any timenigassumingn > n), when implemented as a weight-balanced tree in
the manner described above, generates at radst 3, 2(n) log n) events, with a total processing cost of
O(mBr12(n)log?n). Herer is the maximum number of times a pair of points intersect, @nd(n) =
M\+2(n)/n. Processing an update or a tournament event taR¢®g®n) worst-case time. A dynamic
kinetic tournament om elements can be constructeddrin) time.

Remarks:(1) Theoreni 2]1 subsumes the static case too, by insertitigea¢lements “at the beginning of
time”, and then tracing the kinetic changes.

(i) Note that the amortized cost of an update or of processirtournament event is onl§(logn) (as
opposed to thé(log? n) worst-case cost).

Maintenance of an SDG. LetP = {py,...,p,} be asetof points moving iR2. Letp;(t) = (x;(t), y:(t))
denote the position gf; at timet¢. We call the motion ofP algebraicif eachz;(t), y;(¢) is a polynomial
function oft, and thedegreeof motion of P is the maximum degree of these polynomials. Throughout this
paper we assume that the motion Bfis algebraic and that its degree is bounded by a constanthidn t

*Any “standard” heap that suppoiitssert, delete anddeleteminin O(log n) time is good for our purpose.
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subsection we present a simple technique for maintainif@xaa)-stable Delaunay graph. Unfortunately
this algorithm requires quadratic space. It is based ondl@fing easy observation (see Figlie 2), where
k is an integer, and the unit vectors (directions). .., u;_1 are as defined earlier.

Lemma 2.2. Leta = 27 /k. (i) If the extent o&,, is larger than2a then there are two consecutive directions
u;, u;11, such thaty is the neighbor op in directionsu; and ;1.

(ii) If there are two consecutive directions, u;+1, such that is the neighbor op in both directionsu; and
u;+1, then the extent af,, is at leasto.

Figure 2:q is the neighbor of p in the directions u; and u,1, so the Voronoi edge ¢,, is a-long.

The algorithm maintains Delaunay edgessuch that there are two consecutive directiopnandu;;
along whichg is the neighbor op. For each poinp and directionu; we get a set of at most— 1 piecewise
continuous functions of timey;[p, q], one for each poing # p, as defined in{1). (Recall that[p, ¢] = oo
whenu; [p] does not intersed,,.) By assumption on the motion &f, for eachp andg, the domain in which
wilp, q](t) is defined consists of a constant number of intervals.

For each poinp, and rayu;[p], consider each functiop;[p, ¢| as the trajectory of a point moving along
the ray and corresponding o The algorithm maintains these points in a dynamic and kirtetirnament
K;i(p) (see Theorerh 2.1) that keeps track of the minimur{fip, ¢|(t)} 4, Over time. For each pair
of pointsp andq such thaty wins in two consecutive tournament&; (p) and K;.1(p), of p, it keeps the
edgepq in the stable Delaunay graph. Itis trivial to update thispgras a by-product of the updates of the
various tournaments. The analysis of this data structusérasghtforward using Theorefm 2.1, and yields
the following result.

Theorem 2.3. Let P be a set ofx» moving points inR? under algebraic motion of bounded degree, ket
be an integer, and let = 27 /k. A (2a, a)-stable Delaunay graph aP can be maintained usin@ (kn?)
storage and processin@ (kn?3,2(n)logn) events, for a total cost ab(kn?B,,2(n)log?n) time. The
processing of each event tak@glog? n) worst-case time. Hereis a constant that depends on the degree
of motion ofP.

Later on, in Sectiofl4, we will revise this approach and redihe storage to nearly linear, by letting
only a small number of points to participate in each tournamehe filtering procedure for the points makes
the improved solution somewhat more involved.



3 An SDG Based on Polygonal Voronoi Diagrams

Let @ = Qy be aregulak-gon for some evek = 2s, circumscribed by the unit disk, and let= /s (this

is the angle at which the center@fsees an edge). L&D (P) andDT*(P) denote th&)-Voronoi diagram

and the dual)-Delaunay triangulation of, respectively. In this section we show that the set of edges
of VD®(P) with sufficiently manybreakpoints(see below for details) form 3, 3')-stable (Euclidean)
Delaunay graph for appropriate multiplgs 5’ of a. Thus, by kinetically maintaining/D¢(P) (in its
entirety), we shall get “for free” a KDS for keeping track o$t@ble portion of the Euclidean DT.

3.1 Properties of VD*(P)

We first review the properties of the (stationakip©(P) andDT°(P). Then we consider the kinetic version

of these diagrams, as the points ®fmove, and review Chew’s prodf][7] that the number of topatadi
changes in these diagrams, over time, is only nearly quadrat. Finally, we present a straightforward
kinetic data structure for maintaininigT®(P) under motion that uses linear storage, and that processes a
nearly quadratic number of events, eacldiflog n) time. Although later on we will také) to be a regular
k-gon, the analysis in this subsection is more general, angchlyeassume here thél is an arbitrary convex
k-gon, lying in general position with respect o

Stationary Q-diagrams. Thebisectorb;, between two pointg andg, with respect talg (-, -), is the locus
of all placements of the center of any homothetic co¥yof @ that toucheg andq. Q' can be classified
according to the pair of its edges, ande,, that touchp and g, respectively. If we slid&)’ so that its
center moves alongf,, (and its size expands or shrinks to keep it touchirandg), and the contact edges,
e1 andes, remain fixed, the center traces a straight segment. Thetbiss a concatenation @ (k) such
segments. They meet biteakpoints which are placements of the center of a capythat touche® andgq
and one of the contact points is a vertex@fsee Figurél3. We call such a placememaner contactat
the appropriate point. Note that a corner contact where s@rtexw of (a copy@’ of) Q touchesp has
the property that the center ¢ lies on the fixed ray emanating froprand parallel to the directed segment
from w to the center of).

o
bpq

Q

p

Figure 3:Each breakpoint on by, corresponds to a corner contact of @ at one of the points p, ¢, so that 9Q)
also touches the other point.

A useful property of bisectors and Delaunay edges, in theiabease wheré) is a regular-gon, which
will be used in the next subsection, is that the breakpoilisgaa bisecto;,, alternate between corner
contacts ap and corner contacts at Indeed, assuming general position, each pairg 9 determines
a unique placement @ where it touche® at w and also toucheg, as is easily checked. A symmetric



property holds when we interchangeandq. Hence, as we slide the center @falong the bisectob;, ,
the points of contact 0@ with p andq vary continuously and monotonically alory). Consider two
consecutive corner contactg,, Q”, of Q atp alongb;,,, and suppose to the contrary that the portion;of
between them is a straight segment, meaning that, withinpbition,dQ touches each g, ¢ at a fixed
edge. Since the center @¢f moves along the angle bisector of the lines supporting tedges (a property
that is easily seen to hold for reguliargons), it is easy to see that the distance between the twaaton
points ofp, at the beginning and the end of this sliding, and the digtdoetween the two contact pointsof
(measured, say, on the boundary of the standard placemé)jtarke equal. However, this distance fois

the length of a full edge ofQ, because the motion starts and ends withuching a vertex, and therefore
the same holds fag, which is impossible (unlesgalso starts and ends at a vertex, which contradicts our
general position assumption).

Another well known property af)-bisectors and Voronoi edges, for arbitrary convex polygjargeneral
position with respect ta”, is that two bisectors;, , by, can intersect at most once (again, assuming
general position), so every-Voronoi edgee,, is connected. Equivalently, this asserts that there eaists
most one homothetic placement@fat which it touche9, ¢, andg,. Indeed, since homothetic placements
of Q behave like pseudo-disks (see, elg.] [17]), the boundafiego distinct homothetic placements @f
intersect in at most two points, or, in degenerate positioat most two connected segments. Clearly, in the
former case the boundaries cannot both conpaify, andg-, and this also holds in the latter case because
of our general position assumption.

Consider next an edgey of DT?(P). Its dual Voronoi edge;,, is a portion of the bisecta; , and
consists of those center placements aléjjgfor which the corresponding copy’ has anempty interior
(i.e., its interior is disjoint fromP). Following the notation of Chew [7], we cally a corner edgef e;,
contains a breakpoint (i.e., a placement with a corner ctntatherwise it is anon-corner edgeand is

therefore a straight segment.

Kinetic @-diagrams. Consider next what happens ¥D°(P) and DT°(P) as the points ofP move
continuously with time. In this caséD®(P) changes continuously, but undergoes topological chariges a
certain critical times, calledvents There are two kinds of events:

(i) FLiP EVENT. A Voronoi edgee;, shrinks to a point, disappears, and is “flipped” into a newheeging
\oronoi edgee;,q,.

(i) CORNEREVENT. An endpoint of some Voronoi edge, becomes a breakpoint (a corner placement).

Immediately after this time;,, either gains a new straight segment, or loses such a segthanit had
before the event.

Some comments are in order:

(a) A flip event occurs when the four pointsg, p’, ¢ become “cocircular”: there is an empty homothetic
copy @’ of  that touches all four points.
(b) On_ly non-corner edges can participate in a flip event,aih the vanishing edge;, and the newly
emerging edgeg,q, do not have breakpoints near the event.
(c) A flip event entails a discrete change in the Delaunayguéation, whereas a corner event does not.
Still, for algorithmic purposes, we will keep track of botiméis of events.

We first bound the number of corner events.
Lemma 3.1. Let P be a set of. points inR? under algebraic motion of bounded degree, andebe a

convexk-gon. The number of corner eventsifi®(P) is O(k*n)\,.(n)), wherer is a constant that depends
on the degree of motion @f.



Proof. Fix a pointp and a vertexv of ), and consider all the corner events in whicliouchesp. As noted
above, at any such event the centasf () lies on a rayy emanating fronp at a fixed direction. (Since
p is moving, v is a moving ray, but its orientation remains fixed.) For eattfeopointg € P\ {p}, let
©5[p, g denote the distance, at timgfrom p alongy to the center of a copy @ that toucheg (atw) and
q- The valuemin, ¢S [p, ¢/(t) represents the intersection@Wor®(p) with ~ at timet, whereVor®(p) is the
Voronoi cell ofp in VD®(P). The pointg that attains the minimum defines the Voronoi edfjg(or vertex
if the minimum is attained by more than one pajhof Vor®(p) that+y intersects.

In other words, we have a collection of— 1 partially defined functions[p, ¢], and the breakpoints
of their lower envelope represent the corner events thatuavthe contact ofv with p. By our assumption
on the motion ofP, each functionyS [p, q| is piecewise algebraic, with(k) pieces. Each piece encodes
a continuous contact @f with a specific edge aof)’, and has constant description complexity. Hence (see,
e.g., [22, Corollary 1.6]) the complexity of the envelopaisnostO(k\,(n)), for an appropriate constant
r. Repeating the analysis for each pgirdnd each vertexw of @, the lemma follows. O

Consider next flip events. As noted, each flip event involvpiaeement of an empty homothetic copy
Q' of ) that touches simultaneously four points p», p3, p4 of P, in this counterclockwise order along
0Q', so that the Voronoi edgé;lpa, which is a non-corner edge before the event, shrinks tora poid is
replaced by the non-corner edgg,, . Lete; denote the edge @}’ that touchesp;, fori = 1,2, 3, 4.

We fix the quadruple of edges, es, e3, ¢4, bound the number of flip events involving a quadruple
contact with these edges, and sum the bound ovér(@ft) choices of four edges @. For a fixed quadruple
of edgesey, eo, €3, ¢4, We replace) by the convex hullQ, of these edges, and note that any flip event
involving these edges is also a flip event €gy. We therefore restrict our attentiondgy, which is a convex
ko-gon, for somé, < 8.

We note that if(p, ¢) is a Delaunay edge representing a contact of some homottaicQ);, of Qo
wherep andq touch twoadjacentedges ofQ);,, then(p, ¢) must be a corner edge—shrinkiidgf, towards
the vertex common to the two edges, while it continues tolquandg, will keep it empty, and eventually
reach a placement where eitheor ¢ touches a corner af),. The same (and actually simpler) argument
applies to the case wherandgq touch the same edﬂf Qo.
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Figure 4: Left: The edge e$5 in the diagram VD°(P) before disappearing. The endpoint ¢{,5 (resp., ¢$43)
of e}, corresponds to the homothetic copy of Qo whose edges e, ea, e3 (resp., e1, e4, e3) are incident to the
respective vertices py, p2, p3 (resp., p1, p4, p3). Right: The tree of non-corner edges.

Consider the situation just before the critical event tailese, as depicted in Figufé 4 (left). The

Voronoi edger;, . (to simplify the notation, we write this edge &S, and similarly for the other edges and

“In general position this does not occur, but it can happefisatete time instances during the motion,



vertices in this analysis) is delimited by two Voronoi vee$, onec{,;, being the center of a copy 6j
which touche®1, p2, p3 at the respective edges, ez, e3, and the other,;, being the center of a copy of
Qo which touche9, pa, p3 at the respective edges, e4, e3. Consider the two other Voronoi edges and

e5 adjacent tacf,5, and the two Voronoi edges’, andej; adjacent ta:f,;. Among them, consider only
those which are non-corner edges; assume for simplicitytiieg all are. For specificity, consider the edge
ef,. As we move the center @p, along that edge away fromf,;, Qo loses the contact withs; it shrinks

on the side op;ps which contaings (andp,, already away frond)y), and expands on the other side. Since
this is a non-corner edge, its other endpoint is a placemaetemhe (artificial) edge;» of @y betweere;
andes touches another poipt. Now, however, since;, is adjacent to both edges, e, the new Voronoi
edgese{; andes; are both corner edges.

Repeating this analysis to each of the other three Vorongegddjacent te$;, we get a tree of non-
corner Voronoi edges, consisting of at most five edges, dcaththe other Voronoi edges adjacent to its
edges are corner edges. As long as no discrete change oteumg @ the surrounding corner edges, the
tree can undergo onk (1) discrete changes, because all its edges are defined by aftaél) points of
P. When a corner edge undergoes a discrete change, this eahaifyO(1) adjacent non-corner trees of
the above kind. Hence, the number of changes in non-cormgsad proportional to the number of changes
in corner edges, which, by LemrhaB.1 (applieddg) is O(n\,(n)). Multiplying by the O(k*) choices of
quadruples of edges @f, we thus obtain:

Theorem 3.2. Let P be a set ofa moving points irfR? under algebraic motion of bounded degree, and let
Q be a convex-gon. The number of topological changesVib®(P) with respect taQ is O(k*n\,.(n)),
wherer is a constant that depends on the degree of motiaR. of

Kinetic maintenance of VD¢ (P) and DT°(P). As already mentioned, it is a fairly trivial task to main-
tain DT®(P) andVD®(P) kinetically, as the points aP move. All we need to do is to assert the correctness
of the present triangulation by a collection of local cectifes, one for each edge of the diagram, where the
certificate of an edge asserts that the two homothetic plact®—, Q™ of Q that circumscribe the two
respective adjacer-Delaunay triangleg\pqr—, Apgr™, are such thaf)~ does not contain™ and Q+
does not contaim—. The failure time of this certificate is the first time (if onests) at whichp, ¢,»~, and

rT become-cocircular—they all lie on the boundary of a common homtitheopy of Q. Such an event
corresponds to a flip event inT°(P). If pq is an edge of the periphery &fT°(P), so that\pgr™ exists

but Apgr— does not, therd)~ is a limiting wedge bounded by rays supporting teemsecutiveedges of (a
copy of) , one passing throughand one througly (see Figur¢ls). The failure time of the corresponding
certificate is the first time (if any) at which' also lies on the boundary of that wedge.

We maintain the breakpoints using “sub-certificates”, ezfalvhich asserts thaf)—, say, touches each
of p, q, 7~ at respective specific edges (and similarly gt). The failure time of this sub-certificate is the
first failure time when one @b, ¢ or »~ touches)~ at a vertex. In this case we have a corner event—two of
the adjacent Voronoi edges terminate at a corner placeeit.that the failure time of each sub-certificate
can be computed i®(1) time. Moreover, for a fixed collection of valid sub-certifies, the failure time of
an initial certificate (asserting non-cocircularity) cdscabe computed it (1) time (provided that it fails
before the failures of the corresponding sub-certificatesyause we know the four edges@f involved
in the contacts.

We therefore maintain an event queue that stores and upalhtee active failure times (there are only
O(n) of them at any given time—the bound is independenk obecause they correspond to actial
edges. When a sub-certificate fails we do not chdd@g&(P), but only update the corresponding Voronoi
edge, by adding or removing a segment and a breakpoint, areplacing the sub-certificate by a new one;
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Figure 5: If »— does not exist then Q~ is a limiting wedge bounded by rays supporting two consecutive
edges of (a copy of) Q.

we also update the cocircularity certificate associated thié edge, because one of the contact edges has
changed. When a cocircularity certificate fails we updai& (P) and construcO (1) new sub-certificates
and certificates. Altogether, each update of the diagraestaklog n) time. We thus have

Theorem 3.3. Let P be a set of: moving points ifR? under algebraic motion of bounded degree, and let
@ be a convex-gon. DT°(P) and VD®(P) can be maintained usin@(n) storage and)(log n) update
time, so thaD (k*n )\, (n)) events are processed, wheres a constant that depends on the degree of motion
of P.

3.2 Stable Delaunay edges iDT*(P)

We now restrict) to be a regulak-gon. Letwy,...,vx_1 be the vertices of) arranged in a clockwise
direction, withv, the leftmost. We call a homothetic copy @f whose vertex; touches a poinp, av;-
placement of) at p. Letw; be the direction of the vector that conneefswith the center of), for each
0 < j < k (as in Sectiofil2). See Figure 6 (left).

We follow the machinery in the proof of LemrhaB.1. That is,day pairp, g € P let¢§[p, q] denote the
distance fronp to the pointu; [p] Nb;,,; we pute? [, q] = ooif uy[p] does not intersedt,. If ©5 [p,q] < o0
then the poinbs, N u;p] is the center of the;-placement))’ of @ atp that also touches, and it is easy
to see that there is a unique such point. The vajﬁ{q,p] is equal to the circumradius @}’. See Figurél6
(middle).

Theneighbor N7 [p] of p in directionu; is defined to be the poirt € P\ {p} that minimizesy$[p, q|.
Clearly, for anyp,q € P we haveN;?[p] = ¢ if and only if there is an empty;-placement)’ of Q atp so
thatq touches one of its edges.

Remark: Note that, in the Euclidean case, we havgp, ¢q] < oo if and only if the angle betweepy and
u;[p] is at mostr /2. In contrast,y$[p, q] < oo if and only if the angle betweepg andw;[p] is at most
7/2 —w/k = m/2 — «/2. Moreover, we have;[p, q] < ¢}[p, q]. Therefore,?[p, ] < oo always implies
©;ilp, q] < oo, but not vice versa; see Figurk 6 (right). Note also that th tiee Euclidean and the polygonal
cases, the respective quantiti¥s[p] and N [p] may be undefined.

Lemma 3.4. Letp,q € P be a pair of points such thav;(p) = ¢ for h > 3 consecutive indices, say
0 < j < h — 1. Then for each of these indices, except possibly for thediirdtthe last one, we also have

N2[p] = q.

Proof. Let w; (resp.,wz) be the point at which the rayy [p] (resp.,ur—1[p]) hits the edgez,, in VD(P).
(By assumption, both points exist.) L&t; and D, be the disks centered at; andws, respectively, and
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Figure 6:Left: u; is the direction of the vector connecting vertex v, to the center of ). Middle: The function
©%[p, q] is equal to the radius of the circle that circumscribes the v;-placement of @ at p that also touches g.
Right: The case when gp;?[p, g] = oo while ¢;[p, g] < co. In this case ¢ must lie in one of the shaded wedges.

touchingp andq. By definition, neither of these disks contains a poinPah its interior. The angle between
the tangents t@; and D, atp or atq (these angles are equal)is= (h — 1)«; see Figurél7 (left).

Figure 7:Left: The angle between the tangents to D; and D5 at p (or at g) is equal to Zwipws = 8 = (h—1)a.
Right: The line ¢’ crosses D in a chord ¢q’ which is fully contained in ¢’.

Fix an arbitrary indext < j < h — 2, sou;[p| intersectse,, and forms an angle of at leastwith
each ofpwy, pw,. LetQ’ be thev;-placement of)) at p that toucheg. To see that such a placement exists,
we note that, by the preceding remark, it suffices to showttietngle betweepg and u;[p] is at most
m/2 — «/2; that is, to rule out the case wheydies in one of the shaded wedges in Figure 6 (right). This
case is indeed impossible, because then ong of[p], u;.+1[p] would form an angle greater thary2 with
Pg, contradicting the assumption that both of these rayssattithe (Euclideari,,,.

We claim that)’ ¢ D, U D». Establishing this property for evety< j < h— 2 will complete the proof
of the lemma. Let’ be the edge of)’ passing througly. See Figur&l7 (right). Leb be the disk whose
center lies on;[p] and which passes throughandg, and letD* be the circumscribing disk a@@’. Since
¢ € 9D and is interior toD™, and sinceD and D™ are centered on the same ray{g] and pass through
p, it follows that D c D™. The line/’ containinge’ crossesD in a chordgq’ that is fully contained ire’.
The angle between the tangent/ioat ¢ and the chordyq’ is equal to the angle at whighseesyq’. This is
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smaller than the angle at whighsees’, which in turn is equal tav/2.

Arguing as in the analysis dD; and D-, the tangent td at ¢ forms an angle of at least with each
of the tangents td;, D, atgq, and hence’ forms an angle of at least/2 with each of these tangents; see
Figurel8 (left). The ling’ marks two chordg; ¢, qg» within the respective diskB;, D,. We claim thak'’ is
fully contained in their uniony; ¢2. Indeed, the angle;pq is equal to the angle betweéhand the tangent
to D; atq, soZq1pq > «/2. On the other hand, the angle at whjckees’ is /2, which is smaller. This,
and the symmetic argument involvidg,, are easily seen to imply the claim.

Figure 8:Left: The line ¢ forms an angle of at least /2 with each of the tangents to D;, D5 at ¢q. Right:
The edge ¢’ = ajay of Q' is fully contained in D1 U D».

Now consider the circumscribing disR™ of @’. Denote the endpoints ef asa; andas, wherea, lies
in g1q andas lies in ggo. Since the raypa; hits 9D before hittingD;, and the raypg hits these circles in
the reverse order, it follows that the second intersectfofifo; anddD* (other thanp) must lie on a ray
from p which lies between the ray&:,, pg and thus crosses. See Figur€l8 (right). Symmetrically, the
second intersection point 6D, andd D™ also lies on a ray which crosse’s

It follows that the arc o©® D™ delimited by these intersections and containinig fully contained in
D7 U D,y. Hence all the vertices af)’ (which lie on this arc) lie inD; U Ds. This, combined with the
argument in the preceding paragraphs, is easily seen tyithpt Q" C D; U D, so its interior does
not contain points of”, which in turn implies thatV?[p] = g. As noted, this completes the proof of the
lemma. O

SinceQ-Voronoi edges are connected, Lemima 3.4 impliesdfjais “long”, in the sense that it contains
at leasth — 2 breakpoints that represent corner placemengsiaterleaved (as promised in Sect[on]3.1) with
at leasth — 3 corner placements at This property is easily seen to hold also under the wealgemagtions
that: (i) for the first and the last indicgs= 0, — 1, the pointV;[p] either is equal tg or is undefined,
and (ii) for the rest of the indices we haveN;[p] = ¢ and[p, q] < oo (i.e., thev;-placement ofy at
p that toucheg; exists). In this relaxed setting, it is now possible that ahyhe two pointswy, ws lies at
infinity, in which case the corresponding digk or D, degenerates into a halfplane. This stronger version
of Lemma 3.4 is used in the proof of the converse Lemma 3.8rtasg that every edge, in VD?(P) with
sufficiently many breakpoints has a stable counterggrin VD(P).

Lemma 3.5. Letp,q € P be a pair of points such tha’tf;[p] = ¢ for at least three consecutive indices
j € {0,...,k —1}. Then for each of these indices, except possibly for thedirdtthe last one, we have

Njlp] =q.
Proof. Again, assume with no loss of generality théf[p] = ¢ for 0 < j < h — 1, with h > 3. Suppose
to the contrary that, for some < j < h — 2, we haveN;[p| # ¢. SinceN;[p] = ¢ by assumption, we

13



havey;[p,q] < go;?[p, q] < oo, so there exists € P for which ¢;[p, ] < ¢;[p, q]. Assume with no loss of
generality that- lies to the left of the line fronp to ¢. In this casep;_1[p, 7] < ¢j_1[p,q] < co. Indeed,
we have ()Ny_;[p] = q by assumption, s@3_;[p,q] < oo, and (i) p;—1[p, ¢} < ¢?_;[p,q]. Moreover,
because- lies to the left of the line fronp to ¢, the orientation ob,,,. lies counterclockwise to that of,,
implying thaty;_1[p, ] < co. See Figurél9. Since;[p] hits b,, before hittingb,,,, any ray emanating from
p counterlockwise tas;[p] must do the same, so we haye 1 [p,r] < ¢;_1[p,q], as claimed. Similarly,
we get that eithetp; _a[p, 7] < @;_2[p,q] < oo or ¢;_s[p,r] < pj_2[p,q] = oo (where the latter can
occur only forj = 1). Now applying (the extended version of) Lemmal 3.4 to thenpset{p, ¢,r} and
to the index sefj — 2,5 — 1,}, we get thatp;_,[p,r] < ¢j_,[p,q]. But this contradicts the fact that

N7 4 [p] = ¢ U

uj-1[ps,

Figure 9:Proof of LemmaB5l If N;[p] # ¢ because some r, lying to the left of the line from p to r, satisfies
vjlp, ] < @jlp, q]- Since p;_1[p,q] < ¢5_1[p, q] < oo, we have p;_1[p,7] < ¢;-1[p, ql.

Maintaining an SDG using VD?(P). Lemmad 3} anf 3.5 together imply that ®RG can be main-
tained using the fairly straightforward kinetic algorittfior maintaining the wholé&/D®(P), provided by
Theoreni3.B. We us€D?(P) to maintain the grapl on P, whose edges are all the pafjs q) € P x P
such thatp and ¢ define an edge;,, in VD?(P) that contains at least seven breakpoints. As shown in
Theoreni 3B, this can be done with(n) storage O (log n) update time, and(k*n\,(n)) updates (for an
appropriater). We claim thaG is a(6«, «)-SDG in the Euclidean norm.

Indeed, if two pointgp, ¢ € P define a6a-long edgee,, in VD(P) then this edge stabs at least six
raysu;[p] emanating fronp, and at least six rays;[¢] emanating fromy. Thus, according to Lemnia_3.4,
VD?(P) contains the edge;, with at least four breakpoints corresponding to cornergsfeents of@) at
p that touchq, and at least four breakpoints corresponding to cornereptents of() at ¢ that touchp.
Thereforee;,, contains at least breakpoints, s¢p, q) € G.

For the second part, jf,q € P define an edge;,, in VD®(P) with at least7 breakpoints then, by the
interleaving property of breakpoints, we may assume, withass of generality, that at least four of these
breakpoints correspond f8-empty corner placements ¢f atp that touchy. Thus, Lemma&3]5 implies that
VD(P) contains the edge,,, and that this edge is hit by at least two consecutive tgys. But then, as
observed in Lemma2.2, the edgg is a-long in VD(P). We thus obtain the main result of this section.

Theorem 3.6. Let P be a set of: moving points ifR? under algebraic motion of bounded degree, and let
a > 0 be a parameter. A6a, «)-stable Delaunay graph aP can be maintained by a KDS of linear size
that processe®)(n\,(n)/at) events, where is a constant that depends on the degree of motiaR, @ind
that updates the SDG at each eventifiog n) time.
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4 An Improved Data Structure

The data structure of TheorémB.6 requit¥s:) storage but the best bound we have on the number of events
it may encounter i€)*(n?/a*), which is much larger than the number of events encounteyetidodata
structure of Theorem 2.3 (which, in terms of the dependemce, @s only O* (n?/a)). In this section we
present an alternative data structure that requires/a?) space an@*(n?/a?) overall processing time.
The structure processes each everdiiil/«) time and is alsdocal, in the sense that each point is stored
at onlyO*((1/a)?) places in the structure.

Notation. We use the directions; and the associated quantiti&g[p] andy;[p, ¢| defined in Sectiofl2.
We assume that, the number of canonical directions, is even, and write naSdctiof 2,k = 2s. We
denote byC; the cone (or wedge) with apex at the origin that is bounded;@nd ;. ;. Note thatC; and
C;+s are antipodal. As before, for a vector we denote by:[x] the ray emanating fromz in directionw.
Similarly, for a cone”' we denote by’'[z] the translation of” that places its apex at Let0 < 5 < 7/2 be
an angle. For a direction € S* and for two pointg, ¢ € P, we say that the edge,, € VD(P) is 3-long
around the rayu[q] if p is the Voronoi neighbor of in all directions in the rangg: — 3, u + 5], i.e., for all
v € [u— B,u+ p], the rayv[q] intersects:,,. The -cone around:[q] is the cone whose apexgdsand each
of its bounding rays makes an anglemWith u|q].

Figure 10:Left: ¢ is j-extremal for p. Right: ¢ is strongly j-extremal for p.

Definition (j-extremal points). (i) Let p,q € P, let: be the index such that € C;[p], and letu; be a
direction such thatu;, z) < 0 for all z € C;. We say thay is j-extremalfor p if ¢ = argmax{(p’, u;) |
p' € Ci[p]n P\ {p}}. Thatis,q is the nearest point tp in this cone, in thg—u;)-direction. Clearly, a
pointp has at most j-extremal points, one for every admissible cargp], for any fixed;. See Figuré0
(left).

(i) For 0 < i < k, let C! denote the extended cone that is the union of the seven adiveecones
Ci—3,...,Ciy3. Letp,q € P, leti be the index such that € C;[p], and letu; be a direction such that
(uj,z) < 0forall x € C (suchu,’s exist if o is smaller than some appropriate constant). We say that the
pointg € P is strongly j-extremalfor p if ¢ = arg max{(p’,u;) | p’ € C{[p] N P\ {p}}.

(i) We say that a paifp,q) € P x P is (strongly) (j, ¢)-extrema) for some0 < j, ¢ < k —1,if pis
(strongly) /-extremal forqg andgq is (strongly)j-extremal forp.
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Figure 11:lllustration of the setup in Lemmal4.1l the edge e,, is 3-long around v[p], and the “tip” Aot qo~
of the cone Cq] is empty.

Lemma4.1. Letp, ¢ € P, and letv be a direction such that the edgg, appears invVD(P) and is3-long
around the rayv[p]. LetC|[q] be theS-cone around the ray from throughp. Then(p,v) > (p’,v) for all
p' € PNClqg]\ {q}.

Proof. Refer to Figuré Tl1. Without loss of generality, we assume thia the (+x)-direction and thay
lies above and to the right @f. (In this case the slope of the bisectgy, is negative. Note thaj has to
lie to the right ofp, for otherwiseb,, would not cross;[p].) Letv™ (resp.,u™) be the direction that makes
a counterclockwise (resp., clockwise) angledofvith v. Leta™ (resp.,a™) be the intersection af,,, with
vT[p] (resp., withv~[p]); by assumption, both points exist. Liebe the vertical line passing throughLet
o™ (resp.,0™) be the intersection point df with the ray emanating from™ (resp.,a™) in the direction
opposite tav~ (resp.,v™); see Figuré&1.

Note that/pa™c™ = 23, and thatjat o™ || = ||pa™|| = |lga™ ||, i.e.,a™ is the circumcenter af\poTgq.
ThereforeZotgp = $Z0tatp = 5. Thatis,o* is the intersection of the upper ray 6fg] with h.
Similarly, o~ is the intersection of the lower ray 6f[q] with ~. Moreover, if there exists a point € P
properly inside the trianglé\pgo™ then|la*z| < |la*pl||, contradicting the fact thai™ is one,,. So
the interior of Apqgo™ (including the relative interiors of edgeg, o ¢) is disjoint from P. Similarly, by
a symmetric argument, no points &flie inside Apgo™ or on the relative interiors of its edgesg, o g.
Hence, the portion of’[g] to the right ofp is openly disjoint fromP, and therefore is a rightmost point of
P (extreme in they direction) insideCq]. O

Corollary 4.2. Letp, ¢ € P. (i) If the edgee,, is 3a-long in VD(P) then there aré) < j, ¢ < k for which
(p, q) is a(j, ¢)-extremal pair. (i) If the edge,, is 9a-long in VD(P) then there ar® < j, ¢ < k for which
(p, q) is a strongly(j, £)-extremal pair.

Proof. To prove part (i), choose < j,¢ < k, such thak,, is a-long around each af,[p] andu;[q]. By
Lemma4.lp is ug-extremal in thex-coneC'[q] around the ray frong throughp. Leti be the index such
thatp € C;[q]. Since the opening angle 6f[q] is 2« it follows thatC;[q] C C[q], sop is ¢-extremal with
respect tay, and, symmetricallyg is j-extremal with respect tp. To prove part (ii) choosé < j,¢ < k,
such thak,, is 4a-long around each af,[p] andu;[q] and apply Lemm&4l1 as in the proof of part (i}
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The stable Delaunay graph. We kinetically maintain 10, «)-stable Delaunay graph, whose precise
definition is given below, using a data-structure which isdghon a collection of 2-dimensional orthogonal
range trees similar to the ones used_in [1].

Fix 0 < i < s, and choose a “sheared” coordinate frame in which the tg@ymdu; ., form the x-
andy-axes, respectively. That is, in this coordinate frame, C;[p] if and only if ¢ lies in the upper-right
guadrant anchored at

We define a 2-dimensional range tréeconsisting of gorimary balanced binary search tree with the
points of P stored at its leaves ordered by theicoordinates, and of secondary trees, introduced below.
Each internal node of the primary tree off; is associated with theanonical subsefP, of all points that
are stored at the leaves of the subtree rooted aA point p € P, is said to bered (resp.,blue) in P,
if it is stored at the subtree rooted at the left (resp., jighild of v in T;. For each primary node we
maintain a secondary balanced binary searchfgavhose leaves store the points /f ordered by their
y-coordinates. We refer to a nodein a secondary treg; as asecondary node& of T;.

Each nodev of a secondary tre&; is associated with a canonical subsgt C P, of points stored at
the leaves of the subtree Of rooted atw. We also associate with the setsk,, C P, andB,, C P, of
points residing in théeft (resp.,right) subtreeof w and are red (resp., blue) iA,. It is easy to verify that
the sum of the sizes of the sdts, and B,, over all secondary nodes f is O(n log? n).

For each secondary nodec T, and eacl) < j < k£ we maintain the points

R B
&5 (w) = arg max (p,uj), & ;(w) = arg max (p, uj),

provided that bothR,,, B,, are not empty. See Figutell2. It is straightforward to shaat ith(p, q) is a
(7, ¢)-extremal pair, so thag € C;[p], then there is a secondary nogec T; for which ¢ = gfj(w) and

p =& (w).

Figure 12:The points ¢ (w), £Z; (w) for a secondary node w of T;.

For eachp € P we construct a sét([p] containing all points; € P for which (p, q) is a(j, ¢)-extremal
pair, for some pair of indice8 < j,¢ < k. Specifically, for eact) < i < s, and each secondary node
w € T; such thap = ¢f%(w) for some0 < ¢ < k, we include inN[p] all the pointsg such thayy = ¢/ (w)
for some0 < j < k. Similarly, for each) < i < s, and each secondary nodec T; such thap = gfg(w)
for some0 < ¢ < k we include inN|p] all the pointsg such thaty = gfj(w) for some0 < j < k. Itis easy
to verify that, for eaclii, ¢)-extremal pairp, ¢), for some0 < j,¢ < k, ¢ is placed iriN[p] by the preceding
process. The converse, however, does not always hold, snergl{p} x N[p] is a superset of the pairs
that we want.
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For each) < i < s, each poinp € P belongs toO(log? n) setsR,, and B,,, so the size olN[p] is
bounded byO(s?log? n). Indeedp may be coupled with up tb = 2s neighbors at each of th@(s log? n)
nodes containing it.

For each poinp € P and0 < ¢ < k we maintain all points ifN|[p] in a kinetic and dynamic tournament
Dy[p] whose winnerg minimizes the directional distancgy[p, ¢|, as given in[(IL). That is, the winner in
Dylp] is N¢[p] in the Voronoi diagram ofp} U N]p].

We are now ready to define the stable Delaunay gi@ghat we maintain. For each pair of points
p,q € P we add the edgép, ¢) to G if the following hold.

(G1) Thereis anindefi < ¢ < k such thay wins the 8 consecutive tournames[p), . .., Dy 7[p]-
(G2) The pointp is strongly(¢ + 3)-extremal and strongly/ + 4)-extremal forg.

The (10« «)-stability of G is implied by a combination of Theorerhs 4.3 4.4,
Theorem 4.3. For everyl0a-long edgee,,, € VD(P), the graphG contains the edgép, q).

Proof. By Corollary[4.2 (i), there arg¢ and/ such thatfp, q) is a(j, ¢)-extremal pair. By the preceding dis-
cussion this implies thatis in N[p]. Now sincee,, is 10a-long there is ai’ such thatNy [p], . .., Ny 7[p] =
¢ in VD(P), and therefore also in the Voronoi diagram{ef U N|[p]. So it follows thatg indeed wins the
tournamentDy [p], ..., Dy 7[p].

By the proof of Corollary"412 (ii)p is strongly (¢ + 3)-extremal and strongly?’ + 4)-extremal for
q. ]

Theorem 4.4. For every edgép, q) € G, the edgez,, belongs toVD(P) and isa-long there.

Proof. Since(p,q) € G we know thatg is in N[p] and wins the tournamen®y[p|, Dy11(p], - - - , Des7[p),
for some0 < ¢ < k and that the poinp is strongly (¢ + 3)-extremal and/ + 4)-extremal forq. We prove
that the raysu,.s[p] andu,4[p] stabe,,, from which the theorem follows.

Assume then that one of the rayg, 3[p|, u¢+4[p] does not stal,,,; suppose it is the ray,, 4[q]. (This
includes the case whe#, is not present at all ivD(P).) By definition, this means that= N, 4[p] # q.
We use Lemm@ 415, given shortly below, to show theannot win in at least one of the tournaments among
Delpl, ..., Dey7[p] and thereby get a contradiction.

According to Lemma_4]5, there exists a poinsuch thatp,,4[p, 7] < @eralp,q] andp is (¢ + 4)-
extremal forr. Letx = w,y4[p] N by, and letD be the circle which is centered at and passes through
andp; see Figuré_113.

We consider the case wherés to the right of the line fronp to ¢; the other case is treated symmetrically.
In this case the intersection bf. andb, is to the left of the directed line fromto z. Let0 <i <k —1be
the index for which- € C;[p]. If i < s —1 then there is a secondary noden the treeJ; for whichp € R,,
andr € B, and sincep is (¢ + 4)-extremal forr, gsz+4(w) is equal top. If i > s then, symmetrically, we
have a nodev € T,_, such thatr € R, andp € B,, and§ﬁ+4(w) is equal top. We assume that< s — 1
in the sequel; the other case is treated in a fully symmetanmer.

Let v[r] be the ray from- throughz, for an appropriate direction € S, and letu; be the direction
which lies counterclockwise to and forms with it an angle of at leastand at mos«. Putr’ = fj(w),
implying thatr’ € C;[p] and (1, u;) > (r,u;). In particular,”” belongs taN[p]. If " is inside D (and in
particular ifr’ = r) theng cannot win the tournamer®,, 4[p] which is the contradiction we are after. So
we may assume that is outsideD.
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Figure 13:Proof of Theorem[4.4} the case when r is to the right of the line from p to ¢. The line k orthogonal
to u; through r intersects the circle D at a point y outside C;[p], which implies that +’ is to the right of the
line from p to r. Assuming r # 1/, the point z = b, N b, is inside the cone bounded by w,,4[p] and w4 7[p].
Hence, w4 7[p] hits by, before by,

Let h be the line through orthogonal tou;. Clearly,h intersectsD at two points, and another point
y (lying counterclockwise te alongodD, by the choice of.;). SinceZrpy = %érxy, andZrxy equal to
twice the angle betweemandu;, Zrpy is at leasty, soy is outsideC;[p]. By assumptions’ lies in the
halfplane bounded b¥ and containing. Since we assume thatis not in D it must be to the right of the
line from z to r. It follows thatb,, intersectsh,, at some point to the right of the line fronp to z; see
Figure[I3.

We claim thatz is inside the cone with apgxbounded by the rays, 4[p] andu,, 7[p]. Indeed, suppose
to the contrary that the claim is false. It follows that in ti@gramVD({r, ', p}) the edgee,, is a-
long aroundu,[r]. Indeed, denote the intersection pointwf. ;[p] andb,, asw (see Figur¢_13). Then
Zxrw = Zzpw = 3a. Since the angle betweeryr| andu;[r| is betweeny and2e«, the claim follows.
Now, according to Lemm@4.1r,u;) < (', u;), which contradicts the choice of. It follows thatz is
in the cone bounded by, 4[p] andu,7[p] and thusu, 7[p] hits b, beforeb,,., and therefore also before
b,q. Hence,q cannot winD,7[p], and we get the final contradiction which completes the paidhe
theorem. O

Remark: We have not made any serious attempt to reduce the constapsearing in the definitions of
various(ca, «)-SDGs that we maintain. We suspect, though, that they can befisintly reduced.
To complete the proof of Theordm #.4, we provide the missémgnha.

Lemma 4.5. Letp, g € P be a pair of points an® < ¢ < k — 1 an index, such that the poiptis strongly

¢-extremal forg but Ny[p] # ¢. Then there exists a pointsuch thaty,[p, 7| < ¢¢[p, ¢] andp is ¢-extremal
for r.

Proof. Let0 < i < k — 1 be the index for whicly € C;[p] and leth be the line througlp, orthogonal tau,.
Assume without loss of generality thats vertical and the ray,[p] extends to the right of.

Let a be the point at whiche,[p] intersects the bisectar,,, and letD be the disk centered atwhose
boundary contains bothandq. SinceN,[p] # ¢, the interior of D must contain some other pointe P;
see Figur€14.

19



Figure 14:The proof of Lemmal[45} The point p is strongly ¢-extremal for ¢ and ¢-extremal for 7.

Let C[q] be the cone emanating frognsuch that each of its bounding rays makes an angle of 3«
with the ray fromgq throughp; in particularC|[q| containsp. Let o™ (resp.,o~) denote the upper (resp.,
lower) endpoint of the intersection 6f[¢] andh. Sincep is strongly/-extremal forg, the interior of the
triangle Ao qgo~ does not contain any points @f. Hence,r must be outside the triangléo™qo~. So
eitherr is abovego™ (and insideD) or belowgo~ (and insideD).

Assume, without loss of generality, thais belowqo—, as shown in Figure“14. (The case wherns
aboveqo™ is fully symmetric.) Lett™ andt~ denote the intersection poingg™ N dD andgo™ N dD,
respectively. Let be the point at which the ray fromthrought~ intersectsh. Then the intersection of the
triangle Aot re andActqo~ is empty. Among all the points @ in D we choose so that itsz-coordinate
is the smallest. For this choice ofwe also have thaf\otre \ Aot qo™ is empty (since it is contained in
D and lies to the left of). In other words Ao re is empty.

Let v+ (resp.,y~) denote the angle/pro™ (resp.,Zprt™). It remains to show thayt > %ﬁ and
v > %ﬂ. This will imply that the cone”;/ [r] that containg is fully contained in the cone bounded by the
rays fromr througho™ andt—, sop is extreme in they,-direction withinC; [r], which is what the lemma
asserts. Sinceis insideD, it is clear thaty™ > Zpqt~ = 3. The angley™ however may be smaller than
3, but, as we next showan v+ > % tan (. Indeed, fix an anglé and letl’(#) denote the circular arc which
is the locus of all pointg that are to the right of and the angle/pzo™ is 6. The endpoints of (¢) arep
ando™, and its centen* is on the (horizontal) bisector g™ ; see Figuré 15 (left).

Notice thatl’(6) intersect$) D at two points, one of which is, which are symmetric with respect to the
line througha anda*. As 6 decreases™ moves to the right, and the intersectionIa#) with 9D rotates
clockwise aroundD. Consider the smallestsuch thaf(¢) intersectsD on or belowgt™. It follows that
this intersection is at~. See Figuré_15 (right).

This shows that for fixegh andq, the position ofr in D below the lineqt~ which minimizesy™ is at
t~. To complete the analysis, we look for the positionydfiat minimizesy™ whenr is att~. Note that, as
g moves alon@D, the pointst™ andt~ do not change. As shown in Figurel 16 (left)t decreases when
q tends counterclockwise to". Whengq is att™, go™ is tangent toD. A simple calculation, illustrated
in Figure[1® (right), shows thatn v+ = %tan (. By the inequalitytan(3x) > 3tan z, for z sufficiently
small, it follows thaty™ > %ﬂ, implying, as noted above, that the poins /-extremal forr. This completes
the proof of the lemma. O
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Figure 15:Left: The circular arc I'(6) is the locus of all points which are to the right of po™ and see it at angle
6. Right: To minimize 6 we increase the radius of I'(d) until one of its intersection points with D coincides
with ¢~

Figure 16:Left: 4T is minimized as ¢ tends counterclockwise to ¢*. Right: Proving that tany™ = 1 tan 3
when g = tT and r = t~. The triangles Aqgo™p and Apgr are isosceles and similar, and y = 2z cos 3. Thus

+ _  xsinf  __ 1
tany™ = T = 3 tan 3.

In Sectior[ 4.1l we describe a naive algorithm for kinetic exiance ofG, which encounters a total of
O*(k*n?) events in the tournameri[p]. In Sectior 4.2 we consider a slightly more economical didimi
of the tournament®;,[p], yielding a solution which processes oy (k*n?) events inO* (k*n?) overall
time.

4.1 Naive maintenance ofs

As the points ofP? move, we need to update t8®G G, which, as we recall, contains those edges;)
such thatg wins 8 consecutive tournamen®;[p], ..., D,y 7[p] of p, andp is strongly (¢ + 3)-extremal
and (¢ + 4)-extremal forg. We thus need to detect and process instances at which ohesaf tonditions
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changes. There are several events at which such a changeatan o

(a) A change in the sets of neighbd¥$p|, for p # P.

(b) A change in the status of being stronghgxtremal for some paip, q).

(c) A change in the winner of some tournaméhfp] (at which two existing members &f[p] attain the
same minimum distance in the directiap).

Note that each of the events (a)—(b) can arise only duringag ®/two points in one of the directions
ug, - - ., Ug—1 OF in one of the directions orthogonal to these vectors.

For each) < ¢ < s — 1 we maintain two lists. The first list,;, stores the points aP ordered by their
projections on a line in the;-direction, and the second ligk;;, stores the points ordered by their projections
on a line orthogonal to the;-direction. We note that, as long as the order in each oRthksts K, L;
remains unchanged, the discrete structure of the rangeJyeagnd the auxiliary itemsﬁ(w), 5%(10), does
not change either. More precisely, the structur& othanges only when two consecutive element&jn
or in K, swap their order in the respective list; whereas the amyilimmsgfj(w), fj(w), stored at
secondary nodes 0f;, may also change when two consecutive points swap their ordee list ;. There
areO(sn?) = O(n?) discrete events where consecutive pointgdinor L; swap. We call these evenis;-
swapsand L;-swaps respectively. Each such event happens when the line traymgtr of points becomes
orthogonal or parallel ta;. We can maintain each list in linear space for a totaD¢fn) space for all lists.
Processing a swap také¥logn) time to replace a constant number of elements in the eventeqg(and
more time to update the various structures, as discussdjl nex

The range treesT;. As just noted, the structure &f changes either at A;-swap or at a; 1-swap. As
described in([l1, Section 4], we can upddtevhen such a swap occurs, including the various auxiliarg dat
that it stores, inD(slog?n) time. (The factors is due to the fact that we maintaii(s) extreme points
5fg(w) andgfj(w) in each secondary node of T;, whereas in[[ll] only two points are maintained.)

In a similar manner, ai ;-swap of two point, ¢ may affect one of the iterr@?j(w) andgfj(w) stored
at any secondary node of any 7;, for 0 < ¢ < s — 1, such that botlp, ¢ belong toR,, or to B,,. Each
T; has onlyO(log? n) such nodes, and the data structurelof [1] allows us to ugBiatehen anL ;-swap
occurs inO(log? n) time. Summing up over al) < i < s — 1, we get that the total update time of the
range trees after ah;-swap isO(s log?n). As follows from the analysis in[1, Section 4], the trégsfor
0 <i < s— 1, require a total of)(s*nlog n) storage (because of tiig(s) itemse”, (w), £, (w) stored at
each secondary node of each of thieees).

The tournaments D, [p]. The kinetic tournamerib,[p], for p € P and0 < ¢ < k — 1 contains the points in
the setN[p]. SinceN|p| varies both kinetically and dynamically and therefore thamnaments,[p| need
to be maintained as kinetic and dynamic tournaments, in trener reviewed in Sectidn 2.

For0 < i < s — 1, we definell; to be the set of pairs of pointp, ¢), such that there exists a secondary
nodew in T;, and indices) < j,¢ < k — 1, for whichp = ¢/ (w) andg = £ (w). For a fixedi, a point
p belongs taO (s log® n) pairs(p, ¢) in II;, for a total ofO(s?log? n) pairs over all setl;. It follows that
the total size of all the setd; is 0(82n10g2 n). Any secondary node of any trég, for0 < i < s — 1,
contributes at mosb(s?) pairs to the respective sH.

The setN[p] consists of all the pointg such that there exists a déf that contains the paip, ¢) or the
pair (¢,p). So the total size of the sed¥[p], over all pointsp, is O(s*nlog?n). A setN[p] changes only
when one of the setd; changes, which can happen only as the result of a swap.

Specifically, Wherfﬁ(w) changes forsome < i < s—1and0 < ¢ < k — 1, from a pointp to a point
p', we make the following updates. (i)#f# &%, (w) for all ¢’ # ¢ then for every) < j < k — 1 we delete
the pair(p, fj(w)) from I1;. (ii) We add the paifp’, ffj(w)) to IT;. We make analogous updates when one
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of the valuef%(w) changes. When a nodeis created, deleted, or involved in a rotation, we update the
pairs €/, (w), £f%;(w)) in I1; for every¢ andj. In such a case we say that nadés changed

A change oft[%,(w) or ¢%;(w) in an existing nodev generates)(s) changes iril; and therebyO(s)
changes to the sefS[p]. Thus, it may generat®(s?) updates to the tournameri®[p]. A change of a
secondary node may gener&és?) changes to the se¥[p] and therebyD(s?®) updates to the tournaments
Dylpl.

[2,90]\ point ffé(w) or ffé(w) changes during either &;, K;.1, or Ly-swap. EachL,-swap, for any/,
causes)(slog? n) points &l (w) or £f,(w) to change (over the entire collection of trees), and theeefo
each swap cause3(s® log? n) updates to the tournamnef¥[p]. The number of nodes which change in
T; by aK; or K;1-swap isO(log®n). Each such change caugess®) updates to the tournameri|[p].
Therefore the total number of updates to tournaments dueetages of nodes is al€d(s® log? n) per swap.

The number of swaps 9(sn?), so overall we ge®(s*n?log® n) updates to the tournaments. The size
of each individual tournament 8(s?log? n). By Theoreni. 211 these updates generate

O(s*n2log?n - Brya(s®log? n)log(s?log? n)) = O(s*n?B,42(slog n)log? nlog(slogn))
tournament events, which are processed in
O(s'n?log?n - Bria(s*log?n)log?(s?log? n)) = O(s*n? - B,19(slogn)log® nlog?(slogn))

time. Processing each individual tournament event tak@sg? log n + log? s) time.

Since the size of each tournamentiés® log® n) and there ar€(ns) tournaments, the total size of all
tournaments i€ (s>n log® n).

Testing whetherp is strongly ¢-extremal for the winner of Dy[p]. For eachd < i < s — 1, and for each
pair (p, q) € II; we maintain those indicgs < ¢ < k—1 (if there are any) for which is strongly/-extremal
for ¢. Recall that each point belongs ta0 (s log? n) pairs in the setsI;.

We use the tre€s; for i — 3 < j < i+ 3 to find, for a queryy, the pointarg MaXy e PAc!q] (¢, up), for
each0 < ¢ < k — 1. The query time i$(slog? n) Using this information we easily determine, for a pair
(p, q), for which values of p is strongly/-extremal forg.

As explained above, every swap changks? log? n) pairs of the set$l;. When a new pair is added to
a setll; we query the treeS;, 1 — 3 < j < + 3, to find for which values of, p is strongly/-extremal for
¢ (and vice versa). This takes a total@fs> log® n) time for each swap.

Furthermore, a poinp can cease (or start) being stronghextremal forg only during a swap which
involves either or q. So when we process a swap betwgeand some other point we recompute, for all
pairs(p, x) and(z, p) in the current set$l; and for every0 < ¢ < k — 1, whetherp is strongly/-extremal
for , and whether: remains strongly-extremal forp. This adds an overhead 6f(s> log* n) time at each
swap.

The following theorem summarizes the results obtained isim fhis section.

Theorem 4.6. The SDG G can be maintained using a data structure which requite§(n/a?) log? n)
space and encounters two types of events: swaps and tounhanents.
There areO(n?/a) swaps, each processeddn(log® n/a?) time. There are

O ((n*/a*) log® nB,12(log n/a) log(log n/a))
tournament events which are processed in overall

0 ((n2/0z4) log® nB+2(logn/a)log?(logn/a))
time. Processing each individual tournament event t@k@sg? log n + log?(1/a)) time.
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4.2 An even faster data structure

We next reduce the overall time and space required to maiGtesughly by factors of? ands, respectively
(bringing the dependence anof both bounds down to roughly’). We achieve that by restricting each
tournamentD,[p] to contain a carefully chosen sub3ét[p] C N[p] of sizeO(slog? n) (recall that the size
of the entire seN[p] is O(s? log? n)). The definition ofN,[p] is based on the following lemma. Its simple
proof is given in Figuré17.

Lemma 4.7. Letp, g € P and leti be the index for which € C;[p]. Let0 < ¢ < k — 1 be an index, and
v € St a direction such that the rays,[p] andv[q] intersectb,, at the same point. Thenlies in one of the
two consecutive conesy(; o), Ce(; r)41, where((i, £) = 2i + s — /.

Ui [Pl C; [g] }Lz’+1 [p]

Figure 17:Proof of Lemma 47} We assume that ¢ € C;[p], and that the rays u,[p] and v[g| hit b,, at the
same point w. Then the angle z = Zwpq = (i + 1 — {)ae — t, for some 0 < ¢t < «. The orientation of gp is
(i+1)a—t+7m=(i+s+1)a—t. Hence, the orientation of vis (i + s+ 1)a—t+x = (2i+s—{+2)a — 2t.
Thus, the direction v lies in the union of the two consecutive cones Ce; ¢y, C¢ (i ¢)+1, for ((i,£) = 2i + s — L.

It follows that in Corollary(4.R, we can require that the iceB0 < j,¢ < k — 1, for which (p, q) is a
(strongly) (j, ¢)-extremal pair, satisfy (i,¢) < j < ((i,¢) + 2. Indeed, we may require that the vectors
u;]q], we[p] hit b,, at the respective points andy for which the angle/xzpy = Zzqy is at mosta, which,
in turn, happens only ifi; bounds one of the coné%:(; ¢), C¢(; ¢)+1-

Forall0 <i < s—1and0 < ¢ < k — 1 we define a sell; , which consists of all pairgp, ¢) of
points of P such that there exists a secondary nadim T;, and indices and((i,¢) < j < ¢(i,¢) + 2,
such thap = £ (w) andq = £ff(w) or p = €] (w) andg = £ (w). We define the sex[p] to consist of
all pointsq such that(p, q) € II; ,. For a pointp the set of points that participate in theducedtournament
Dylp] is Uﬁff’z_?) N [p]. (Note that this rule distributes a poipte Ny[p| to only seven nearby tournaments.
Nevertheless, when the edge is sufficiently long,q will belong to several consecutive neighborhoods
N¢[p], and therefore will appear in more tournaments, in paswicin at least eight consecutive tournaments
at which it should win, according to the definition of &iDG.)

We claim that, with this redefinition of the tournamefitgp|, Theorem§4]3 arid 4.4 still hold. To verify
that Theoreri 413 holds one has to follow its (short) proof@mtite that, by Lemmia4.7, the poipbelongs
to the eight reduced tournaments which it is supposed to win.

We next indicate the changes required in the proof of The@&mnWe use the same notation as in the
original proof of Theoreri 414, and recall that it assumeddntadiction that, sayV,, 4[p] # ¢ even though
g wins the tournament®;[p|, Dy+1[p], - - - , Des7[p], and the poinp is strongly(¢+ 3)- and(¢+4)-extremal
for q. We use LemmB_4]5 to establish the existence of some painf such thatp,. 4[p, 7] < wrra[p, q]
andp is (¢ + 4)-extremal forr. Leti be the index for which- € C;[p], and letw be the secondary node in
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T, for whichr € B, andp € R,,. Note thatp = §f€+4(w). We next choose an indexsuch that the point
r = ff’j(w) either satisfies thaby, 7[p, '] < @eir[p, q] if r is to the right of the line fronp to ¢, or that
wer1[p, '] < @er1lp, q] if r is to the left of the line fromp to ¢. To re-establish Theoren 4.4 it suffices to
show thatr’ participates in the reduced tournamént, ;[p| (resp.,Dy.1[p]) if r is to the right (resp., left)
of the line fromp to q.

It follows from the way we defined in the original proof and from Lemma 4.7 thati, ¢ + 4) — 2 <
Jj < (i, 0+4)—1 (if ris to the right of the line fromp to ¢) or { (i, £+4)+1 < j < (i, £+4)+2 (if risto
the left of the line fronp to ¢). Sor’ € Ny 4[p| and therefore’ does participate in the reduced tournament
Dyy1([p] o Dey7[p]. Indeed, the direction used in that proof lies in one of the con€g; ¢4y, Ce (i e44)+1-
The directionu; then forms an angle betweenand2a with v, which lies counterclockwise fromif r lies
to the right of the line fronp to ¢, or clockwise fromw in the other case. This is easily seen to imply the
two corresponding constraints gnsee Figuré 113.

We change our algorithm accordingly to maintain only theuosdl tournaments.

Now every secondary node of any range tred; contributes only seven pairs to each Bgt, for
0 < ¢ < k — 1, so the size of each such seti$n logn). Since there ar@®(s?) setsll; 4, their total size
is O(s’nlogn). Each pair in eachl;, contributes an item to a constant number of tournamentsheso t
total size of the tournaments @(s>n log n). Each individual tournamerid,[p] is now of sizeO (s log® n),
because belongs toO(log2 n) pairs in each sdil; , for0 <i<s—-1,0 < ¢ < k —1, andDy[p| inherits
only those pointg that come from pair§p, q) € II; o/, for0 < i < s—1landl/ —3 < ¢ < ( + 3.

Whenffé[w] changes fronp to p’ for somed < i < s—1and0 < ¢ < k— 1, at most a constant number
of pairs (p, fj(w)) for ¢(i,¢) < j < ((i,£) + 2 are deleted fronil; ,, and a constant number of pairs
(p’,fﬁj(w)) for ¢(i,¢) < j < ((i,¢)+2 are added tdl, ,. Similar changes take placel ; for those three
indices; satisfying((i,j) < ¢ < ((i,j) + 2. When&[[w] changes fromy to ¢’ for some0 < i < s — 1
and0 < j < k — 1, at most a constant number of pa(@lfé(w),q) are deleted fronil; ; for the indices
¢ satisfying((i,7) < ¢ < ((i,7) + 2, and a constant number of pa(r@@(w),q/) are added for the same
values off. Similarly, at most a constant number of pa@f;?z(w),q) are deleted fronil; , for the indices
¢ satisfying((i,¢) < j < ((i,£) + 2, and a constant number of pa(r@’?é(w), q') are added for the same
values of?.

A change of a secondary nodein the treeJ; causes)(s) pairs in the set$l, , to change.

Any K;-swap change® (log” n) nodes inT; and thereby cause8(slog?n) pairs in the setdl; ; to
change. AnyL;-swap change® (s log? n) extremal pointiﬁj [w], fj[w] at secondary nodes of the trees
T7;, and thereby causes(slog”n) pairs in the setsl; , to change. Since each pairlfy , contributes an
item to a constant number of tournaments it follows thét log® n) points are inserted to and deleted from
the tournament®,[p] at each swap.

According to Theoreri 211 the size of each tournameni(islog? ) — the number of elements that it
contains. So the total size of all tournament®ig?n logn). In total we get that there a@(s*n? log? n)
updates to tournaments during swaps. These updates generat

O(s*n?log? nB,42(slogn)log(slogn))
tournament events that are processed in overall
O(s*n?1og? nBy42(slogn)log?(slogn))

time. Each individual tournament event is processe@ (lvg? log n + log? s) time and each swap can be
processed 0 (s log? n log?(slogn)) time.
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In addition, for each pai(p, q) € II; , we record whethep is strongly/-extremal forg. We maintain
this information using the tre€s;, for i — 3 < j < i + 3, as described above, which allow for gny; € P
and0 < ¢ < k — 1 to test, inO(log® n) time, if p is strongly/-extremal forg. At each swap event we spend
O(slog*n) extra time to compute fad (s log? n) pairs(p, ¢) which are added to the sdi , whetherp is
strongly /-extremal forg.

Consider a paifp, q) € II; ;. The pointp may stop being strongly-extremal forg only during a swap
which involvesp or . So, as before, at each swap we find@he log® n) pairs containing one of the points
involved in the swap, and recompute, (s log* n) total time, for each such paip, ¢), whether the strong
extremal relation holds. We thus obtain the following sumymasult.

Theorem 4.8. Let P be a set of: moving points ifR? under algebraic motion of bounded degree, and let
a > 0 be a sufficiently small parameter.(A0«, «)-SDG of P can be maintained using a data structure that
requiresO((n/a?)logn) space and encounters two types of events: swap events amdruent events.
There areO(n?/a) swap events, each processedlifiog?(n)/«a) time. There are

O((n/a)?By42(log(n) /) log? nlog(log(n)/a))

tournament events, which are handled in a total of

O((n/a)?By42(log(n)/a) log? nlog?(log(n)/a))

processing time. The worst-case processing time of a tonena event i€ (log?(log(n)/)). The data
structure is also local, in the sense that each point is stoat any given time, at onk (log® n/a?) places
in the structure.

Concerning locality, we note that a point participate®if) projection tournaments at each@®fs log” n)
tree nodes. If it wins in at least one of the projection toureats at a node, it is fed O (s) directional
tournaments. So it appearsdr(s®logn) places.

Remarks: (1) Comparing this algorithm with the space-inefficient ofi&ectior 2, we note that they both
use the same kind of tournaments, but here much fewer papsinfs (O*(n/a?) instead ofO(n?/a))
participate in the tournaments. The price we have to paydsttie test for an edggg to be stable is
more involved. Moreover, keeping track of the subset ofsptiat participate in the tournaments requires
additional work, which is facilitated by the range trégs

(2) To be fair, we note that o@*(-) notation hides polylogarithmic factorsin Hence, comparing the anal-
ysis in this section with Theorein 3.6, we gain wheis smaller than some threshold, which is exponential
inl/a.

5 Properties of SDG

We conclude the paper by establishing some of the propeatistable Delaunay graphs.

Near cocircularities do not show up in an SDG. Consider a critical event during the kinetic maintenance
of the full Delaunay triangulation, in which four poinisb, ¢, d become cocircular, in this order, along their
circumcircle, with this circle being empty. Just before thidical event, the Delaunay triangulation involved
two triangles, saygbc, acd. The Voronoi edge,. shrinks to a point (namely, to the circumcenterubtd

at the critical event), and, after the critical cocirculgris replaced by the Voronoi edgg;, which expands
from the circumcenter as time progresses.
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Figure 18:The near collinearity that corresponds to a Voronoi edge becoming a-short.

Our algorithm will detect the possibility of such an evenfidse the criticality occurs, whe#,. becomes
a-short (or even before this happens). It will then remove #&tge from the stable subgraph, so the actual
cocircularity will not be recorded. The new edgg will then be detected by the algorithm only when it
becomes sufficiently long (if this happens at all), and Wikt enter the stable Delaunay graph. In short,
critical cocircularities do not arisat all in our scheme.

As noted in the introduction, a Delaunay edge(interior to the hull) is just about to becomeshort
or a-long when the sum of the opposite angles in its two adjacetduhay triangles is — « (see Figure
[). This shows that changes in the stable Delaunay graph adwn the “cocircularity defect” of a nearly
cocircular quadruple (i.e., the difference betweemand the sum of opposite angles in the quadrilateral
spanned by the quadruple) is betweeandca, wherec is the constant used in our definitions in Section
[3 or Sectio¥. Note that a degenerate case of cocirculaity dollinearity on the convex hull. Such
collinearities also do not show up in the stable Delauna}argﬁaA hull collinearity between three nodes
a, b, c is detected before it happens, when (or before) the comelspg Voronoi edge becomesshort, in
which case the angléach, wherec is the middle point of the (near-)collinearity becomes « (see Figure
[18). Therefore a hull edge is removed from 818G if the Delaunay triangle is almost collinear. The edge
(or any new edge about to replace it) re-appears irbib& when its corresponding Voronoi edge is long
enough, as before.

SDGs are not too sparse. Consider the Voronoi ceNor(p) of a pointp, and suppose thathas only one
a-long edgee,,. Since the angle at whighseese,,, is at mostr, the sum of the angles at whighsees the
other edges is at least soVor(p) has at leastr/a a-short edges. Let; denote the number of points
with this property. Then the sum of their degree®ifi( P) is at leastn (7w /« + 1). Similarly, if mg points
do not have any-long Voronoi edge, then the sum of their degrees is at ast) /«. Any other point at
least twoa-long Voronoi edges and its degree is at least 3 if it is arriotgpoint, or at least 2 otherwise. So
the number ofv-long edges is at least (recall that eactong edge is counted twice)

n—mp —mo+mi/2=n—(my+2mg)/2. (2)
Let ~ denote the number of hull vertices. Since the sum of the ésgegén — 2h — 6, we get

3(n — h —my —mg) + 2h +ma <f+1)+2m03§6n—2h—6,
(6% «

°Even if they did show up, no real damage would be done, bedaeseumber of such collinearities is onfy* (n?); see, e.g.,

22].
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Figure 19:1If the points of P lie on a sufficiently spaced shifted grid then the number of a-long edges in
VD(P) (the vertical ones) is close to n.

implying that ;
n

m/a—2
Plugging this inequality ir{2), we conclude that the numtifeti-long edges is at least

”[l‘m}

As « decreases, the number of edges in the SDG is always at leaahéty that gets closer ta. This is
nearly tight, since there existpoint sets for which the number of stable edges is only rgughsee Figure

3.

my + 2mg <

Closest pairs, crusts-skeleta, and the SDG. Letg > 1, and letP be a set of: points in the plane. The
B-skeletorof P is a graph orP that consists of all the edges such that the union of the two disks of radius
(8/2)d(p, q), touchingp andq, does not contain any point & \ {p, q}. See, e.g.[[4,18] for properties of
the 5-skeleton, and for its applications in surface reconsimactWe show that the edges of theskeleton
area-stable inDT(P), provideds > 1+ Q(a?). In Figurel2D we sketch a straightforward proof of the fact
that the edges of the-skeleton arev-stable inDT(P), provided that3 > 1 + Q(a?).

Figure 20:An edge pq of the 3-skeleton of P (for 3 > 1). ¢; and ¢y are centers of the two P-empty disks
of radius (3/2)d(p, q) touching p and ¢. Clearly, each of p, ¢ sees the Voronoi edge e,, at an angle at least
20 = Zcipq + Zeapq (SO it is 20-stable). We have 1/8 = cosf ~ 1 —6?/2 or 3 = 1+ ©(#?). Thatis, for
B> 1+ Q(a?) every edge of the 3-skeleton is a-stable.

A similar argument shows that the stable Delaunay graphagmithe closest pair if*(¢) as well as the
crust of a set of points sampled sufficiently densely alonglariensional curve (segl[3, 4] for the definition
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Figure 21:ab is an edge of the relative neighborhood graph but not of SDG.

Figure 22:A wheel-like configuration that disconnects p in the stable Delaunay graph. The Voronoi diagram
is drawn with dashed lines, the stable Delaunay edges are drawn as solid, and the remaining Delaunay
edges as dotted edges. The points of the “wheel” need not be cocircular.

of crusts and their applications in surface reconstrugtigve only sketch the argument for closest pairs: If
(p, q) is a closest pair thepg € DT(P), and the two adjacent Delaunay trianglepqr™, Apgr~ are such
that their angles of*, 7~ are at mostr/3 each, s@,, is (7/3)-long, ensuring thatg belongs to any stable
subgraph forx sufficiently small; see J1] for more details. We omit the dréar crusts, which is fairly
straightforward.

In contrast, stable Delaunay graphs need not contain adidhes of several other important subgraphs of
the Delaunay triangulation, including the Euclidean mimimspanning tree, the Gabriel graph, the relative
neighborhood graph, and the all-nearest-neighbors graghillustration for the relative neighborhood
graph is given in Figure21. As a matter of fact, the stableabehy graph need not even be connected, as is
illustrated in Figuré 22.

Completing SDG into a triangulation. As argued above, the Delaunay edges that are missing in the
stable subgraph correspond to nearly cocircular quadsugdlpoints, or to nearly collinear triples of points
near the boundary of the convex hull. Arguably, these miseniges carry little information, because they
may “flicker” in and out of the Delaunay triangulation evenemtthe points move just slightly (so that all
angles determined by the triples of points change only g{ighNevertheless, in many applications it is
desirable (or essential) to complete the stable subgraplsimetriangulation, preferrably one that is also
stable in the combinatorial sense—it undergoes only negrygratically many topological changes.

By the analysis in Sectidd 3 we can achieve part of this goahhintaining the full Delaunay triangu-
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Figure 23:The triangulation DT°(P) of an 8-point set P. The points a, b, ¢, d, which do not lie on the convex
hull of P, still lie on the boundary of the union of the triangles of DT°(P) because, for each of these points
we can place an arbitrary large homothetic interior-empty copy of @ which touches that point.

lation DT®(P) under the polygonal norm induced by the regulagon ;.. This diagram experiences only
a nearly quadratic number of topological changes, is easyaiatain, and contains all the stable Euclidean
Delaunay edges, for an appropriate choicé et 1/«. Moreover, the union of its triangles is simply con-
nected — it has no holes. Unfortunately, in general it is nioieagulation of the entire convex hull &f, as
illustrated in Figuré 23.

For the time being, we leave it as an open problem to come uUpawimple and “stable” scheme for
filling the gaps between the trianglesOfT®(P) and the edges of the convex hull. It might be possible to
extend the kinetic triangulation scheme developed_in [$6]as to kinetically maintain a triangulation of
the “fringes” betweerDT(P) and the convex hull of?, which is simple to define, easy to maintain, and
undergoes only nearly quadratically many topological gesn

Of course, if we only want to maintain a triangulation/fthat experiences only a nearly quadratically
many topological changes, then we can use the schenelindd@he earlier, somewhat more involved
scheme in[[R]. However, if we want to keep the triangulatias Delaunay as possible”, we should include
in it the stable portion oDT, and then the efficient completion of it, as mentioned abbgepmes an issue,
not yet resolved.

Nearly Euclidean norms and some of their properties. One way of interpreting the results of Section
3 is that the stability of Delaunay edges is preserved, inpgmapriately defined sense, if we replace the
Euclidean norm by the polygonal norm induced by the regi#gon Q. (for £ ~ 1/a). That is, stable
edges in one Delaunay triangulation are also edges of tleg thngulation, and are stable there too. Here
we note that there is nothing special ab@ut The same property holds if we replace the Euclidean norm
by any sufficiently close norm (or convex distance functi@}).|

Specifically, let) be a closed convex set in the plane that is contained in thaliskiDy and contains
the diskD{, = (cos o) Dy that is concentric withD, and scaled by the facteps . This is equivalent to
requiring that the Hausdorff distand&(Q, D) between) and Dy be at most — cos a ~ «? /2. We define
the center of) to coincide with the common center 6f, and Dy,.

() induces a convex distance functidp, defined bydg(z,y) = min{\ | y € z + AQ}. Consider the
\Voronoi diagramVorQ(P) of P induced bydg, and the corresponding Delaunay triangulaﬂDTlTQ(P).
We omit here the detailed analysis of the structure of thésgrams, which is similar to that for the norm
induced byQy, as presented in Sectibh 3. See alsd [7, 8] for more detaidl. a@ edger,,, of Vor?(P)
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a-stable if the following property holds: Let andv be the endpoints aof,,, and letQ,, @, be the two
homothetic copies of) that are centered at, v, respectively, and touch andg. Then we require that
the angle between the supporting linepdfor simplicity, assume thaf) is smooth, and so has a unique
supporting line ap (and aty); otherwise, the condition should hold for any pair of supipg lines atp or at
q) to Q,, andQ), is at leasty, and that the same holds@tin this case we refer to the edge of DTQ(P)
asa-stable.

Note thatQ,-stability was (implicitly) defined in a different manner $ectior 8, based on the number
of breakpoints of the corresponding Voronoi edges. Neetatis, it is easy to verify that the two definitions
are essentially identical.

Figure 24:An lllustration for Claim

A useful property of such a sél is the following:

Claim 5.1. Leta be a point oD@ and let/ be a supporting line ta) at a. Letb be the point ord D closest
to a (e andb lie on the same radius from the centgr Let~ be the arc ob Dy, containingb, and bounded
by the intersection points dfwith 9Dy. Then the angle betweérand the tangentr, to Dy at any point
along-, is at mosto.

Proof. Denote this angle by. Clearlyd is maximized wherr is tangent taD, at an intersection of and
0Dy. See Figuré 24. Itis easy to verify that the distance fioto ¢ is cos #. But this distance has to be
at leastcos «, or elsed@ would have contained a point insid#), contrary to assumption. Hence we have
cos 0 > cos a, and thud) < «, as claimed. O

We need a few more properties:

Claim 5.2. Let@; and Q2 be two homothetic copies ¢f and letw be a point such that (v lies onoQ,
and ond(Q)9, and (ii) w and the respective centetg, oo of )1, Q)2 are collinear. Then), and @), are
tangent to each other at; more precisely, they have a common supporting line gand, assuming(@ to
be smoothyw is the only point of intersection éfQ1 N dQ)- (otherwise,0Q1 N JQ)- is a single connected
arc containingw.).

Proof. Map each o), Q2 back to the standard placement@f by translation and scaling, and note that
both transformations map to the same poiniyy on 9Q. Let ¢y be a supporting line of) atw,, and let/y,
{5 be the forward images dfunder the mappings @ to )1 and to@,, respectively. Clearly/; and ¢
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Q2 :

Figure 25:An lllustration for Claim

coincide, and are a common supporting lingxfand@, atw. See Figur€25. The other asserted property
follows immediately if0Q is smooth, and can easily be shown to hold in the non-smoath tom; we omit
the routine argument. O

Claim 5.3. Let ¢ and b be two points or9Q, and let/, and ¢, be supporting lines of) at ¢ and b,
respectively. Then the difference between the angled jteid ¢, form withab is at mosta.

Proof. Denote the two angles in the claim By andé,, respectively. Let’ (resp.,b’) be the point ord D,
nearest to (and co-radial with)(resp.,b). Let;, 7 denote the respective tangentsi¥g at «’ and att’.
Clearly, the respective anglés, 0, between the chord’'t’ of Dy andr, 7 are equal. By Clairi 51, we
have|6, — 0, < o and|f, — 6| < «, and the claim follows. O

The connection between Euclidean stability and)-stability. Let e,, be ata-long Voronoi edge of the
Euclidean diagram, fot > 9, and letu, v denote its endpoints. L&?, and D, denote the disks centered
respectively at:, v, whose boundaries pass througlandq, and letD be a disk whose boundary passes
throughp andg, so thatD ¢ D, U D, and the angles between the tangent®tand toD, and D, atp (or

at ¢) are at leastna each, wheren > 4. (Recall that the angle between the tangent®joand D, us at

leastta > 9a.)
q
\3
p

Figure 26:The homothetic copy Q.

Let c andp denote the center and radius of respectively. Note that lies one,, “somewhere in the
middle”, because of the angle condition assumed above@ﬁf]étdenote the homothetic copy §f centered
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atc and scaled by, soQ((;O) is fully contained inD and thus also i, U D,,, implying thatho) is empty—it
does not contain any point @f in its interior. (This scaling makes the unit cird#, bounding coincide
with D.) See Figuré_26.

ExpandQ((;O) about its center: until the first time it touches either or ¢. Suppose, without loss of
generality, that it toucheg. Denote this placement @) as(@.. Let /¢, denote a supporting line @p. at
p. We claim that the angle betweépand the tangent, to D atp is at mostx. Indeed, IetZ;,@f denote
the tangents fronp to Q((;O). By Claim[5.1, the angles that they form with the tanggnto D at p are at
mosta each. ASQEO) is expanded td)., these tangents rotate towards each other, one clockwiseran
counterclockwise so when they coincide (&) the resulting supporting ling, lies inside the double wedge
between them. Since, also lies inside this double wedge, and forms an angle of at mavith each of
them, it follows that/,, must form an angle of at mosatwith 7,,, as claimed.

Since the angle between the tangento D atp and the tangent; to D, atp is at leastn it follows
that the angle betweefy andr; is at leastm — 1)a. A similar argument shows that the angle betwégn
and the tangent, to D,, atp is at leas{m — 1)a.

Figure 27:The homothetic copy Q..

Now expand®. by moving its center along the line passing thropgindc, away fromp, and scale it
appropriately so that its boundary continues to pass thrpugntil it touchesq too. Denote the center of
the new placement a$, and the placement itself @%.. Let D be the corresponding homothetic copy of
Dy centered at’ and bounding?... See Figuré27.

We argue that) . is empty. By Claini 5.2/, is also a supporting line @) atp. Refer to Figuré&29.
We denote byr, andy, the intersections of the supporting lidg with 0D, anddD,,, respectively. We
denote by: the intersection obD., anddD, that lies on the same side 6f asq. The angleZpzx,, is at
mosta since by Claini 5]l the angle betweénand the tangent t®., atz, is at moste. On the other
hand the angle/pzy,, is at leastm — 1)« since the angle betweep and7, atp is at leastm — 1)a. So
it follows that the segmentiz,, is fully contained inD,,. Since the raygp meetsoD, (atp) before meeting
0D, and the rayzz, meetsoD. (atz,) before meeting D,,, it follows thatoD. anddD,, intersect at a
point on a ray betweesp andzz,,.

Let ¢, denote a supporting line 6f - atg. By Claim[5.3, the angles betwegn and the lined),, ¢, differ
by at mosa. Since each of the angles betwegrand the two tangents, andr)' is at least(m — 1)a, it
follows that each of the angles betwegrand the two tangents; andr, to D,, and D,, respectively, at,
is at least(m — 3)a.
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Figure 29: The segment px,, is fully contained in D,. The circles dD.., 9D, intersect at a point on a ray
emanating from z between zp and z,,,.

Refer now to Figur€ 30. We denote bythe intersection oD, and D, distinct fromz, and we denote
by z,,y, the intersections betweeh and D, D,, respectively. An argument analogous to the one given
before shows that¢z'z, < a while Zgz'y, > (m — 3)a. It follows that the segmeniz,, is fully contained
in D, and we have an intersection betweésd,., andd D, on a ray emanating frorf between the ray from
2’ to ¢ and the ray from’ to z,.

Our argument about the position of the intersections betwee and D, implies that the entire section
of 0D betweenz, andz, is containedD,. Therefore the portion af).- to the right of the line through
andgq (in the configuration depicted in the figures) is fully con&d inD,. A symmetric argument shows
that the portion of)).s to the left of the line througlp andq is fully contained inD,,. SinceD, U D, is
empty we conclude thap. is empty.

The emptiness of). implies thatp andq are neighbors in thé)-Voronoi diagram, and that lies on
their commony-Voronoi edgee;s,.

We thus obtain the following theorem.
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Figure 30: The segment ¢z, is fully contained in D,. The circles dD.., 0D, intersect at a point on a ray
emanating from 2’ between z’q and z'z,,.

Theorem 5.4. Let P, o, and ) be as above. Then (i) evefy-stable edge of the Euclidean Delaunay
triangulation is ana-stable edge obT?(P). (i) Conversely, everga-stable edge oDT?(P) is also an
«-stable edge in the Euclidean norm.

Note that parts (i) and (ii) are generalizations of Lemidsahd 3.5, respectively (with weaker con-
stants).

Proof. Part (i) follows directly from the preceding analysis. Iedeletpq be ata-stable Delaunay edge, for
t > 9, whose Voronoi counterpart has endpointandv. Let Q) be the homothetic placement @f with
centerc, that touche® andq. We have shown thap. has empty interior if the ray = pc’ lies between
pu andpu and spans an angle of at ledstwith each of them. Assuming> 9, such rays form a cone of
size(t — 8)ar > «, which, in turn, gives the first part of the theorem.

Part (ii) follows from part (i) by repeating, almost verlmatithe proof of Lemmp3]5. O

There are many interesting open problems that arise here.oOtine main problems is to extend the
class of setg) for which a near quadratic bound on the number of topologibahges iDT?(P), under
algebraic motion of bounded degree of the point®ptan be established.
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