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Abstract

We consider the problem of maintaining the Euclidean Delaunay triangulationDT of a setP of n
moving points in the plane, along algebraic tranjectories of constant description complexity. Since the
best known upper bound on the number of topological changes in the full Delaunay triangulation is only
nearly cubic, we seek to maintain a suitable portion of the diagram that is less volatile yet retains many
useful properties of the full triangulation. We introduce the notion of astable Delaunay graph, which is
a dynamic subgraph of the Delaunay triangulation. The stable Delaunay graph (a) is easy to define, (b)
experiences only a nearly quadratic number of discrete changes, (c) is robust under small changes of the
norm, and (d) possesses certain useful properties for further applications.

The stable Delaunay graph (SDG in short) is defined in terms of a parameterα > 0, and consists of
Delaunay edgespq for which the (equal) angles at whichp andq see the corresponding Voronoi edgeepq
are at leastα. We show that (i)SDG always contains at least roughly one third of the Delaunay edges at
any fixed time; (ii) it contains theβ-skeleton ofP , for β = 1 + Ω(α2); (iii) it is stable, in the sense that
its edges survive for long periods of time, as long as the orientations of the segments connecting (nearby)
points ofP do not change by much; and (iv) stable Delaunay edges remain stable (with an appropriate
redefinition of stability) if we replace the Euclidean norm by any sufficiently close norm.

In particular, if we approximate the Euclidean norm by a polygonal norm (with a regulark-gon as
its unit ball, withk = Θ(1/α)), we can define and keep track of a EuclideanSDG by maintaining the
full Delaunay triangulation ofP under the polygonal norm (which is trivial to do, and which isknown
to involve only a nearly quadratic number of discrete changes).

We describe two kinetic data structures for maintainingSDG when the points ofP move along
pseudo-algebraic trajectories of constant description complexity. The first uses the polygonal norm ap-
proximation noted above, and the second is slightly more involved, but significantly reduces the depen-
dence of its performance onα. Both structures useO∗(n) storage and processO∗(n2) events during the
motion, each inO∗(1) time. (Here theO∗(·) notation hides multiplicative factors which are polynomial
in 1/α and polylogarithmic inn.)

∗A preliminary version of this paper appeared inProc. 26th Annual Symposium on Computational Geometry, 2010, pp. 127–
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1 Introduction

Delaunay triangulations and Voronoi diagrams. LetP be a (finite) set of points inR2. LetVD(P ) and
DT(P ) denote the Voronoi diagram and Delaunay triangulation ofP , respectively. For a pointp ∈ P , let
Vor(p) denote the Voronoi cell ofp. The Delaunay triangulationDT = DT(P ) consists of all triangles
whose circumcircles do not contain points ofP in their interior. Its edges form theDelaunay graph, which
is the straight-edge dual graph of the Voronoi diagram ofP . That is,pq is an edge of the Delaunay graph if
and only ifVor(p) andVor(q) share an edge, which we denote byepq. This is equivalent to the existence of
a circle passing throughp andq that does not contain any point ofP in its interior—any circle centered at
a point onepq and passing throughp andq is such a circle. Delaunay triangulations and Voronoi diagrams
are fundamental to much of computational geometry and its applications. See [5, 11] for a survey and a
textbook on these structures.

In many applications of Delaunay/Voronoi methods (e.g., mesh generation and kinetic collision de-
tection) the points are moving continuously, so these diagrams need to be efficiently updated as motion
occurs. Even though the motion of the nodes is continuous, the combinatorial and topological structure
of the Voronoi and Delaunay diagrams change only at discretetimes when certain critical events occur.
Their evolution under motion can be studied within the framework of kinetic data structures(KDS in short)
of Baschet al. [6, 12, 13], a general methodology for designing efficient algorithms for maintaining such
combinatorial attributes of mobile data.

For the purpose of kinetic maintenance, Delaunay triangulations are nice structures, because, as men-
tioned above, they admit local certifications associated with individual triangles. This makes it simple to
maintainDT under point motion: an update is necessary only when one of these empty circumcircle con-
ditions fails—this corresponds to cocircularities of certain subsets of four points.1 Whenever such an event
happens, a single edge flip easily restores Delaunayhood. Estimating the number of such events, however,
has been elusive—the problem of bounding the number of combinatorial changes inDT for points moving
along semi-algebraic trajectories of constant description complexity has been in the computational geometry
lore for many years; see [10].

Let n be the number of moving points inP . We assume that each point moves along an algebraic
trajectory of fixed degree or, more generally, along pseudo-algebraic trajectory of constant description com-
plexity (see Section 2 for a more formal definition). Guibas et al. [14] showed a roughly cubic upper bound
of O(n2λs(n)) on the number of discrete (also known astopological) changes inDT, whereλs(n) is the
maximum length of an(n, s)-Davenport-Schinzel sequence [22], ands is a constant depending on the mo-
tions of the points. A substantial gap exists between this upper bound and the best known quadratic lower
bound [22].

It is thus desirable to find approaches for maintaining a substantial portion ofDT that provablyexpe-
riences only a nearly quadratic number of discrete changes,that is reasonably easy to define and maintain,
and that retains useful properties for further applications.

Polygonal distance functions. If the “unit ball” of our underlying norm ispolygonalthen things improve
considerably. In more detail, letQ be a convex polygon with a constant number,k, of edges. It induces a
convex distance function

dQ(x, y) = min{λ | y ∈ x+ λQ};

dQ is a metric ifQ is centrally symmetric with respect to the origin.

1We assume that the motion of the points is sufficiently generic, so that no more than four points can become cocircular at any
given time.
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We can define theQ-Voronoi diagram of a setP of points in the plane in the usual way, as the par-
titioning of the plane into Voronoi cells, so that the cellVor⋄(p) of a pointp is {x ∈ R

2 | dQ(x, p) =
minp′∈P dQ(x, p

′)}. Assuming that the points ofP are in general position with respect toQ, these cells are
nonempty, have pairwise disjoint interiors, and cover the plane.

As in the Euclidean case, theQ-Voronoi diagram ofP has its dual representation, which we refer to
as theQ-Delaunay triangulationDT⋄(P ) = DT⋄. A triple of points inP define a triangle inDT⋄ if and
only if they lie on the boundary of some homothetic copy ofQ that does not contain any point ofP in
its interior. Assuming thatP is in general position, theseQ-Delaunay triangles form a triangulation of a
certain simply-connected polygonal region that is contained in the convex hull ofP . Unlike the Euclidean
case, it does not always coincide with the convex hull (see Figures 5 and 23 for examples). See Chew and
Drysdale [8] and Leven and Sharir [19] for analysis of Voronoi and Delaunay diagrams of this kind.

For kinetic maintenance, polygonal Delaunay triangulations are “better” than Euclidean Delaunay tri-
angulations because, as shown by Chew [7], when the points ofP move (in the algebraic sense assumed
above), the number of topological changes in theQ-Delaunay triangulation is only nearly quadratic inn.
One of the major observations in this paper is that thestable portionsof the Euclidean Delaunay triangula-
tion and theQ-Delaunay triangulation are closely related.

Stable Delaunay edges. We introduce the notion ofα-stable Delaunay edges, for a fixed parameterα > 0,
defined as follows. Letpq be a Delaunay edge under the Euclidean norm, and let△pqr+ and△pqr− be
the two Delaunay triangles incident topq. Thenpq is calledα-stableif its opposite angles in these triangles
satisfy∠pr+q + ∠pr−q < π − α. (The case wherepq lies on the convex hull ofP is treated as if one of
r+, r− lies at infinity, so that the corresponding angle∠pr+q or ∠pr−q is equal to0.) An equivalent and
more useful definition, in terms of the dual Voronoi diagram,is thatpq is α-stable if the equal angles at
whichp andq see their common Voronoi edgeepq are at leastα. See Figure 1.

β
2y

2xx

y

p

q

β

b

r− r+
a

Figure 1:The points p and q see their common Voronoi edge ab at (equal) angles β. This is equivalent to
the angle condition x+ y = π − β for the two adjacent Delaunay triangles.

A justification for calling such edges stable lies in the following observation: If a Delaunay edgepq
is α-stable then it remains inDT during any continuous motion ofP for which every angle∠prq, for
r ∈ P \ {p, q}, changes by at mostα/2. This is clear because at the timepq is α-stable we have∠pr+q +
∠pr−q < π − α for any pair of pointsr+, r− lying on opposite sides of the lineℓ supportingpq, so, if
each of these angles change by at mostα/2 we still have∠pr+q + ∠pr−q ≤ π, which is easily seen to
imply thatpq remains an edge ofDT. (This argument also covers the cases when a pointr crossesℓ from
side to side: Since each point, on either side ofℓ, seespq at an angle of≤ π − α, it follows that no point
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can crosspq itself – the angle has to increase fromπ − α to π. Any other crossing ofℓ by a pointr causes
∠prq to decrease to0, and even if it increases toα/2 on the other side ofℓ, pq is still an edge ofDT, as is
easily checked.) Hence, as long as the “small angle change” condition holds, stable Delaunay edges remain
a “long time” in the triangulation.

Informally speaking, the non-stable edgespq of DT are those forp andq are almost cocircular with
their two common Delaunay neighborsr+, r−, and hence are more likely to get flipped “soon”.

Overview of our results. Let α > 0 be a fixed parameter. In this paper we show how to maintain a
subgraph of the full Delaunay triangulationDT, which we call a(cα, α)-stable Delaunay graph(SDG in
short), so that (i) every edge ofSDG isα-stable, and (ii) everycα-stable edge ofDT belongs toSDG, where
c > 1 is some (small) absolute constant. Note thatSDG is not uniquely defined, even whenc is fixed.

In Section 2, we introduce several useful definitions and show that the number of discrete changes in
theSDGs that we consider is nearly quadratic. What this analysis also implies is that if the true bound for
kinetic changes in a Delaunay triangulation is really closeto cubic, then the overhelming majority of these
changes involve edges which never become stable and just flicker in and out of the diagram by cocircularity
with their two Delaunay neighbors.

In Sections 3 and 4 we show thatSDG can be maintained by a kinetic data structure that uses only
near-linear storage (in the terminology of [6], it iscompact), encounters only a nearly quadratic number of
critical events (it isefficient), and processes each event in polylogarithmic time (it isresponsive). For the
second data structure, described in Section 4, can be slightly modified to ensure that each point appears at
any time in only polylogarithmically many places in the structure (it then becomeslocal).

The scheme described in Section 3 is based on a useful and interesting “equivalence” connection between
the (Euclidean)SDG and a suitably defined “stable” version of the Delaunay triangulation ofP under the
“polygonal” norm whose unit ballQ is a regulark-gon, fork = Θ(1/α). As noted above, Voronoi and
Delaunay structures under polygonal norms are particularly favorable for kinetic maintenance because of
Chew’s result [7], showing that the number of topological changes inDT⋄(P ) is O∗(n2k4); here theO∗(·)
notation hides a factor that depends sub-polynomially on both n andk. In other words, the scheme simply
maintains the “polygonal” diagramDT⋄(P ) in its entirety, and selects from it those edges that are alsostable
edges of the Euclidean diagramDT.

The major disadvantage of the solution in Section 3 is the rather high (proportional toΘ(1/α4)) depen-
dence on1/α(≈ k) of the bound on the number of topological changes. We do not know whether the upper
boundO∗(n2k4) on the number of topological changes inDT⋄(P ) is nearly tight (in its dependence onk).
To remedy this, we present in Section 4 an alternative schemefor maintaining stable (Euclidean) Delaunay
edges. The scheme is reminiscent of the kinetic schemes usedin [1] for maintaining closest pairs and nearest
neighbors. It extractsO∗(n) pairs of points ofP that are candidates for being stable Delaunay edges. Each
point p ∈ P then runsO(1/α) kinetic and dynamic tournamentsinvolving the other points in its candidate
pairs. Roughly, these tournaments correspond to shootingO(1/α) rays fromP in fixed directions and find-
ing along each ray the nearest point equally distant fromp and from some other candidate pointq. We show
thatpq is a stable Delaunay edge if and only ifq wins many (at least some constant number of) consecutive
tournaments ofp (or p wins many consecutive tournaments ofq). A careful analysis shows that the number
of events that this scheme processes (and the overall processing time) is onlyO∗(n2/α2).

Section 5 establishes several useful properties of stable Delaunay graphs. In particular, we show that at

any given time the stable subgraph contains at least
[

1− 3
2(π/α−2)

]

n Delaunay edges, i.e., at least about

one third of the maximum possible number of edges. In addition, we show that at any moment theSDG
contains the closest pair, the so-calledβ-skeletonof P , for β = 1 + Ω(α2) (see [4, 18]), and thecrustof a
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sufficiently densely sampled point set along a smooth curve (see [3, 4]). We also extend the connection in
Section 3 to arbitrary distance functionsdQ whose unit ballQ is sufficiently close (in the Hausdorff sense)
to the Euclidean one (i.e., the unit disk).

2 Preliminaries

Stable edges in Voronoi diagrams. Let {u0, . . . , uk−1} ⊂ S
1 be a set ofk = Θ(1/α) equally spaced

directions inR2. For concreteness takeui = (cos(2πi/k),− sin(2πi/k)), 0 ≤ i < k (so our directionsui
go clockwise asi increases).2 For a pointp ∈ P and a unit vectoru let u[p] denote the ray{p+λu | λ ≥ 0}
that emanates fromp in directionu. For a pair of pointsp, q ∈ P let bpq denote the perpendicular bisector
of p andq. If bpq intersectsui[p], then the expression

ϕi[p, q] =
‖q − p‖2

2〈q − p, ui〉
(1)

is the distance betweenp and the intersection point ofbpq with ui[p]. If bpq does not intersectui[p] we define
ϕi[p, q] = ∞. The pointq minimizesϕi[p, q

′], among all pointsq′ for which bpq′ intersectsui[p], if and
only if the intersection betweenbpq andui[p] lies on the Voronoi edgeepq. We callq theneighbor ofp in
directionui, and denote it byNi(p); see Figure 2.

The (angular) extentof a Voronoi edgeepq of two pointsp, q ∈ P is the angle at which it is seen from
eitherp or q (these two angles are equal). For a given angleα ≤ π, epq is calledα-long (resp.,α-short) if
the extent ofepq is at least (resp., smaller than)α. We also say thatpq ∈ DT(P ) isα-long (resp.,α-short) if
epq is α-long (resp.,α-short). As noted in the introduction, these notions can also be defined (equivalently)
in terms of the angles in the Delaunay triangulation: A Delaunay edgepq, which is not a hull edge, isα-long
if and only if∠pr+q+∠pr−q ≤ π−α, where△pr+q and△pr−q are the two Delaunay triangles incident
to pq. See Figure 1; hull edges are handled similarly, as discussed in the introduction.

Given parametersα′ > α > 0, we seek to construct (and maintain under motion) an(α′, α)-stable
Delaunay graph(or stable Delaunay graph, for brevity, which we further abbreviate asSDG) of P , which
is any subgraphG of DT(P ) with the following properties:

(S1) Everyα′-long edge ofDT(P ) is an edge ofG.

(S2) Every edge ofG is anα-long edge ofDT(P ).

An (α′, α)-stable Delaunay graph need not be unique. In what follows,α′ will always be some fixed (and
reasonably small) multiple ofα.

Kinetic tournaments. Kinetic tournaments were first studied by Baschet al. [6], for kinetically main-
taining the lowest point in a setP of n points moving on some vertical line, say they-axis, so that their
trajectories are algebraic of bounded degree, as above. These tournaments are a key ingredient in the data
structures that we will develop for maintaining stable Delaunay graphs. Such a tournament is represented
and maintained using the following variant of a heap. LetT be a minimum-height balanced binary tree,
with the points stored at its leaves (in an arbitrary order).For an internal nodev ∈ T , let Pv denote the
set of points stored in the subtree rooted atv. At any specific timet, each internal nodev stores the lowest

2The index arithmetic is modulok, i.e.,ui = ui+k.
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point among the points inPv at timet, which is called thewinneratv. The winner at the root is the desired
overall lowest point ofP .

To maintainT we associate a certificate with each internal nodev, which asserts which of the two
winners, at the left child and at the right child ofv, is the winner atv. This certificate remains valid as long
as (i) the winners at the children ofv do not change, and (ii) the order along they-axis between these two
“sub-winners” does not change. The actual certificate caters only to the second condition; the first will be
taken care of recursively. Each certificate has an associated failure time, which is the next time when these
two winners switch their order along they-axis. We store all certificates in another heap, using the failure
times as keys.3 This heap of certificates is called theevent queue.

Processing an event is simple. When the two sub-winnersp, q at some nodev change their order, we
compute the new failure time of the certificate atv (the first future time whenp andq meet again), update
the event queue accordingly, and propagate the new winner, sayp, up the tree, revising the certificates at the
ancestors ofv, if needed.

If we assume that the trajectories of each pair of points intersect at mostr times then the overall number
of changes of winners, and therefore also the overall numberof events, is at most

∑

v |P (v)|βr(|P (v)|) =
O(nβr(n) log n). Hereβr(n) = λr(n)/n, andλr(n) is the maximum length of a Davenport-Schinzel
sequence of orderr onn symbols; see [22].

This is larger by a logarithmic factor than the maximum possible number of times the lowest point along
they-axis can indeed change, since this latter number is boundedby the complexity of the lower envelope
of the trajectories of the points inP (which, as noted above, records the changes in the winner at the root of
T ).

Agarwalet al. [1] show how to make such a tournament alsodynamic, supporting insertions and dele-
tions of points. They replace the balanced binary treeT by aweight-balanced(BB(α)) tree [21] (and see
also [20]). This allows us to insert a new point anywhere we wish inT , and to delete any point fromT ,
in O(log n) time. Each such insertion or deletion may changeO(log n) certificates, along the correspond-
ing search path, and therefore updating the event queue takes O(log2 n) time, including the time for the
structural updates of (rotations in)T ; heren denotes the actual number of points inT , at the step where we
perform the insertion or deletion. The analysis of [1] is summarized in Theorem 2.1.

Theorem 2.1(Agarwal et al. [1]). A sequence ofm insertions and deletions into a kinetic tournament,
whose maximum size at any time isn (assumingm ≥ n), when implemented as a weight-balanced tree in
the manner described above, generates at mostO(mβr+2(n) log n) events, with a total processing cost of
O(mβr+2(n) log

2 n). Herer is the maximum number of times a pair of points intersect, andβr+2(n) =
λr+2(n)/n. Processing an update or a tournament event takesO(log2 n) worst-case time. A dynamic
kinetic tournament onn elements can be constructed inO(n) time.

Remarks:(1) Theorem 2.1 subsumes the static case too, by inserting all the elements “at the beginning of
time”, and then tracing the kinetic changes.
(ii) Note that the amortized cost of an update or of processing a tournament event is onlyO(log n) (as
opposed to theO(log2 n) worst-case cost).

Maintenance of an SDG. LetP = {p1, . . . , pn} be a set of points moving inR2. Letpi(t) = (xi(t), yi(t))
denote the position ofpi at timet. We call the motion ofP algebraic if eachxi(t), yi(t) is a polynomial
function oft, and thedegreeof motion ofP is the maximum degree of these polynomials. Throughout this
paper we assume that the motion ofP is algebraic and that its degree is bounded by a constant. In this

3Any “standard” heap that supportsinsert, delete, anddeletemin in O(log n) time is good for our purpose.
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subsection we present a simple technique for maintaining a(2α,α)-stable Delaunay graph. Unfortunately
this algorithm requires quadratic space. It is based on the following easy observation (see Figure 2), where
k is an integer, and the unit vectors (directions)u0, . . . , uk−1 are as defined earlier.

Lemma 2.2. Letα = 2π/k. (i) If the extent ofepq is larger than2α then there are two consecutive directions
ui, ui+1, such thatq is the neighbor ofp in directionsui andui+1.
(ii) If there are two consecutive directionsui, ui+1, such thatq is the neighbor ofp in both directionsui and
ui+1, then the extent ofepq is at leastα.

bpq

α

q
ui

ui+1p

Vor(p)

Figure 2:q is the neighbor of p in the directions ui and ui+1, so the Voronoi edge epq is α-long.

The algorithm maintains Delaunay edgespq such that there are two consecutive directionsui andui+1

along whichq is the neighbor ofp. For each pointp and directionui we get a set of at mostn− 1 piecewise
continuous functions of time,ϕi[p, q], one for each pointq 6= p, as defined in (1). (Recall thatϕi[p, q] = ∞
whenui[p] does not intersectbpq.) By assumption on the motion ofP , for eachp andq, the domain in which
ϕi[p, q](t) is defined consists of a constant number of intervals.

For each pointp, and rayui[p], consider each functionϕi[p, q] as the trajectory of a point moving along
the ray and corresponding toq. The algorithm maintains these points in a dynamic and kinetic tournament
Ki(p) (see Theorem 2.1) that keeps track of the minimum of{ϕi[p, q](t)}q 6=p over time. For each pair
of pointsp andq such thatq wins in two consecutive tournaments,Ki(p) andKi+1(p), of p, it keeps the
edgepq in the stable Delaunay graph. It is trivial to update this graph as a by-product of the updates of the
various tournaments. The analysis of this data structure isstraightforward using Theorem 2.1, and yields
the following result.

Theorem 2.3. Let P be a set ofn moving points inR2 under algebraic motion of bounded degree, letk
be an integer, and letα = 2π/k. A (2α,α)-stable Delaunay graph ofP can be maintained usingO(kn2)
storage and processingO(kn2βr+2(n) log n) events, for a total cost ofO(kn2βr+2(n) log

2 n) time. The
processing of each event takesO(log2 n) worst-case time. Herer is a constant that depends on the degree
of motion ofP .

Later on, in Section 4, we will revise this approach and reduce the storage to nearly linear, by letting
only a small number of points to participate in each tournament. The filtering procedure for the points makes
the improved solution somewhat more involved.
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3 An SDG Based on Polygonal Voronoi Diagrams

LetQ = Qk be a regulark-gon for some evenk = 2s, circumscribed by the unit disk, and letα = π/s (this
is the angle at which the center ofQ sees an edge). LetVD⋄(P ) andDT⋄(P ) denote theQ-Voronoi diagram
and the dualQ-Delaunay triangulation ofP , respectively. In this section we show that the set of edges
of VD⋄(P ) with sufficiently manybreakpoints(see below for details) form a(β, β′)-stable (Euclidean)
Delaunay graph for appropriate multiplesβ, β′ of α. Thus, by kinetically maintainingVD⋄(P ) (in its
entirety), we shall get “for free” a KDS for keeping track of astable portion of the Euclidean DT.

3.1 Properties ofVD
⋄(P)

We first review the properties of the (stationary)VD⋄(P ) andDT⋄(P ). Then we consider the kinetic version
of these diagrams, as the points ofP move, and review Chew’s proof [7] that the number of topological
changes in these diagrams, over time, is only nearly quadratic in n. Finally, we present a straightforward
kinetic data structure for maintainingDT⋄(P ) under motion that uses linear storage, and that processes a
nearly quadratic number of events, each inO(log n) time. Although later on we will takeQ to be a regular
k-gon, the analysis in this subsection is more general, and weonly assume here thatQ is an arbitrary convex
k-gon, lying in general position with respect toP .

Stationary Q-diagrams. Thebisectorb⋄pq between two pointsp andq, with respect todQ(·, ·), is the locus
of all placements of the center of any homothetic copyQ′ of Q that touchesp andq. Q′ can be classified
according to the pair of its edges,e1 and e2, that touchp and q, respectively. If we slideQ′ so that its
center moves alongb⋄pq (and its size expands or shrinks to keep it touchingp andq), and the contact edges,
e1 ande2, remain fixed, the center traces a straight segment. The bisector is a concatenation ofO(k) such
segments. They meet atbreakpoints, which are placements of the center of a copyQ′ that touchesp andq
and one of the contact points is a vertex ofQ; see Figure 3. We call such a placement acorner contactat
the appropriate point. Note that a corner contact where somevertexw of (a copyQ′ of) Q touchesp has
the property that the center ofQ′ lies on the fixed ray emanating fromp and parallel to the directed segment
from w to the center ofQ.

p

qb⋄pq

Figure 3:Each breakpoint on b⋄pq corresponds to a corner contact of Q at one of the points p, q, so that ∂Q
also touches the other point.

A useful property of bisectors and Delaunay edges, in the special case whereQ is a regulark-gon, which
will be used in the next subsection, is that the breakpoints along a bisectorb⋄pq alternate between corner
contacts atp and corner contacts atq. Indeed, assuming general position, each pointw ∈ ∂Q determines
a unique placement ofQ where it touchesp at w and also touchesq, as is easily checked. A symmetric
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property holds when we interchangep andq. Hence, as we slide the center ofQ along the bisectorb⋄pq,
the points of contact of∂Q with p andq vary continuously and monotonically along∂Q. Consider two
consecutive corner contacts,Q′, Q′′, of Q atp alongb⋄pq, and suppose to the contrary that the portion ofb⋄pq
between them is a straight segment, meaning that, within this portion,∂Q touches each ofp, q at a fixed
edge. Since the center ofQ moves along the angle bisector of the lines supporting theseedges (a property
that is easily seen to hold for regulark-gons), it is easy to see that the distance between the two contact
points ofp, at the beginning and the end of this sliding, and the distance between the two contact points ofq
(measured, say, on the boundary of the standard placement ofQ) are equal. However, this distance forp is
the length of a full edge of∂Q, because the motion starts and ends withp touching a vertex, and therefore
the same holds forq, which is impossible (unlessq also starts and ends at a vertex, which contradicts our
general position assumption).

Another well known property ofQ-bisectors and Voronoi edges, for arbitrary convex polygons in general
position with respect toP , is that two bisectorsb⋄pq1, b⋄pq2, can intersect at most once (again, assuming
general position), so everyQ-Voronoi edgee⋄pq is connected. Equivalently, this asserts that there existsat
most one homothetic placement ofQ at which it touchesp, q1, andq2. Indeed, since homothetic placements
of Q behave like pseudo-disks (see, e.g., [17]), the boundariesof two distinct homothetic placements ofQ
intersect in at most two points, or, in degenerate position,in at most two connected segments. Clearly, in the
former case the boundaries cannot both containp, q1, andq2, and this also holds in the latter case because
of our general position assumption.

Consider next an edgepq of DT⋄(P ). Its dual Voronoi edgee⋄pq is a portion of the bisectorb⋄pq, and
consists of those center placements alongb⋄pq for which the corresponding copyQ′ has anempty interior
(i.e., its interior is disjoint fromP ). Following the notation of Chew [7], we callpq a corner edgeif e⋄pq
contains a breakpoint (i.e., a placement with a corner contact); otherwise it is anon-corner edge, and is
therefore a straight segment.

Kinetic Q-diagrams. Consider next what happens toVD⋄(P ) andDT⋄(P ) as the points ofP move
continuously with time. In this caseVD⋄(P ) changes continuously, but undergoes topological changes at
certain critical times, calledevents. There are two kinds of events:

(i) FLIP EVENT. A Voronoi edgee⋄pq shrinks to a point, disappears, and is “flipped” into a newly emerging
Voronoi edgee⋄p′q′ .

(ii) CORNER EVENT. An endpoint of some Voronoi edgee⋄pq becomes a breakpoint (a corner placement).
Immediately after this timee⋄pq either gains a new straight segment, or loses such a segment,that it had
before the event.

Some comments are in order:

(a) A flip event occurs when the four pointsp, q, p′, q′ become “cocircular”: there is an empty homothetic
copyQ′ of Q that touches all four points.

(b) Only non-corner edges can participate in a flip event, as both the vanishing edgee⋄pq and the newly
emerging edgee⋄p′q′ do not have breakpoints near the event.

(c) A flip event entails a discrete change in the Delaunay triangulation, whereas a corner event does not.
Still, for algorithmic purposes, we will keep track of both kinds of events.

We first bound the number of corner events.

Lemma 3.1. Let P be a set ofn points inR2 under algebraic motion of bounded degree, and letQ be a
convexk-gon. The number of corner events inDT⋄(P ) isO(k2nλr(n)), wherer is a constant that depends
on the degree of motion ofP .
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Proof. Fix a pointp and a vertexw of Q, and consider all the corner events in whichw touchesp. As noted
above, at any such event the centerc of Q lies on a rayγ emanating fromp at a fixed direction. (Since
p is moving,γ is a moving ray, but its orientation remains fixed.) For each other pointq ∈ P \ {p}, let
ϕ⋄
γ [p, q] denote the distance, at timet, from p alongγ to the center of a copy ofQ that touchesp (atw) and

q. The valueminq ϕ
⋄
γ [p, q](t) represents the intersection of∂Vor⋄(p) with γ at timet, whereVor⋄(p) is the

Voronoi cell ofp in VD⋄(P ). The pointq that attains the minimum defines the Voronoi edgee⋄pq (or vertex
if the minimum is attained by more than one pointq) of Vor⋄(p) thatγ intersects.

In other words, we have a collection ofn − 1 partially defined functionsϕ⋄
γ [p, q], and the breakpoints

of their lower envelope represent the corner events that involve the contact ofw with p. By our assumption
on the motion ofP , each functionϕ⋄

γ [p, q] is piecewise algebraic, withO(k) pieces. Each piece encodes
a continuous contact ofq with a specific edge ofQ′, and has constant description complexity. Hence (see,
e.g., [22, Corollary 1.6]) the complexity of the envelope isat mostO(kλr(n)), for an appropriate constant
r. Repeating the analysis for each pointp and each vertexw of Q, the lemma follows.

Consider next flip events. As noted, each flip event involves aplacement of an empty homothetic copy
Q′ of Q that touches simultaneously four pointsp1, p2, p3, p4 of P , in this counterclockwise order along
∂Q′, so that the Voronoi edgee⋄p1p3, which is a non-corner edge before the event, shrinks to a point and is
replaced by the non-corner edgee⋄p2p4 . Let ei denote the edge ofQ′ that touchespi, for i = 1, 2, 3, 4.

We fix the quadruple of edgese1, e2, e3, e4, bound the number of flip events involving a quadruple
contact with these edges, and sum the bound over allO(k4) choices of four edges ofQ. For a fixed quadruple
of edgese1, e2, e3, e4, we replaceQ by the convex hullQ0 of these edges, and note that any flip event
involving these edges is also a flip event forQ0. We therefore restrict our attention toQ0, which is a convex
k0-gon, for somek0 ≤ 8.

We note that if(p, q) is a Delaunay edge representing a contact of some homotheticcopy Q′
0 of Q0

wherep andq touch twoadjacentedges ofQ′
0, then(p, q) must be a corner edge—shrinkingQ′

0 towards
the vertex common to the two edges, while it continues to touch p andq, will keep it empty, and eventually
reach a placement where eitherp or q touches a corner ofQ′

0. The same (and actually simpler) argument
applies to the case whenp andq touch the same edge4 of Q0.

p1

p3

p2
e⋄13 e4

e2

e3

e1
p5

p4c⋄143c⋄123 c⋄123

p1

p3

p2
e⋄13

p4

p5

c⋄143

Figure 4: Left: The edge e⋄13 in the diagram VD⋄(P ) before disappearing. The endpoint c⋄123 (resp., c⋄143)
of e⋄13 corresponds to the homothetic copy of Q0 whose edges e1, e2, e3 (resp., e1, e4, e3) are incident to the
respective vertices p1, p2, p3 (resp., p1, p4, p3). Right: The tree of non-corner edges.

Consider the situation just before the critical event takesplace, as depicted in Figure 4 (left). The
Voronoi edgee⋄p1p3 (to simplify the notation, we write this edge ase⋄13, and similarly for the other edges and

4In general position this does not occur, but it can happen at discrete time instances during the motion,
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vertices in this analysis) is delimited by two Voronoi vertices, one,c⋄123, being the center of a copy ofQ0

which touchesp1, p2, p3 at the respective edgese1, e2, e3, and the other,c⋄143, being the center of a copy of
Q0 which touchesp1, p4, p3 at the respective edgese1, e4, e3. Consider the two other Voronoi edgese⋄12 and
e⋄23 adjacent toc⋄123, and the two Voronoi edgese⋄14 ande⋄43 adjacent toc⋄143. Among them, consider only
those which are non-corner edges; assume for simplicity that they all are. For specificity, consider the edge
e⋄12. As we move the center ofQ0 along that edge away fromc⋄123, Q0 loses the contact withp3; it shrinks
on the side ofp1p2 which containsp3 (andp4, already away fromQ0), and expands on the other side. Since
this is a non-corner edge, its other endpoint is a placement where the (artificial) edgee12 of Q0 betweene1
ande2 touches another pointp5. Now, however, sincee12 is adjacent to both edgese1, e2, the new Voronoi
edgese⋄15 ande⋄25 are both corner edges.

Repeating this analysis to each of the other three Voronoi edges adjacent toe⋄13, we get a tree of non-
corner Voronoi edges, consisting of at most five edges, so that all the other Voronoi edges adjacent to its
edges are corner edges. As long as no discrete change occurs at any of the surrounding corner edges, the
tree can undergo onlyO(1) discrete changes, because all its edges are defined by a totalof O(1) points of
P . When a corner edge undergoes a discrete change, this can affect onlyO(1) adjacent non-corner trees of
the above kind. Hence, the number of changes in non-corner edges is proportional to the number of changes
in corner edges, which, by Lemma 3.1 (applied toQ0) is O(nλr(n)). Multiplying by theO(k4) choices of
quadruples of edges ofQ, we thus obtain:

Theorem 3.2. LetP be a set ofn moving points inR2 under algebraic motion of bounded degree, and let
Q be a convexk-gon. The number of topological changes inVD⋄(P ) with respect toQ is O(k4nλr(n)),
wherer is a constant that depends on the degree of motion ofP .

Kinetic maintenance ofVD
⋄(P) and DT

⋄(P). As already mentioned, it is a fairly trivial task to main-
tainDT⋄(P ) andVD⋄(P ) kinetically, as the points ofP move. All we need to do is to assert the correctness
of the present triangulation by a collection of local certificates, one for each edge of the diagram, where the
certificate of an edge asserts that the two homothetic placementsQ−, Q+ of Q that circumscribe the two
respective adjacentQ-Delaunay triangles△pqr−,△pqr+, are such thatQ− does not containr+ andQ+

does not containr−. The failure time of this certificate is the first time (if one exists) at whichp, q, r−, and
r+ becomeQ-cocircular—they all lie on the boundary of a common homothetic copy ofQ. Such an event
corresponds to a flip event inDT⋄(P ). If pq is an edge of the periphery ofDT⋄(P ), so that△pqr+ exists
but△pqr− does not, thenQ− is a limiting wedge bounded by rays supporting twoconsecutiveedges of (a
copy of)Q, one passing throughp and one throughq (see Figure 5). The failure time of the corresponding
certificate is the first time (if any) at whichr+ also lies on the boundary of that wedge.

We maintain the breakpoints using “sub-certificates”, eachof which asserts thatQ−, say, touches each
of p, q, r− at respective specific edges (and similarly forQ+). The failure time of this sub-certificate is the
first failure time when one ofp, q or r− touchesQ− at a vertex. In this case we have a corner event—two of
the adjacent Voronoi edges terminate at a corner placement.Note that the failure time of each sub-certificate
can be computed inO(1) time. Moreover, for a fixed collection of valid sub-certificates, the failure time of
an initial certificate (asserting non-cocircularity) can also be computed inO(1) time (provided that it fails
before the failures of the corresponding sub-certificates), because we know the four edges ofQ− involved
in the contacts.

We therefore maintain an event queue that stores and updatesall the active failure times (there are only
O(n) of them at any given time—the bound is independent ofk, because they correspond to actualDT
edges. When a sub-certificate fails we do not changeDT⋄(P ), but only update the corresponding Voronoi
edge, by adding or removing a segment and a breakpoint, and byreplacing the sub-certificate by a new one;
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q r+
Q−

p

Figure 5: If r− does not exist then Q− is a limiting wedge bounded by rays supporting two consecutive
edges of (a copy of) Q.

we also update the cocircularity certificate associated with the edge, because one of the contact edges has
changed. When a cocircularity certificate fails we updateDT⋄(P ) and constructO(1) new sub-certificates
and certificates. Altogether, each update of the diagram takesO(log n) time. We thus have

Theorem 3.3. LetP be a set ofn moving points inR2 under algebraic motion of bounded degree, and let
Q be a convexk-gon. DT⋄(P ) andVD⋄(P ) can be maintained usingO(n) storage andO(log n) update
time, so thatO(k4nλr(n)) events are processed, wherer is a constant that depends on the degree of motion
of P .

3.2 Stable Delaunay edges inDT
⋄(P)

We now restrictQ to be a regulark-gon. Letv0, . . . , vk−1 be the vertices ofQ arranged in a clockwise
direction, withv0 the leftmost. We call a homothetic copy ofQ whose vertexvj touches a pointp, a vj-
placement ofQ at p. Let uj be the direction of the vector that connectsvj with the center ofQ, for each
0 ≤ j < k (as in Section 2). See Figure 6 (left).

We follow the machinery in the proof of Lemma 3.1. That is, forany pairp, q ∈ P letϕ⋄
j [p, q] denote the

distance fromp to the pointuj [p]∩ b⋄pq; we putϕ⋄
j [p, q] = ∞ if uj[p] does not intersectb⋄pq. If ϕ⋄

j [p, q] < ∞
then the pointb⋄pq ∩ uj[p] is the center of thevj-placementQ′ of Q at p that also touchesq, and it is easy
to see that there is a unique such point. The valueϕ⋄

j [q, p] is equal to the circumradius ofQ′. See Figure 6
(middle).

TheneighborN⋄
j [p] of p in directionuj is defined to be the pointq ∈ P \ {p} that minimizesϕ⋄

j [p, q].
Clearly, for anyp, q ∈ P we haveN⋄

j [p] = q if and only if there is an emptyvj-placementQ′ of Q at p so
thatq touches one of its edges.

Remark: Note that, in the Euclidean case, we haveϕj [p, q] < ∞ if and only if the angle betweenpq and
uj [p] is at mostπ/2. In contrast,ϕ⋄

j [p, q] < ∞ if and only if the angle betweenpq anduj[p] is at most
π/2− π/k = π/2− α/2. Moreover, we haveϕj [p, q] ≤ ϕ⋄

j [p, q]. Therefore,ϕ⋄
j [p, q] < ∞ always implies

ϕj [p, q] < ∞, but not vice versa; see Figure 6 (right). Note also that in both the Euclidean and the polygonal
cases, the respective quantitiesNj [p] andN⋄

j [p] may be undefined.

Lemma 3.4. Let p, q ∈ P be a pair of points such thatNj(p) = q for h ≥ 3 consecutive indices, say
0 ≤ j ≤ h − 1. Then for each of these indices, except possibly for the firstand the last one, we also have
N⋄

j [p] = q.

Proof. Let w1 (resp.,w2) be the point at which the rayu0[p] (resp.,uh−1[p]) hits the edgeepq in VD(P ).
(By assumption, both points exist.) LetD1 andD2 be the disks centered atw1 andw2, respectively, and
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Q

vj

α

uj

ϕ
⋄ j
[p
, q
]

uj [p]

p

q

b⋄pq
uj [p]

p

q

Figure 6:Left: uj is the direction of the vector connecting vertex vj to the center of Q. Middle: The function
ϕ⋄

j [p, q] is equal to the radius of the circle that circumscribes the vj-placement of Q at p that also touches q.
Right: The case when ϕ⋄

j [p, q] = ∞ while ϕj [p, q] < ∞. In this case q must lie in one of the shaded wedges.

touchingp andq. By definition, neither of these disks contains a point ofP in its interior. The angle between
the tangents toD1 andD2 atp or atq (these angles are equal) isβ = (h− 1)α; see Figure 7 (left).

q

w2
D1

β

w1

D2

p
β Q′

ℓ′

p

q′

q
e′

uj[p]

D+

D

Figure 7:Left: The angle between the tangents to D1 and D2 at p (or at q) is equal to ∠w1pw2 = β = (h−1)α.
Right: The line ℓ′ crosses D in a chord qq′ which is fully contained in e′.

Fix an arbitrary index1 ≤ j ≤ h − 2, souj [p] intersectsepq and forms an angle of at leastα with
each ofpw1, pw2. LetQ′ be thevj-placement ofQ atp that touchesq. To see that such a placement exists,
we note that, by the preceding remark, it suffices to show thatthe angle betweenpq anduj [p] is at most
π/2 − α/2; that is, to rule out the case whereq lies in one of the shaded wedges in Figure 6 (right). This
case is indeed impossible, because then one ofuj−1[p], uj+1[p] would form an angle greater thanπ/2 with
pq, contradicting the assumption that both of these rays intersect the (Euclidean)bpq.

We claim thatQ′ ⊂ D1∪D2. Establishing this property for every1 ≤ j ≤ h−2 will complete the proof
of the lemma. Lete′ be the edge ofQ′ passing throughq. See Figure 7 (right). LetD be the disk whose
center lies onuj[p] and which passes throughp andq, and letD+ be the circumscribing disk ofQ′. Since
q ∈ ∂D and is interior toD+, and sinceD andD+ are centered on the same rayuj [q] and pass through
p, it follows thatD ⊂ D+. The lineℓ′ containinge′ crossesD in a chordqq′ that is fully contained ine′.
The angle between the tangent toD at q and the chordqq′ is equal to the angle at whichp seesqq′. This is
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smaller than the angle at whichp seese′, which in turn is equal toα/2.
Arguing as in the analysis ofD1 andD2, the tangent toD at q forms an angle of at leastα with each

of the tangents toD1,D2 at q, and hencee′ forms an angle of at leastα/2 with each of these tangents; see
Figure 8 (left). The lineℓ′ marks two chordsq1q, qq2 within the respective disksD1,D2. We claim thate′ is
fully contained in their unionq1q2. Indeed, the angleq1pq is equal to the angle betweenℓ′ and the tangent
to D1 at q, so∠q1pq ≥ α/2. On the other hand, the angle at whichp seese′ is α/2, which is smaller. This,
and the symmetic argument involvingD2, are easily seen to imply the claim.

D1

q

p

q2q′q1

D2

D

ℓ′
a2

e′
a1 a1 a2

D2p

q2q1
ℓ′

D1

e′

D+
D

Figure 8: Left: The line ℓ′ forms an angle of at least α/2 with each of the tangents to D1, D2 at q. Right:
The edge e′ = a1a2 of Q′ is fully contained in D1 ∪D2.

Now consider the circumscribing diskD+ of Q′. Denote the endpoints ofe′ asa1 anda2, wherea1 lies
in q1q anda2 lies in qq2. Since the raypa1 hits ∂D+ before hittingD1, and the raypq hits these circles in
the reverse order, it follows that the second intersection of ∂D1 and∂D+ (other thanp) must lie on a ray
from p which lies between the rayspa1, pq and thus crossese′. See Figure 8 (right). Symmetrically, the
second intersection point of∂D2 and∂D+ also lies on a ray which crossese′.

It follows that the arc of∂D+ delimited by these intersections and containingp is fully contained in
D1 ∪ D2. Hence all the vertices ofQ′ (which lie on this arc) lie inD1 ∪ D2. This, combined with the
argument in the preceding paragraphs, is easily seen to imply that Q′ ⊆ D1 ∪ D2, so its interior does
not contain points ofP , which in turn implies thatN⋄

j [p] = q. As noted, this completes the proof of the
lemma.

SinceQ-Voronoi edges are connected, Lemma 3.4 implies thate⋄pq is “long”, in the sense that it contains
at leasth−2 breakpoints that represent corner placements atp, interleaved (as promised in Section 3.1) with
at leasth− 3 corner placements atq. This property is easily seen to hold also under the weaker assumptions
that: (i) for the first and the last indicesj = 0, h − 1, the pointNj[p] either is equal toq or is undefined,
and (ii) for the rest of the indicesj we haveNj[p] = q andϕ⋄

j [p, q] < ∞ (i.e., thevj-placement ofQ at
p that touchesq exists). In this relaxed setting, it is now possible that anyof the two pointsw1, w2 lies at
infinity, in which case the corresponding diskD1 or D2 degenerates into a halfplane. This stronger version
of Lemma 3.4 is used in the proof of the converse Lemma 3.5, asserting that every edgee⋄pq in VD⋄(P ) with
sufficiently many breakpoints has a stable counterpartepq in VD(P ).

Lemma 3.5. Let p, q ∈ P be a pair of points such thatN⋄
j [p] = q for at least three consecutive indices

j ∈ {0, . . . , k − 1}. Then for each of these indices, except possibly for the firstand the last one, we have
Nj [p] = q.

Proof. Again, assume with no loss of generality thatN⋄
j [p] = q for 0 ≤ j ≤ h − 1, with h ≥ 3. Suppose

to the contrary that, for some1 ≤ j ≤ h − 2, we haveNj[p] 6= q. SinceN⋄
j [p] = q by assumption, we
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haveϕj [p, q] ≤ ϕ⋄
j [p, q] < ∞, so there existsr ∈ P for whichϕj [p, r] < ϕj [p, q]. Assume with no loss of

generality thatr lies to the left of the line fromp to q. In this caseϕj−1[p, r] < ϕj−1[p, q] < ∞. Indeed,
we have (i)N⋄

j−1[p] = q by assumption, soϕ⋄
j−1[p, q] < ∞, and (ii)ϕj−1[p, q] ≤ ϕ⋄

j−1[p, q]. Moreover,
becauser lies to the left of the line fromp to q, the orientation ofbpr lies counterclockwise to that ofbpq,
implying thatϕj−1[p, q] < ∞. See Figure 9. Sinceuj [p] hits bpr before hittingbpq, any ray emanating from
p counterlockwise touj[p] must do the same, so we haveϕj−1[p, r] < ϕj−1[p, q], as claimed. Similarly,
we get that eitherϕj−2[p, r] < ϕj−2[p, q] < ∞ or ϕj−2[p, r] ≤ ϕj−2[p, q] = ∞ (where the latter can
occur only forj = 1). Now applying (the extended version of) Lemma 3.4 to the point set{p, q, r} and
to the index set{j − 2, j − 1, j}, we get thatϕ⋄

j−1[p, r] < ϕ⋄
j−1[p, q]. But this contradicts the fact that

N⋄
j−1[p] = q.

uj−1[p]

r

q

p

uj[p]bpr

bpq

Figure 9:Proof of Lemma 3.5. If Nj[p] 6= q because some r, lying to the left of the line from p to r, satisfies
ϕj [p, r] < ϕj [p, q]. Since ϕj−1[p, q] < ϕ⋄

j−1[p, q] < ∞, we have ϕj−1[p, r] < ϕj−1[p, q].

Maintaining an SDG using VD
⋄(P). Lemmas 3.4 and 3.5 together imply that anSDG can be main-

tained using the fairly straightforward kinetic algorithmfor maintaining the wholeVD⋄(P ), provided by
Theorem 3.3. We useVD⋄(P ) to maintain the graphG onP , whose edges are all the pairs(p, q) ∈ P × P
such thatp and q define an edgee⋄pq in VD⋄(P ) that contains at least seven breakpoints. As shown in
Theorem 3.3, this can be done withO(n) storage,O(log n) update time, andO(k4nλr(n)) updates (for an
appropriater). We claim thatG is a(6α,α)-SDG in the Euclidean norm.

Indeed, if two pointsp, q ∈ P define a6α-long edgeepq in VD(P ) then this edge stabs at least six
raysuj[p] emanating fromp, and at least six raysuj [q] emanating fromq. Thus, according to Lemma 3.4,
VD⋄(P ) contains the edgee⋄pq with at least four breakpoints corresponding to corner placements ofQ at
p that touchq, and at least four breakpoints corresponding to corner placements ofQ at q that touchp.
Therefore,e⋄pq contains at least8 breakpoints, so(p, q) ∈ G.

For the second part, ifp, q ∈ P define an edgee⋄pq in VD⋄(P ) with at least7 breakpoints then, by the
interleaving property of breakpoints, we may assume, without loss of generality, that at least four of these
breakpoints correspond toP -empty corner placements ofQ atp that touchq. Thus, Lemma 3.5 implies that
VD(P ) contains the edgeepq, and that this edge is hit by at least two consecutive raysuj[p]. But then, as
observed in Lemma 2.2, the edgeepq is α-long inVD(P ). We thus obtain the main result of this section.

Theorem 3.6. LetP be a set ofn moving points inR2 under algebraic motion of bounded degree, and let
α ≥ 0 be a parameter. A(6α,α)-stable Delaunay graph ofP can be maintained by a KDS of linear size
that processesO(nλr(n)/α

4) events, wherer is a constant that depends on the degree of motion ofP , and
that updates the SDG at each event inO(log n) time.
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4 An Improved Data Structure

The data structure of Theorem 3.6 requiresO(n) storage but the best bound we have on the number of events
it may encounter isO∗(n2/α4), which is much larger than the number of events encountered by the data
structure of Theorem 2.3 (which, in terms of the dependence on α, is onlyO∗(n2/α)). In this section we
present an alternative data structure that requiresO∗(n/α2) space andO∗(n2/α2) overall processing time.
The structure processes each event inO∗(1/α) time and is alsolocal, in the sense that each point is stored
at onlyO∗((1/α)2) places in the structure.

Notation. We use the directionsui and the associated quantitiesNi[p] andϕi[p, q] defined in Section 2.
We assume thatk, the number of canonical directions, is even, and write, as in Section 2,k = 2s. We
denote byCi the cone (or wedge) with apex at the origin that is bounded byui andui+1. Note thatCi and
Ci±s are antipodal. As before, for a vectoru, we denote byu[x] the ray emanating fromx in directionu.
Similarly, for a coneC we denote byC[x] the translation ofC that places its apex atx. Let0 ≤ β ≤ π/2 be
an angle. For a directionu ∈ S

1 and for two pointsp, q ∈ P , we say that the edgeepq ∈ VD(P ) is β-long
around the rayu[q] if p is the Voronoi neighbor ofq in all directions in the range[u− β, u+ β], i.e., for all
v ∈ [u− β, u+ β], the rayv[q] intersectsepq. Theβ-cone aroundu[q] is the cone whose apex isq and each
of its bounding rays makes an angle ofβ with u[q].

Ci[p]

p

uj

q

Ci−3[p]

Ci[p]

Ci+3[p]

p

uj

q

Figure 10:Left: q is j-extremal for p. Right: q is strongly j-extremal for p.

Definition (j-extremal points). (i) Let p, q ∈ P , let i be the index such thatq ∈ Ci[p], and letuj be a
direction such that〈uj, x〉 ≤ 0 for all x ∈ Ci. We say thatq is j-extremalfor p if q = argmax{〈p′, uj〉 |
p′ ∈ Ci[p] ∩ P \ {p}}. That is,q is the nearest point top in this cone, in the(−uj)-direction. Clearly, a
point p has at mosts j-extremal points, one for every admissible coneCi[p], for any fixedj. See Figure 10
(left).

(ii) For 0 ≤ i < k, let C ′
i denote the extended cone that is the union of the seven consecutive cones

Ci−3, . . . , Ci+3. Let p, q ∈ P , let i be the index such thatq ∈ Ci[p], and letuj be a direction such that
〈uj , x〉 ≤ 0 for all x ∈ C ′

i (suchuj ’s exist if α is smaller than some appropriate constant). We say that the
point q ∈ P is stronglyj-extremalfor p if q = argmax{〈p′, uj〉 | p

′ ∈ C ′
i[p] ∩ P \ {p}}.

(iii) We say that a pair(p, q) ∈ P × P is (strongly)(j, ℓ)-extremal, for some0 ≤ j, ℓ ≤ k − 1, if p is
(strongly)ℓ-extremal forq andq is (strongly)j-extremal forp.

15



σ+

v−

v+

b+ a+

σ−

q

p

a−

2β

β

β
β

epq

v

C[q]

h

Figure 11:Illustration of the setup in Lemma 4.1: the edge epq is β-long around v[p], and the “tip” △σ+qσ−

of the cone C[q] is empty.

Lemma 4.1. Letp, q ∈ P , and letv be a direction such that the edgeepq appears inVD(P ) and isβ-long
around the rayv[p]. LetC[q] be theβ-cone around the ray fromq throughp. Then〈p, v〉 ≥ 〈p′, v〉 for all
p′ ∈ P ∩ C[q] \ {q}.

Proof. Refer to Figure 11. Without loss of generality, we assume that v is the(+x)-direction and thatq
lies above and to the right ofp. (In this case the slope of the bisectorbpq is negative. Note thatq has to
lie to the right ofp, for otherwisebpq would not crossv[p].) Let v+ (resp.,v−) be the direction that makes
a counterclockwise (resp., clockwise) angle ofβ with v. Let a+ (resp.,a−) be the intersection ofepq with
v+[p] (resp., withv−[p]); by assumption, both points exist. Leth be the vertical line passing throughp. Let
σ+ (resp.,σ−) be the intersection point ofh with the ray emanating froma+ (resp.,a−) in the direction
opposite tov− (resp.,v+); see Figure 11.

Note that∠pa+σ+ = 2β, and that‖a+σ+‖ = ‖pa+‖ = ‖qa+‖, i.e.,a+ is the circumcenter of△pσ+q.
Therefore∠σ+qp = 1

2∠σ
+a+p = β. That is,σ+ is the intersection of the upper ray ofC[q] with h.

Similarly, σ− is the intersection of the lower ray ofC[q] with h. Moreover, if there exists a pointx ∈ P
properly inside the triangle△pqσ+ then‖a+x‖ < ‖a+p‖, contradicting the fact thata+ is on epq. So
the interior of△pqσ+ (including the relative interiors of edgespq, σ+q) is disjoint fromP . Similarly, by
a symmetric argument, no points ofP lie inside△pqσ− or on the relative interiors of its edgespq, σ−q.
Hence, the portion ofC[q] to the right ofp is openly disjoint fromP , and thereforep is a rightmost point of
P (extreme in thev direction) insideC[q].

Corollary 4.2. Letp, q ∈ P . (i) If the edgeepq is 3α-long inVD(P ) then there are0 ≤ j, ℓ < k for which
(p, q) is a(j, ℓ)-extremal pair. (ii) If the edgeepq is 9α-long inVD(P ) then there are0 ≤ j, ℓ < k for which
(p, q) is a strongly(j, ℓ)-extremal pair.

Proof. To prove part (i), choose0 ≤ j, ℓ < k, such thatepq is α-long around each ofuℓ[p] anduj[q]. By
Lemma 4.1,p is uℓ-extremal in theα-coneC[q] around the ray fromq throughp. Let i be the index such
thatp ∈ Ci[q]. Since the opening angle ofC[q] is 2α, it follows thatCi[q] ⊆ C[q], sop is ℓ-extremal with
respect toq, and, symmetrically,q is j-extremal with respect top. To prove part (ii) choose0 ≤ j, ℓ < k,
such thatepq is 4α-long around each ofuℓ[p] anduj[q] and apply Lemma 4.1 as in the proof of part (i).
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The stable Delaunay graph. We kinetically maintain a(10α,α)-stable Delaunay graph, whose precise
definition is given below, using a data-structure which is based on a collection of 2-dimensional orthogonal
range trees similar to the ones used in [1].

Fix 0 ≤ i < s, and choose a “sheared” coordinate frame in which the raysui andui+1 form thex-
andy-axes, respectively. That is, in this coordinate frame,q ∈ Ci[p] if and only if q lies in the upper-right
quadrant anchored atp.

We define a 2-dimensional range treeTi consisting of aprimary balanced binary search tree with the
points ofP stored at its leaves ordered by theirx-coordinates, and of secondary trees, introduced below.
Each internal nodev of the primary tree ofTi is associated with thecanonical subsetPv of all points that
are stored at the leaves of the subtree rooted atv. A point p ∈ Pv is said to bered (resp.,blue) inPv

if it is stored at the subtree rooted at the left (resp., right) child of v in Ti. For each primary nodev we
maintain a secondary balanced binary search treeT

v
i , whose leaves store the points ofPv ordered by their

y-coordinates. We refer to a nodew in a secondary treeTv
i as asecondary nodew of Ti.

Each nodew of a secondary treeTv
i is associated with a canonical subsetPw ⊆ Pv of points stored at

the leaves of the subtree ofTv
i rooted atw. We also associate withw the setsRw ⊂ Pw andBw ⊂ Pw of

points residing in theleft (resp.,right) subtreeof w and are red (resp., blue) inPv. It is easy to verify that
the sum of the sizes of the setsRw andBw over all secondary nodes ofTi isO(n log2 n).

For each secondary nodew ∈ Ti and each0 ≤ j < k we maintain the points

ξRi,j(w) = arg max
p∈Rw

〈p, uj〉, ξBi,j(w) = arg max
p∈Bw

〈p, uj〉,

provided that bothRw, Bw are not empty. See Figure 12. It is straightforward to show that if (p, q) is a
(j, ℓ)-extremal pair, so thatq ∈ Ci[p], then there is a secondary nodew ∈ Ti for which q = ξBi,j(w) and
p = ξRi,ℓ(w).

Ci

Ci+s

Bw

Rw

ξRi,ℓ(w)

ξBi,j(w) ui+1

ui

uℓ

uj

Figure 12:The points ξRi,ℓ(w), ξ
B
i,j(w) for a secondary node w of Ti.

For eachp ∈ P we construct a setN[p] containing all pointsq ∈ P for which (p, q) is a(j, ℓ)-extremal
pair, for some pair of indices0 ≤ j, ℓ < k. Specifically, for each0 ≤ i < s, and each secondary node
w ∈ Ti such thatp = ξRi,ℓ(w) for some0 ≤ ℓ < k, we include inN[p] all the pointsq such thatq = ξBi,j(w)

for some0 ≤ j < k. Similarly, for each0 ≤ i < s, and each secondary nodew ∈ Ti such thatp = ξBi,ℓ(w)

for some0 ≤ ℓ < k we include inN[p] all the pointsq such thatq = ξRi,j(w) for some0 ≤ j < k. It is easy
to verify that, for each(i, ℓ)-extremal pair(p, q), for some0 ≤ j, ℓ < k, q is placed inN[p] by the preceding
process. The converse, however, does not always hold, so in general{p} × N[p] is a superset of the pairs
that we want.
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For each0 ≤ i < s, each pointp ∈ P belongs toO(log2 n) setsRw andBw, so the size ofN[p] is
bounded byO(s2 log2 n). Indeed,p may be coupled with up tok = 2s neighbors at each of theO(s log2 n)
nodes containing it.

For each pointp ∈ P and0 ≤ ℓ < k we maintain all points inN[p] in a kinetic and dynamic tournament
Dℓ[p] whose winnerq minimizes the directional distanceϕℓ[p, q], as given in (1). That is, the winner in
Dℓ[p] isNℓ[p] in the Voronoi diagram of{p} ∪N[p].

We are now ready to define the stable Delaunay graphG that we maintain. For each pair of points
p, q ∈ P we add the edge(p, q) to G if the following hold.

(G1) There is an index0 ≤ ℓ < k such thatq wins the 8 consecutive tournamentsDℓ[p], . . . ,Dℓ+7[p].

(G2) The pointp is strongly(ℓ+ 3)-extremal and strongly(ℓ+ 4)-extremal forq.

The(10α,α)-stability ofG is implied by a combination of Theorems 4.3 and 4.4.

Theorem 4.3. For every10α-long edgeepq ∈ VD(P ), the graphG contains the edge(p, q).

Proof. By Corollary 4.2 (i), there arej andℓ such that(p, q) is a(j, ℓ)-extremal pair. By the preceding dis-
cussion this implies thatq is inN[p]. Now sinceepq is10α-long there is anℓ′ such thatNℓ′ [p], . . . , Nℓ′+7[p] =
q in VD(P ), and therefore also in the Voronoi diagram of{p} ∪ N[p]. So it follows thatq indeed wins the
tournamentsDℓ′ [p], . . . ,Dℓ′+7[p].

By the proof of Corollary 4.2 (ii),p is strongly(ℓ′ + 3)-extremal and strongly(ℓ′ + 4)-extremal for
q.

Theorem 4.4. For every edge(p, q) ∈ G, the edgeepq belongs toVD(P ) and isα-long there.

Proof. Since(p, q) ∈ G we know thatq is in N[p] and wins the tournamentsDℓ[p],Dℓ+1[p], . . . ,Dℓ+7[p],
for some0 ≤ ℓ < k and that the pointp is strongly(ℓ+ 3)-extremal and(ℓ + 4)-extremal forq. We prove
that the raysuℓ+3[p] anduℓ+4[p] stabepq, from which the theorem follows.

Assume then that one of the raysuℓ+3[p], uℓ+4[p] does not stabepq; suppose it is the rayuℓ+4[q]. (This
includes the case whenepq is not present at all inVD(P ).) By definition, this means thatr = Nℓ+4[p] 6= q.
We use Lemma 4.5, given shortly below, to show thatq cannot win in at least one of the tournaments among
Dℓ[p], . . . ,Dℓ+7[p] and thereby get a contradiction.

According to Lemma 4.5, there exists a pointr such thatϕℓ+4[p, r] < ϕℓ+4[p, q] andp is (ℓ + 4)-
extremal forr. Let x = uℓ+4[p] ∩ bpr and letD be the circle which is centered atx, and passes throughr
andp; see Figure 13.

We consider the case wherer is to the right of the line fromp to q; the other case is treated symmetrically.
In this case the intersection ofbpr andbpq is to the left of the directed line fromp to x. Let 0 ≤ i ≤ k− 1 be
the index for whichr ∈ Ci[p]. If i ≤ s− 1 then there is a secondary nodew in the treeTi for whichp ∈ Rw

andr ∈ Bw, and sincep is (ℓ+ 4)-extremal forr, ξRi,ℓ+4(w) is equal top. If i > s then, symmetrically, we

have a nodew ∈ Ti−s such thatr ∈ Rw andp ∈ Bw andξBi,ℓ+4(w) is equal top. We assume thati ≤ s− 1
in the sequel; the other case is treated in a fully symmetric manner.

Let v[r] be the ray fromr throughx, for an appropriate directionv ∈ S1, and letuj be the direction
which lies counterclockwise tov and forms with it an angle of at leastα and at most2α. Putr′ = ξBi,j(w),
implying thatr′ ∈ Ci[p] and〈r′, uj〉 ≥ 〈r, uj〉. In particular,r′ belongs toN[p]. If r′ is insideD (and in
particular ifr′ = r) thenq cannot win the tournamentDℓ+4[p] which is the contradiction we are after. So
we may assume thatr′ is outsideD.
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Figure 13:Proof of Theorem 4.4: the case when r is to the right of the line from p to q. The line h orthogonal
to uj through r intersects the circle D at a point y outside Ci[p], which implies that r′ is to the right of the
line from p to r. Assuming r 6= r′, the point z = bpr ∩ bpr′ is inside the cone bounded by uℓ+4[p] and uℓ+7[p].
Hence, uℓ+7[p] hits bpr′ before bpr.

Let h be the line throughr orthogonal touj . Clearly,h intersectsD at two points,r and another point
y (lying counterclockwise tor along∂D, by the choice ofuj). Since∠rpy = 1

2∠rxy, and∠rxy equal to
twice the angle betweenv anduj , ∠rpy is at leastα, soy is outsideCi[p]. By assumption,r′ lies in the
halfplane bounded byh and containingp. Since we assume thatr′ is not inD it must be to the right of the
line from x to r. It follows thatbpr′ intersectsbpr at some pointz to the right of the line fromp to x; see
Figure 13.

We claim thatz is inside the cone with apexp bounded by the raysuℓ+4[p] anduℓ+7[p]. Indeed, suppose
to the contrary that the claim is false. It follows that in thediagramVD({r, r′, p}) the edgeepr is α-
long arounduj [r]. Indeed, denote the intersection point ofuℓ+7[p] and bpr asw (see Figure 13). Then
∠xrw = ∠xpw = 3α. Since the angle betweenv[r] anduj [r] is betweenα and2α, the claim follows.
Now, according to Lemma 4.1,〈r, uj〉 ≤ 〈r′, uj〉, which contradicts the choice ofr′. It follows that z is
in the cone bounded byuℓ+4[p] anduℓ+7[p] and thusuℓ+7[p] hits bpr′ beforebpr, and therefore also before
bpq. Hence,q cannot winDℓ+7[p], and we get the final contradiction which completes the proofof the
theorem.

Remark: We have not made any serious attempt to reduce the constantsc appearing in the definitions of
various(cα, α)-SDGs that we maintain. We suspect, though, that they can be significantly reduced.

To complete the proof of Theorem 4.4, we provide the missing lemma.

Lemma 4.5. Letp, q ∈ P be a pair of points and0 ≤ ℓ ≤ k − 1 an index, such that the pointp is strongly
ℓ-extremal forq butNℓ[p] 6= q. Then there exists a pointr such thatϕℓ[p, r] < ϕℓ[p, q] andp is ℓ-extremal
for r.

Proof. Let 0 ≤ i ≤ k− 1 be the index for whichq ∈ Ci[p] and leth be the line throughp, orthogonal touℓ.
Assume without loss of generality thath is vertical and the rayuℓ[p] extends to the right ofh.

Let a be the point at whichuℓ[p] intersects the bisectorbpq, and letD be the disk centered ata whose
boundary contains bothp andq. SinceNℓ[p] 6= q, the interior ofD must contain some other pointr ∈ P ;
see Figure 14.
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Figure 14:The proof of Lemma 4.5: The point p is strongly ℓ-extremal for q and ℓ-extremal for r.

Let C[q] be the cone emanating fromq such that each of its bounding rays makes an angle ofβ = 3α
with the ray fromq throughp; in particularC[q] containsp. Let σ+ (resp.,σ−) denote the upper (resp.,
lower) endpoint of the intersection ofC[q] andh. Sincep is stronglyℓ-extremal forq, the interior of the
triangle△σ+qσ− does not contain any points ofP . Hence,r must be outside the triangle△σ+qσ−. So
eitherr is aboveqσ+ (and insideD) or belowqσ− (and insideD).

Assume, without loss of generality, thatr is belowqσ−, as shown in Figure 14. (The case wherer is
aboveqσ+ is fully symmetric.) Lett+ and t− denote the intersection pointsqσ+ ∩ ∂D andqσ− ∩ ∂D,
respectively. Lete be the point at which the ray fromr throught− intersectsh. Then the intersection of the
triangle△σ+re and△σ+qσ− is empty. Among all the points ofP in D we chooser so that itsx-coordinate
is the smallest. For this choice ofr we also have that△σ+re \ △σ+qσ− is empty (since it is contained in
D and lies to the left ofr). In other words,△σ+re is empty.

Let γ+ (resp.,γ−) denote the angle∠prσ+ (resp.,∠prt−). It remains to show thatγ+ ≥ 1
3β and

γ− ≥ 1
3β. This will imply that the coneCi′ [r] that containsp is fully contained in the cone bounded by the

rays fromr throughσ+ andt−, sop is extreme in theuℓ-direction withinCi′ [r], which is what the lemma
asserts. Sincer is insideD, it is clear thatγ− ≥ ∠pqt− = β. The angleγ+ however may be smaller than
β, but, as we next show,tan γ+ ≥ 1

3 tan β. Indeed, fix an angleθ and letΓ(θ) denote the circular arc which
is the locus of all pointsz that are to the right ofh and the angle∠pzσ+ is θ. The endpoints ofΓ(θ) arep
andσ+, and its centera∗ is on the (horizontal) bisector ofpσ+; see Figure 15 (left).

Notice thatΓ(θ) intersects∂D at two points, one of which isp, which are symmetric with respect to the
line througha anda∗. As θ decreasesa∗ moves to the right, and the intersection ofΓ(θ) with ∂D rotates
clockwise around∂D. Consider the smallestθ such thatΓ(θ) intersectsD on or belowqt−. It follows that
this intersection is att−. See Figure 15 (right).

This shows that for fixedp andq, the position ofr in D below the lineqt− which minimizesγ+ is at
t−. To complete the analysis, we look for the position ofq that minimizesγ+ whenr is att−. Note that, as
q moves along∂D, the pointst+ andt− do not change. As shown in Figure 16 (left),γ+ decreases when
q tends counterclockwise tot+. Whenq is at t+, qσ+ is tangent toD. A simple calculation, illustrated
in Figure 16 (right), shows thattan γ+ = 1

3 tan β. By the inequalitytan(3x) > 3 tan x, for x sufficiently
small, it follows thatγ+ > 1

3β, implying, as noted above, that the pointp is ℓ-extremal forr. This completes
the proof of the lemma.
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Figure 16:Left: γ+ is minimized as q tends counterclockwise to t+. Right: Proving that tan γ+ = 1
3 tanβ

when q = t+ and r = t−. The triangles △qσ+p and △pqr are isosceles and similar, and y = 2x cosβ. Thus
tan γ+ = x sin β

x cosβ+y
= 1

3 tanβ.

In Section 4.1 we describe a naive algorithm for kinetic maintenance ofG, which encounters a total of
O∗(k4n2) events in the tournamentsDℓ[p]. In Section 4.2 we consider a slightly more economical definition
of the tournamentsDℓ[p], yielding a solution which processes onlyO∗(k2n2) events inO∗(k2n2) overall
time.

4.1 Naive maintenance ofG

As the points ofP move, we need to update theSDG G, which, as we recall, contains those edges(p, q)
such thatq wins 8 consecutive tournamentsDℓ[p], . . . ,Dℓ+7[p] of p, andp is strongly(ℓ + 3)-extremal
and(ℓ + 4)-extremal forq. We thus need to detect and process instances at which one of these conditions
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changes. There are several events at which such a change can occur:
(a) A change in the sets of neighborsN[p], for p 6= P .
(b) A change in the status of being stronglyℓ-extremal for some pair(p, q).
(c) A change in the winner of some tournamentDℓ[p] (at which two existing members ofN[p] attain the

same minimum distance in the directionuℓ).
Note that each of the events (a)–(b) can arise only during a swap of two points in one of thes directions

u0, . . . , us−1 or in one of the directions orthogonal to these vectors.
For each0 ≤ i ≤ s − 1 we maintain two lists. The first list,Li, stores the points ofP ordered by their

projections on a line in theui-direction, and the second list,Ki, stores the points ordered by their projections
on a line orthogonal to theui-direction. We note that, as long as the order in each of the2s lists Ki, Li

remains unchanged, the discrete structure of the range treesTi, and the auxiliary itemsξRi,ℓ(w), ξ
B
i,j(w), does

not change either. More precisely, the structure ofTi changes only when two consecutive elements inKi

or in Ki+1 swap their order in the respective list; whereas the auxiliary items ξRi,j(w), ξ
B
i,j(w), stored at

secondary nodes ofTi, may also change when two consecutive points swap their order in the listLj. There
areO(sn2) = O(n2) discrete events where consecutive points inKi or Li swap. We call these eventsKi-
swapsandLi-swaps, respectively. Each such event happens when the line trougha pair of points becomes
orthogonal or parallel toui. We can maintain each list in linear space for a total ofO(sn) space for all lists.
Processing a swap takesO(log n) time to replace a constant number of elements in the event queue (and
more time to update the various structures, as discussed next).

The range treesTi. As just noted, the structure ofTi changes either at aKi-swap or at aKi+1-swap. As
described in [1, Section 4], we can updateTi when such a swap occurs, including the various auxiliary data
that it stores, inO(s log2 n) time. (The factors is due to the fact that we maintainO(s) extreme points
ξBi,ℓ(w) andξRi,j(w) in each secondary nodew of Ti, whereas in [1] only two points are maintained.)

In a similar manner, anLj-swap of two pointsp, q may affect one of the itemsξBi,j(w) andξRi,j(w) stored
at any secondary nodew of anyTi, for 0 ≤ i ≤ s − 1, such that bothp, q belong toRw or to Bw. Each
Ti has onlyO(log2 n) such nodes, and the data structure of [1] allows us to updateTi, when anLj-swap
occurs inO(log2 n) time. Summing up over all0 ≤ i ≤ s − 1, we get that the total update time of the
range trees after anLj-swap isO(s log2 n). As follows from the analysis in [1, Section 4], the treesTi, for
0 ≤ i ≤ s − 1, require a total ofO(s2n log n) storage (because of theO(s) itemsξBi,ℓ(w), ξ

R
i,j(w) stored at

each secondary node of each of thes trees).

The tournamentsDℓ[p]. The kinetic tournamentDℓ[p], for p ∈ P and0 ≤ ℓ ≤ k− 1 contains the points in
the setN[p]. SinceN[p] varies both kinetically and dynamically and therefore the tournamentsDℓ[p] need
to be maintained as kinetic and dynamic tournaments, in the manner reviewed in Section 2.

For0 ≤ i ≤ s− 1, we defineΠi to be the set of pairs of points(p, q), such that there exists a secondary
nodew in Ti, and indices0 ≤ j, ℓ ≤ k − 1, for whichp = ξRi,ℓ(w) andq = ξBi,j(w). For a fixedi, a point

p belongs toO(s log2 n) pairs(p, q) in Πi, for a total ofO(s2 log2 n) pairs over all setsΠi. It follows that
the total size of all the setsΠi is O(s2n log2 n). Any secondary node of any treeTi, for 0 ≤ i ≤ s − 1,
contributes at mostO(s2) pairs to the respective setΠi.

The setN[p] consists of all the pointsq such that there exists a setΠi that contains the pair(p, q) or the
pair (q, p). So the total size of the setsN[p], over all pointsp, is O(s2n log2 n). A setN[p] changes only
when one of the setsΠi changes, which can happen only as the result of a swap.

Specifically, whenξRi,ℓ(w) changes for some0 ≤ i ≤ s− 1 and0 ≤ ℓ ≤ k− 1, from a pointp to a point

p′, we make the following updates. (i) Ifp 6= ξRi,ℓ′(w) for all ℓ′ 6= ℓ then for every0 ≤ j ≤ k − 1 we delete

the pair(p, ξBi,j(w)) from Πi. (ii) We add the pair(p′, ξBi,j(w)) toΠi. We make analogous updates when one
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of the valuesξBi,j(w) changes. When a nodew is created, deleted, or involved in a rotation, we update the
pairs (ξBi,ℓ(w), ξ

R
i,j(w)) in Πi for everyℓ andj. In such a case we say that nodew is changed.

A change ofξRi,ℓ(w) or ξBi,j(w) in an existing nodew generatesO(s) changes inΠi and therebyO(s)

changes to the setsN[p]. Thus, it may generateO(s2) updates to the tournamentsDℓ[p]. A change of a
secondary node may generateO(s2) changes to the setsN[p] and therebyO(s3) updates to the tournaments
Dℓ[p].

A point ξRi,ℓ(w) or ξBi,ℓ(w) changes during either aKi, Ki+1, or Lℓ-swap. EachLℓ-swap, for anyℓ,

causesO(s log2 n) points ξRi,ℓ(w) or ξBi,ℓ(w) to change (over the entire collection of trees), and therefore

each swap causesO(s3 log2 n) updates to the tournamnetsDℓ[p]. The number of nodes which change in
Ti by aKi or Ki+1-swap isO(log2 n). Each such change causesO(s3) updates to the tournamentsDℓ[p].
Therefore the total number of updates to tournaments due to changes of nodes is alsoO(s3 log2 n) per swap.

The number of swaps isO(sn2), so overall we getO(s4n2 log2 n) updates to the tournaments. The size
of each individual tournament isO(s2 log2 n). By Theorem 2.1 these updates generate

O(s4n2 log2 n · βr+2(s
2 log2 n) log(s2 log2 n)) = O(s4n2βr+2(s log n) log

2 n log(s log n))

tournament events, which are processed in

O(s4n2 log2 n · βr+2(s
2 log2 n) log2(s2 log2 n)) = O(s4n2 · βr+2(s log n) log

2 n log2(s log n))

time. Processing each individual tournament event takesO(log2 log n+ log2 s) time.
Since the size of each tournament isO(s2 log2 n) and there areO(ns) tournaments, the total size of all

tournaments isO(s3n log2 n).

Testing whetherp is strongly ℓ-extremal for the winner of Dℓ[p]. For each0 ≤ i ≤ s − 1, and for each
pair(p, q) ∈ Πi we maintain those indices0 ≤ ℓ ≤ k−1 (if there are any) for whichp is stronglyℓ-extremal
for q. Recall that each pointp belongs toO(s2 log2 n) pairs in the setsΠi.

We use the treesTj for i− 3 ≤ j ≤ i+ 3 to find, for a queryq, the pointargmaxq′∈P∩C′
i
[q]〈q

′, uℓ〉, for

each0 ≤ ℓ ≤ k − 1. The query time isO(s log2 n) Using this information we easily determine, for a pair
(p, q), for which values ofℓ p is stronglyℓ-extremal forq.

As explained above, every swap changesO(s2 log2 n) pairs of the setsΠi. When a new pair is added to
a setΠi we query the treesTj , i− 3 ≤ j ≤ i+ 3, to find for which values ofℓ, p is stronglyℓ-extremal for
q (and vice versa). This takes a total ofO(s3 log4 n) time for each swap.

Furthermore, a pointp can cease (or start) being stronglyℓ-extremal forq only during a swap which
involves eitherp or q. So when we process a swap betweenp and some other point we recompute, for all
pairs(p, x) and(x, p) in the current setsΠi and for every0 ≤ ℓ ≤ k − 1, whetherp is stronglyℓ-extremal
for x, and whetherx remains stronglyℓ-extremal forp. This adds an overhead ofO(s3 log4 n) time at each
swap.

The following theorem summarizes the results obtained so far in this section.

Theorem 4.6. TheSDG G can be maintained using a data structure which requiresO
((

n/α3
)

log2 n
)

space and encounters two types of events: swaps and tournament events.
There areO(n2/α) swaps, each processed inO

(

log4 n/α3
)

time. There are

O
((

n2/α4
)

log2 nβr+2(log n/α) log(log n/α)
)

tournament events which are processed in overall

O
((

n2/α4
)

log2 nβr+2(log n/α) log
2(log n/α)

)

time. Processing each individual tournament event takesO(log2 log n+ log2(1/α)) time.

23



4.2 An even faster data structure

We next reduce the overall time and space required to maintainG roughly by factors ofs2 ands, respectively
(bringing the dependence ons of both bounds down to roughlys2). We achieve that by restricting each
tournamentDℓ[p] to contain a carefully chosen subsetNℓ[p] ⊆ N[p] of sizeO(s log2 n) (recall that the size
of the entire setN[p] is O(s2 log2 n)). The definition ofNℓ[p] is based on the following lemma. Its simple
proof is given in Figure 17.

Lemma 4.7. Let p, q ∈ P and leti be the index for whichq ∈ Ci[p]. Let0 ≤ ℓ ≤ k − 1 be an index, and
v ∈ S

1 a direction such that the raysuℓ[p] andv[q] intersectbpq at the same point. Thenv lies in one of the
two consecutive conesCζ(i,ℓ), Cζ(i,ℓ)+1, whereζ(i, ℓ) = 2i+ s− ℓ.

p

bpq

q

x

x

uℓ[p]

v[q]

t

ui[p] ui+1[p]

w

Ci[p]

Figure 17:Proof of Lemma 4.7: We assume that q ∈ Ci[p], and that the rays uℓ[p] and v[q] hit bpq at the
same point w. Then the angle x = ∠wpq = (i + 1 − ℓ)α − t, for some 0 ≤ t ≤ α. The orientation of qp is
(i+1)α− t+ π = (i+ s+1)α− t. Hence, the orientation of v is (i+ s+1)α− t+ x = (2i+ s− ℓ+2)α− 2t.
Thus, the direction v lies in the union of the two consecutive cones Cζ(i,ℓ), Cζ(i,ℓ)+1, for ζ(i, ℓ) = 2i+ s− ℓ.

It follows that in Corollary 4.2, we can require that the indices0 ≤ j, ℓ ≤ k − 1, for which (p, q) is a
(strongly) (j, ℓ)-extremal pair, satisfyζ(i, ℓ) ≤ j ≤ ζ(i, ℓ) + 2. Indeed, we may require that the vectors
uj [q], uℓ[p] hit bpq at the respective pointsx andy for which the angle∠xpy = ∠xqy is at mostα, which,
in turn, happens only ifuj bounds one of the conesCζ(i,ℓ), Cζ(i,ℓ)+1.

For all 0 ≤ i ≤ s − 1 and0 ≤ ℓ ≤ k − 1 we define a setΠi,ℓ which consists of all pairs(p, q) of
points ofP such that there exists a secondary nodew in Ti, and indicesℓ andζ(i, ℓ) ≤ j ≤ ζ(i, ℓ) + 2,
such thatp = ξBi,ℓ(w) andq = ξRi,j(w) or p = ξRi,ℓ(w) andq = ξBi,j(w). We define the setNℓ[p] to consist of
all pointsq such that(p, q) ∈ Πi,ℓ. For a pointp the set of points that participate in thereducedtournament
Dℓ[p] is

⋃ℓ+3
ℓ′=ℓ−3Nℓ′ [p]. (Note that this rule distributes a pointq ∈ Nℓ[p] to only seven nearby tournaments.

Nevertheless, when the edgepq is sufficiently long,q will belong to several consecutive neighborhoods
Nℓ[p], and therefore will appear in more tournaments, in particular in at least eight consecutive tournaments
at which it should win, according to the definition of ourSDG.)

We claim that, with this redefinition of the tournamentsDℓ[p], Theorems 4.3 and 4.4 still hold. To verify
that Theorem 4.3 holds one has to follow its (short) proof andnotice that, by Lemma 4.7, the pointq belongs
to the eight reduced tournaments which it is supposed to win.

We next indicate the changes required in the proof of Theorem4.4. We use the same notation as in the
original proof of Theorem 4.4, and recall that it assumed by contradiction that, say,Nℓ+4[p] 6= q even though
q wins the tournamentsDℓ[p],Dℓ+1[p], . . . ,Dℓ+7[p], and the pointp is strongly(ℓ+3)- and(ℓ+4)-extremal
for q. We use Lemma 4.5 to establish the existence of some pointr ∈ P such thatϕℓ+4[p, r] < ϕℓ+4[p, q]
andp is (ℓ + 4)-extremal forr. Let i be the index for whichr ∈ Ci[p], and letw be the secondary node in
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Ti for which r ∈ Bw andp ∈ Rw. Note thatp = ξRi,ℓ+4(w). We next choose an indexj such that the point

r′ = ξBi,j(w) either satisfies thatϕℓ+7[p, r
′] < ϕℓ+7[p, q] if r is to the right of the line fromp to q, or that

ϕℓ+1[p, r
′] < ϕℓ+1[p, q] if r is to the left of the line fromp to q. To re-establish Theorem 4.4 it suffices to

show thatr′ participates in the reduced tournamentDℓ+7[p] (resp.,Dℓ+1[p]) if r is to the right (resp., left)
of the line fromp to q.

It follows from the way we definedj in the original proof and from Lemma 4.7 thatζ(i, ℓ + 4) − 2 ≤
j ≤ ζ(i, ℓ+4)−1 (if r is to the right of the line fromp to q) or ζ(i, ℓ+4)+1 ≤ j ≤ ζ(i, ℓ+4)+2 (if r is to
the left of the line fromp to q). Sor′ ∈ Nℓ+4[p] and thereforer′ does participate in the reduced tournament
Dℓ+1[p] orDℓ+7[p]. Indeed, the directionv used in that proof lies in one of the conesCζ(i,ℓ+4), Cζ(i,ℓ+4)+1.
The directionuj then forms an angle betweenα and2α with v, which lies counterclockwise fromv if r lies
to the right of the line fromp to q, or clockwise fromv in the other case. This is easily seen to imply the
two corresponding constraints onj; see Figure 13.

We change our algorithm accordingly to maintain only the reduced tournaments.
Now every secondary nodew of any range treeTi contributes only seven pairs to each setΠi,ℓ, for

0 ≤ ℓ ≤ k − 1, so the size of each such set isO(n log n). Since there areO(s2) setsΠi,ℓ, their total size
is O(s2n log n). Each pair in eachΠi,ℓ contributes an item to a constant number of tournaments, so the
total size of the tournaments isO(s2n log n). Each individual tournamentDℓ[p] is now of sizeO(s log2 n),
becausep belongs toO(log2 n) pairs in each setΠi,ℓ′ for 0 ≤ i ≤ s− 1, 0 ≤ ℓ′ ≤ k − 1, andDℓ[p] inherits
only those pointsq that come from pairs(p, q) ∈ Πi,ℓ′ , for 0 ≤ i ≤ s− 1 andℓ− 3 ≤ ℓ′ ≤ ℓ+ 3.

WhenξBi,ℓ[w] changes fromp to p′ for some0 ≤ i ≤ s−1 and0 ≤ ℓ ≤ k−1, at most a constant number

of pairs (p, ξRi,j(w)) for ζ(i, ℓ) ≤ j ≤ ζ(i, ℓ) + 2 are deleted fromΠi,ℓ, and a constant number of pairs
(p′, ξRi,j(w)) for ζ(i, ℓ) ≤ j ≤ ζ(i, ℓ)+2 are added toΠi,ℓ. Similar changes take place inΠi,j for those three
indicesj satisfyingζ(i, j) ≤ ℓ ≤ ζ(i, j) + 2. WhenξRi,j[w] changes fromq to q′ for some0 ≤ i ≤ s − 1

and0 ≤ j ≤ k − 1, at most a constant number of pairs(ξBi,ℓ(w), q) are deleted fromΠi,j for the indices

ℓ satisfyingζ(i, j) ≤ ℓ ≤ ζ(i, j) + 2, and a constant number of pairs(ξBi,ℓ(w), q
′) are added for the same

values ofℓ. Similarly, at most a constant number of pairs(ξBi,ℓ(w), q) are deleted fromΠi,ℓ for the indices

ℓ satisfyingζ(i, ℓ) ≤ j ≤ ζ(i, ℓ) + 2, and a constant number of pairs(ξBi,ℓ(w), q
′) are added for the same

values ofℓ.
A change of a secondary nodew in the treeTi causesO(s) pairs in the setsΠi,ℓ to change.
Any Ki-swap changesO(log2 n) nodes inTi and thereby causesO(s log2 n) pairs in the setsΠi,ℓ to

change. AnyLj-swap changesO(s log2 n) extremal pointsξRi,j[w], ξ
B
i,j[w] at secondary nodesw of the trees

Ti, and thereby causesO(s log2 n) pairs in the setsΠi,ℓ to change. Since each pair inΠi,ℓ contributes an
item to a constant number of tournaments it follows thatO(s log2 n) points are inserted to and deleted from
the tournamentsDℓ[p] at each swap.

According to Theorem 2.1 the size of each tournament isO(s log2 n) – the number of elements that it
contains. So the total size of all tournaments isO(s2n log n). In total we get that there areO(s2n2 log2 n)
updates to tournaments during swaps. These updates generate

O(s2n2 log2 nβr+2(s log n) log(s log n))

tournament events that are processed in overall

O(s2n2 log2 nβr+2(s log n) log
2(s log n))

time. Each individual tournament event is processed inO(log2 log n + log2 s) time and each swap can be
processed inO(s log2 n log2(s log n)) time.
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In addition, for each pair(p, q) ∈ Πi,ℓ we record whetherp is stronglyℓ-extremal forq. We maintain
this information using the treesTj, for i− 3 ≤ j ≤ i+ 3, as described above, which allow for anyp, q ∈ P
and0 ≤ ℓ ≤ k− 1 to test, inO(log2 n) time, if p is stronglyℓ-extremal forq. At each swap event we spend
O(s log4 n) extra time to compute forO(s log2 n) pairs(p, q) which are added to the setsΠi,ℓ whetherp is
stronglyℓ-extremal forq.

Consider a pair(p, q) ∈ Πi,ℓ. The pointp may stop being stronglyℓ-extremal forq only during a swap
which involvesp or q. So, as before, at each swap we find theO(s log2 n) pairs containing one of the points
involved in the swap, and recompute, inO(s log4 n) total time, for each such pair(p, q), whether the strong
extremal relation holds. We thus obtain the following summary result.

Theorem 4.8. LetP be a set ofn moving points inR2 under algebraic motion of bounded degree, and let
α > 0 be a sufficiently small parameter. A(10α,α)-SDG ofP can be maintained using a data structure that
requiresO((n/α2) log n) space and encounters two types of events: swap events and tournament events.
There areO(n2/α) swap events, each processed inO(log4(n)/α) time. There are

O((n/α)2βr+2(log(n)/α) log
2 n log(log(n)/α))

tournament events, which are handled in a total of

O((n/α)2βr+2(log(n)/α) log
2 n log2(log(n)/α))

processing time. The worst-case processing time of a tournament event isO(log2(log(n)/α)). The data
structure is also local, in the sense that each point is stored, at any given time, at onlyO(log2 n/α2) places
in the structure.

Concerning locality, we note that a point participates inO(s) projection tournaments at each ofO(s log2 n)
tree nodes. If it wins in at least one of the projection tournaments at a node, it is fed toO(s) directional
tournaments. So it appears inO(s2 log n) places.
Remarks: (1) Comparing this algorithm with the space-inefficient oneof Section 2, we note that they both
use the same kind of tournaments, but here much fewer pairs ofpoints (O∗(n/α2) instead ofO(n2/α))
participate in the tournaments. The price we have to pay is that the test for an edgepq to be stable is
more involved. Moreover, keeping track of the subset of pairs that participate in the tournaments requires
additional work, which is facilitated by the range treesTi.

(2) To be fair, we note that ourO∗(·) notation hides polylogarithmic factors inn. Hence, comparing the anal-
ysis in this section with Theorem 3.6, we gain whenn is smaller than some threshold, which is exponential
in 1/α.

5 Properties of SDG

We conclude the paper by establishing some of the propertiesof stable Delaunay graphs.

Near cocircularities do not show up in an SDG. Consider a critical event during the kinetic maintenance
of the full Delaunay triangulation, in which four pointsa, b, c, d become cocircular, in this order, along their
circumcircle, with this circle being empty. Just before thecritical event, the Delaunay triangulation involved
two triangles, say,abc, acd. The Voronoi edgeeac shrinks to a point (namely, to the circumcenter ofabcd
at the critical event), and, after the critical cocircularity, is replaced by the Voronoi edgeebd, which expands
from the circumcenter as time progresses.
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Figure 18:The near collinearity that corresponds to a Voronoi edge becoming α-short.

Our algorithm will detect the possibility of such an event before the criticality occurs, wheneac becomes
α-short (or even before this happens). It will then remove this edge from the stable subgraph, so the actual
cocircularity will not be recorded. The new edgeebd will then be detected by the algorithm only when it
becomes sufficiently long (if this happens at all), and will then enter the stable Delaunay graph. In short,
critical cocircularities do not ariseat all in our scheme.

As noted in the introduction, a Delaunay edgeab (interior to the hull) is just about to becomeα-short
or α-long when the sum of the opposite angles in its two adjacent Delaunay triangles isπ − α (see Figure
1). This shows that changes in the stable Delaunay graph occur when the “cocircularity defect” of a nearly
cocircular quadruple (i.e., the difference betweenπ and the sum of opposite angles in the quadrilateral
spanned by the quadruple) is betweenα andcα, wherec is the constant used in our definitions in Section
3 or Section 4. Note that a degenerate case of cocircularity is a collinearity on the convex hull. Such
collinearities also do not show up in the stable Delaunay graph.5 A hull collinearity between three nodes
a, b, c is detected before it happens, when (or before) the corresponding Voronoi edge becomesα-short, in
which case the angle∠acb, wherec is the middle point of the (near-)collinearity becomesπ−α (see Figure
18). Therefore a hull edge is removed from theSDG if the Delaunay triangle is almost collinear. The edge
(or any new edge about to replace it) re-appears in theSDG when its corresponding Voronoi edge is long
enough, as before.

SDGs are not too sparse. Consider the Voronoi cellVor(p) of a pointp, and suppose thatp has only one
α-long edgeepq. Since the angle at whichp seesepq is at mostπ, the sum of the angles at whichp sees the
other edges is at leastπ, soVor(p) has at leastπ/α α-short edges. Letm1 denote the number of pointsp
with this property. Then the sum of their degrees inDT(P ) is at leastm1(π/α+1). Similarly, if m0 points
do not have anyα-long Voronoi edge, then the sum of their degrees is at least2πm0/α. Any other point at
least twoα-long Voronoi edges and its degree is at least 3 if it is an interior point, or at least 2 otherwise. So
the number ofα-long edges is at least (recall that eachα-long edge is counted twice)

n−m1 −m0 +m1/2 = n− (m1 + 2m0)/2. (2)

Let h denote the number of hull vertices. Since the sum of the degrees is6n− 2h− 6, we get

3(n − h−m1 −m0) + 2h+m1

(π

α
+ 1

)

+ 2m0
π

α
≤ 6n− 2h− 6,

5Even if they did show up, no real damage would be done, becausethe number of such collinearities is onlyO∗(n2); see, e.g.,
[22].
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Figure 19: If the points of P lie on a sufficiently spaced shifted grid then the number of α-long edges in
VD(P ) (the vertical ones) is close to n.

implying that

m1 + 2m0 ≤
3n

π/α− 2
.

Plugging this inequality in (2), we conclude that the numberof α-long edges is at least

n

[

1−
3

2(π/α − 2)

]

.

As α decreases, the number of edges in the SDG is always at least a quantity that gets closer ton. This is
nearly tight, since there existn-point sets for which the number of stable edges is only roughly n, see Figure
19.

Closest pairs, crusts,β-skeleta, and the SDG. Letβ ≥ 1, and letP be a set ofn points in the plane. The
β-skeletonof P is a graph onP that consists of all the edgespq such that the union of the two disks of radius
(β/2)d(p, q), touchingp andq, does not contain any point ofP \ {p, q}. See, e.g., [4, 18] for properties of
theβ-skeleton, and for its applications in surface reconstruction. We show that the edges of theβ-skeleton
areα-stable inDT(P ), providedβ ≥ 1+Ω(α2). In Figure 20 we sketch a straightforward proof of the fact
that the edges of theβ-skeleton areα-stable inDT(P ), provided thatβ ≥ 1 + Ω(α2).

β
2
d(
p,
q)
p

q

θ θ

c1 c2

Figure 20:An edge pq of the β-skeleton of P (for β > 1). c1 and c2 are centers of the two P -empty disks
of radius (β/2)d(p, q) touching p and q. Clearly, each of p, q sees the Voronoi edge epq at an angle at least
2θ = ∠c1pq + ∠c2pq (so it is 2θ-stable). We have 1/β = cos θ ≈ 1 − θ2/2 or β = 1 + Θ(θ2). That is, for
β ≥ 1 + Ω(α2) every edge of the β-skeleton is α-stable.

A similar argument shows that the stable Delaunay graph contains the closest pair inP (t) as well as the
crust of a set of points sampled sufficiently densely along a 1-dimensional curve (see [3, 4] for the definition
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b

c a d

Figure 21:ab is an edge of the relative neighborhood graph but not of SDG.

p

Figure 22:A wheel-like configuration that disconnects p in the stable Delaunay graph. The Voronoi diagram
is drawn with dashed lines, the stable Delaunay edges are drawn as solid, and the remaining Delaunay
edges as dotted edges. The points of the “wheel” need not be cocircular.

of crusts and their applications in surface reconstruction). We only sketch the argument for closest pairs: If
(p, q) is a closest pair thenpq ∈ DT(P ), and the two adjacent Delaunay triangles△pqr+,△pqr− are such
that their angles ofr+, r− are at mostπ/3 each, soepq is (π/3)-long, ensuring thatpq belongs to any stable
subgraph forα sufficiently small; see [1] for more details. We omit the proof for crusts, which is fairly
straightforward.

In contrast, stable Delaunay graphs need not contain all theedges of several other important subgraphs of
the Delaunay triangulation, including the Euclidean minimum spanning tree, the Gabriel graph, the relative
neighborhood graph, and the all-nearest-neighbors graph.An illustration for the relative neighborhood
graph is given in Figure 21. As a matter of fact, the stable Delaunay graph need not even be connected, as is
illustrated in Figure 22.

Completing SDG into a triangulation. As argued above, the Delaunay edges that are missing in the
stable subgraph correspond to nearly cocircular quadruples of points, or to nearly collinear triples of points
near the boundary of the convex hull. Arguably, these missing edges carry little information, because they
may “flicker” in and out of the Delaunay triangulation even when the points move just slightly (so that all
angles determined by the triples of points change only slightly). Nevertheless, in many applications it is
desirable (or essential) to complete the stable subgraph into sometriangulation, preferrably one that is also
stable in the combinatorial sense—it undergoes only nearlyquadratically many topological changes.

By the analysis in Section 3 we can achieve part of this goal bymaintaining the full Delaunay triangu-
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Figure 23:The triangulation DT⋄(P ) of an 8-point set P . The points a, b, c, d, which do not lie on the convex
hull of P , still lie on the boundary of the union of the triangles of DT⋄(P ) because, for each of these points
we can place an arbitrary large homothetic interior-empty copy of Q which touches that point.

lationDT⋄(P ) under the polygonal norm induced by the regulark-gonQk. This diagram experiences only
a nearly quadratic number of topological changes, is easy tomaintain, and contains all the stable Euclidean
Delaunay edges, for an appropriate choice ofk ≈ 1/α. Moreover, the union of its triangles is simply con-
nected — it has no holes. Unfortunately, in general it is not atriangulation of the entire convex hull ofP , as
illustrated in Figure 23.

For the time being, we leave it as an open problem to come up with a simple and “stable” scheme for
filling the gaps between the triangles ofDT⋄(P ) and the edges of the convex hull. It might be possible to
extend the kinetic triangulation scheme developed in [16],so as to kinetically maintain a triangulation of
the “fringes” betweenDT⋄(P ) and the convex hull ofP , which is simple to define, easy to maintain, and
undergoes only nearly quadratically many topological changes.

Of course, if we only want to maintain a triangulation ofP that experiences only a nearly quadratically
many topological changes, then we can use the scheme in [16],or the earlier, somewhat more involved
scheme in [2]. However, if we want to keep the triangulation “as Delaunay as possible”, we should include
in it the stable portion ofDT, and then the efficient completion of it, as mentioned above,becomes an issue,
not yet resolved.

Nearly Euclidean norms and some of their properties. One way of interpreting the results of Section
3 is that the stability of Delaunay edges is preserved, in an appropriately defined sense, if we replace the
Euclidean norm by the polygonal norm induced by the regulark-gonQk (for k ≈ 1/α). That is, stable
edges in one Delaunay triangulation are also edges of the other triangulation, and are stable there too. Here
we note that there is nothing special aboutQk: The same property holds if we replace the Euclidean norm
by any sufficiently close norm (or convex distance function [8]).

Specifically, letQ be a closed convex set in the plane that is contained in the unit diskD0 and contains
the diskD′

0 = (cosα)D0 that is concentric withD0 and scaled by the factorcosα. This is equivalent to
requiring that the Hausdorff distanceH(Q,D0) betweenQ andD0 be at most1− cosα ≈ α2/2. We define
the center ofQ to coincide with the common center ofD0 andD′

0.
Q induces a convex distance functiondQ, defined bydQ(x, y) = min{λ | y ∈ x + λQ}. Consider the

Voronoi diagramVorQ(P ) of P induced bydQ, and the corresponding Delaunay triangulationDTQ(P ).
We omit here the detailed analysis of the structure of these diagrams, which is similar to that for the norm
induced byQk, as presented in Section 3. See also [7, 8] for more details. Call an edgeepq of VorQ(P )

30



α-stable if the following property holds: Letu andv be the endpoints ofepq, and letQu, Qv be the two
homothetic copies ofQ that are centered atu, v, respectively, and touchp and q. Then we require that
the angle between the supporting lines atp (for simplicity, assume thatQ is smooth, and so has a unique
supporting line atp (and atq); otherwise, the condition should hold for any pair of supporting lines atp or at
q) to Qu andQv is at leastα, and that the same holds atq. In this case we refer to the edgepq of DTQ(P )
asα-stable.

Note thatQk-stability was (implicitly) defined in a different manner inSection 3, based on the number
of breakpoints of the corresponding Voronoi edges. Nevertheless, it is easy to verify that the two definitions
are essentially identical.

a

D′
0

Q

θ

∂D0

τ

ℓ
γb

θ

Figure 24:An Illustration for Claim 5.1.

A useful property of such a setQ is the following:

Claim 5.1. Leta be a point on∂Q and letℓ be a supporting line toQ at a. Letb be the point on∂D0 closest
to a (a andb lie on the same radius from the centero). Letγ be the arc of∂D0, containingb, and bounded
by the intersection points ofℓ with ∂D0. Then the angle betweenℓ and the tangent,τ , to D0 at any point
alongγ, is at mostα.

Proof. Denote this angle byθ. Clearlyθ is maximized whenτ is tangent toD0 at an intersection ofℓ and
∂D0. See Figure 24. It is easy to verify that the distance fromo to ℓ is cos θ. But this distance has to be
at leastcosα, or else∂Q would have contained a point insideD′

0, contrary to assumption. Hence we have
cos θ > cosα, and thusθ < α, as claimed.

We need a few more properties:

Claim 5.2. LetQ1 andQ2 be two homothetic copies ofQ and letw be a point such that (i)w lies on∂Q1

and on∂Q2, and (ii) w and the respective centerso1, o2 of Q1, Q2 are collinear. ThenQ1 andQ2 are
tangent to each other atw; more precisely, they have a common supporting line atw, and, assuming∂Q to
be smooth,w is the only point of intersection of∂Q1 ∩ ∂Q2 (otherwise,∂Q1 ∩ ∂Q2 is a single connected
arc containingw.).

Proof. Map each ofQ1, Q2 back to the standard placement ofQ, by translation and scaling, and note that
both transformations mapw to the same pointw0 on∂Q. Let ℓ0 be a supporting line ofQ atw0, and letℓ1,
ℓ2 be the forward images ofℓ under the mappings ofQ to Q1 and toQ2, respectively. Clearly,ℓ1 andℓ2
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Figure 25:An Illustration for Claim 5.2.

coincide, and are a common supporting line ofQ1 andQ2 atw. See Figure 25. The other asserted property
follows immediately if∂Q is smooth, and can easily be shown to hold in the non-smooth case too; we omit
the routine argument.

Claim 5.3. Let a and b be two points on∂Q, and let ℓa and ℓb be supporting lines ofQ at a and b,
respectively. Then the difference between the angles thatℓa andℓb form withab is at most2α.

Proof. Denote the two angles in the claim byθa andθb, respectively. Leta′ (resp.,b′) be the point on∂D0

nearest to (and co-radial with)a (resp.,b). Let τ1, τ2 denote the respective tangents toD0 at a′ and atb′.
Clearly, the respective anglesθ1, θ2 between the chorda′b′ of D0 andτ1, τ2 are equal. By Claim 5.1, we
have|θ1 − θa| ≤ α and|θ2 − θb| ≤ α, and the claim follows.

The connection between Euclidean stability andQ-stability. Let epq be atα-long Voronoi edge of the
Euclidean diagram, fort ≥ 9, and letu, v denote its endpoints. LetDu andDv denote the disks centered
respectively atu, v, whose boundaries pass throughp andq, and letD be a disk whose boundary passes
throughp andq, so thatD ⊂ Du ∪Dv and the angles between the tangents toD and toDu andDv atp (or
at q) are at leastmα each, wherem ≥ 4. (Recall that the angle between the tangents toDu andDv us at
leasttα ≥ 9α.)

q

Du

c

p

Q
(0)
c

D

Dv

Figure 26:The homothetic copy Q
(0)
c .

Let c andρ denote the center and radius ofD, respectively. Note thatc lies onepq “somewhere in the

middle”, because of the angle condition assumed above. LetQ
(0)
c denote the homothetic copy ofQ centered
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atc and scaled byρ, soQ(0)
c is fully contained inD and thus also inDu∪Dv , implying thatQ(0)

c is empty—it
does not contain any point ofP in its interior. (This scaling makes the unit circleD0 boundingQ coincide
with D.) See Figure 26.

ExpandQ(0)
c about its centerc until the first time it touches eitherp or q. Suppose, without loss of

generality, that it touchesp. Denote this placement ofQ asQc. Let ℓp denote a supporting line ofQc at
p. We claim that the angle betweenℓp and the tangentτp to D at p is at mostα. Indeed, letℓ−p , ℓ

+
p denote

the tangents fromp to Q
(0)
c . By Claim 5.1, the angles that they form with the tangentτp to D at p are at

mostα each. AsQ(0)
c is expanded toQc, these tangents rotate towards each other, one clockwise and one

counterclockwise so when they coincide (atQ0) the resulting supporting lineℓp lies inside the double wedge
between them. Sinceτp also lies inside this double wedge, and forms an angle of at most α with each of
them, it follows thatℓp must form an angle of at mostα with τp, as claimed.

Since the angle between the tangentτp to D at p and the tangentτvp to Dv at p is at leastmα it follows
that the angle betweenℓp andτvp is at least(m− 1)α. A similar argument shows that the angle betweenℓp
and the tangentτup toDu atp is at least(m− 1)α.

τ vp

Du

D

τp

DvQc

c

p

ℓp
τup

Figure 27:The homothetic copy Qc.

Now expandQc by moving its center along the line passing throughp andc, away fromp, and scale it
appropriately so that its boundary continues to pass through p, until it touchesq too. Denote the center of
the new placement asc′, and the placement itself asQc′ . LetDc′ be the corresponding homothetic copy of
D0 centered atc′ and boundingQc′ . See Figure 27.

We argue thatQc′ is empty. By Claim 5.2,ℓp is also a supporting line ofQc′ at p. Refer to Figure 29.
We denote byxp andyp the intersections of the supporting lineℓp with ∂Dc′ and∂Dv, respectively. We
denote byz the intersection of∂Dc′ and∂Dv that lies on the same side ofℓp asq. The angle∠pzxp is at
mostα since by Claim 5.1 the angle betweenℓp and the tangent toDc′ at xp is at mostα. On the other
hand the angle∠pzyp is at least(m − 1)α since the angle betweenℓp andτvp at p is at least(m− 1)α. So
it follows that the segmentpxp is fully contained inDv. Since the rayzp meets∂Dv (at p) before meeting
∂Dc′ , and the rayzxp meets∂Dc′ (atxp) before meeting∂Dv, it follows that∂Dc′ and∂Dv intersect at a
point on a ray betweenzp andzxp.

Let ℓq denote a supporting line ofQc′ atq. By Claim 5.3, the angles betweenpq and the linesℓp, ℓq differ
by at most2α. Since each of the angles betweenℓp and the two tangentsτvp andτup is at least(m− 1)α, it
follows that each of the angles betweenℓq and the two tangentsτuq andτvq toDu andDv, respectively, atq,
is at least(m− 3)α.
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Figure 28:The homothetic copy Qc′ .

Dc′

p

Du

Dv

Qc′

z
q

ypxp ℓp

Figure 29:The segment pxp is fully contained in Dv. The circles ∂Dc′, ∂Dv intersect at a point on a ray
emanating from z between zp and zxp

.

Refer now to Figure 30. We denote byz′ the intersection ofDc′ andDv distinct fromz, and we denote
by xq, yq the intersections betweenℓq andDc′ ,Dv , respectively. An argument analogous to the one given
before shows that∠qz′xq ≤ α while∠qz′yq ≥ (m− 3)α. It follows that the segmentqxq is fully contained
in Dv and we have an intersection between∂Dc′ and∂Dv on a ray emanating fromz′ between the ray from
z′ to q and the ray fromz′ to xq.

Our argument about the position of the intersections between Dc′ andDv implies that the entire section
of ∂Dc′ betweenxp andxq is containedDv. Therefore the portion ofQc′ to the right of the line throughp
andq (in the configuration depicted in the figures) is fully contained inDv. A symmetric argument shows
that the portion ofQc′ to the left of the line throughp andq is fully contained inDu. SinceDu ∪ Dv is
empty we conclude thatQc′ is empty.

The emptiness ofQc′ implies thatp andq are neighbors in theQ-Voronoi diagram, and thatc′ lies on
their commonQ-Voronoi edgeeQpq.

We thus obtain the following theorem.
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q
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ℓp
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p

ℓq
Qc′

Du

Dv

Figure 30:The segment qxq is fully contained in Dv. The circles ∂Dc′, ∂Dv intersect at a point on a ray
emanating from z′ between z′q and z′xq.

Theorem 5.4. Let P , α, andQ be as above. Then (i) every9α-stable edge of the Euclidean Delaunay
triangulation is anα-stable edge ofDTQ(P ). (ii) Conversely, every9α-stable edge ofDTQ(P ) is also an
α-stable edge in the Euclidean norm.

Note that parts (i) and (ii) are generalizations of Lemmas 3.4 and 3.5, respectively (with weaker con-
stants).

Proof. Part (i) follows directly from the preceding analysis. Indeed, letpq be atα-stable Delaunay edge, for
t ≥ 9, whose Voronoi counterpart has endpointsu andv. LetQc′ be the homothetic placement ofQ, with
centerc′, that touchesp andq. We have shown thatQc′ has empty interior if the rayρ = pc′ lies between
pu andpv and spans an angle of at least4α with each of them. Assumingt ≥ 9, such raysρ form a cone of
size(t− 8)α > α, which, in turn, gives the first part of the theorem.

Part (ii) follows from part (i) by repeating, almost verbatim, the proof of Lemma 3.5.

There are many interesting open problems that arise here. One of the main problems is to extend the
class of setsQ for which a near quadratic bound on the number of topologicalchanges inDTQ(P ), under
algebraic motion of bounded degree of the points ofP , can be established.
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