skip to main content
10.1145/1810959.1811004acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

The tidy set: a minimal simplicial set for computing homology of clique complexes

Published:13 June 2010Publication History

ABSTRACT

We introduce the tidy set, a minimal simplicial set that captures the topology of a simplicial complex. The tidy set is particularly effective for computing the homology of clique complexes. This family of complexes include the Vietoris-Rips complex and the weak witness complex, methods that are popular in topological data analysis. The key feature of our approach is that it skips constructing the clique complex. We give algorithms for constructing tidy sets, implement them, and present experiments. Our preliminary results show that tidy sets are orders of magnitude smaller than clique complexes, giving us a homology engine with small memory requirements.

References

  1. Barmak, J., and Minian, E. Strong homotopy types, nerves and collapses, 2009. arXiv:0907.2954v1 {math.GT}.Google ScholarGoogle Scholar
  2. Carlsson, G., Ishkhanov, T., de Silva, V., and Zomorodian, A. On the local behavior of spaces of natural images. International Journal of Computer Vision 76, 1 (2008), 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cazals, F., and Karande, C. Reporting maximal cliques: new insights into an old problem. Research Report 5642, INRIA, 2005.Google ScholarGoogle Scholar
  4. CHomP: Computational Homology Project. http://chomp.rutgers.edu.Google ScholarGoogle Scholar
  5. Civan, Y., and Yal¸cin, E. Linear colorings of simplicial complexes and collapsing. Journal of Combinatorial Theory Series A 114, 7 (2007), 1315--1331. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Collins, A., Zomorodian, A., Carlsson, G., and Guibas, L. A barcode shape descriptor for curve point cloud data. Computers and Graphics 28, 6 (2004), 881--894. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to Algorithms, third ed. The MIT Press, Cambridge, MA, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Curtis, E. B. Simplicial homotopy theory. Advances in Mathematics 6 (1971), 107--209.Google ScholarGoogle ScholarCross RefCross Ref
  9. de Silva, V., and Carlsson, G. Topological estimation using witness complexes. In Proc. IEEE/Eurographics Symposium on Point-Based Graphics (2004), pp. 157--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Edelsbrunner, H., and Mucke, E. P. Three-dimensional alpha shapes. ACM Transactions on Graphics 13 (1994), 43--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Eilenberg, S., and Zilber, J. A. Semi-simplicial complexes and singular homology. Annals of Mathematics 51, 3 (1950), 499--513.Google ScholarGoogle ScholarCross RefCross Ref
  12. Giesen, J., and John, M. The flow complex: A data structure for geometric modeling. In Proc. Symposium on Discrete Algorithms (2003), pp. 285--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Goerss, P. G., and Jardine, J. F. Simplicial homotopy theory, vol. 174 of Progress in Mathematics. Birkhauser-Verlag, Basel, Switzerland, 1999.Google ScholarGoogle Scholar
  14. Gromov, M. Hyperbolic groups. In Essays in Group Theory, S. Gersten, Ed. Springer-Verlag, New York, NY, 1987, pp. 75--263.Google ScholarGoogle Scholar
  15. Hatcher, A. Algebraic Topology. Cambridge University Press, New York, NY, 2002. http://www.math.cornell.edu/~hatcher/AT/ATpage.html.Google ScholarGoogle Scholar
  16. Kaczynski, T., Mischaikow, K., and Mrozek, M. Computational Homology. Springer-Verlag, New York, NY, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  17. Kasson, P. M., Zomorodian, A., Park, S., Singhal, N., Guibas, L. J., and Pande, V. S. Persistent voids: a new structural metric for membrane fusion. Bioinformatics 23, 14 (2007), 1753--1759. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kozlov, D. Combinatorial Algebraic Topology. Springer-Verlag, New York, NY, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  19. Matousek, J. LC reductions yield isomorphic simplicial complexes. Contributions to Discrete Mathematics 3, 2 (2008), 37--39.Google ScholarGoogle Scholar
  20. May, J. P. Simplicial Objects in Algebraic Topology. D. Van Nostrand Co., Inc., Princeton, NJ, 1967.Google ScholarGoogle Scholar
  21. Moon, J. W., and Moser, L. On cliques in graphs. Israel Journal of Mathematics 3, 1 (1965), 23--28.Google ScholarGoogle ScholarCross RefCross Ref
  22. Mrozek, M., Pilarczyk, P., and Zelazna, N. Homology algorithm based on acyclic subspace. Computers and Mathematics with Applications 55, 11 (2008), 2395--2412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Munkres, J. R. Elements of Algebraic Topology. Addison-Wesley, Reading, MA, 1984.Google ScholarGoogle Scholar
  24. Perry, P. Application of simplicial sets to computational topology. Senior thesis, Stanford University, 2003.Google ScholarGoogle Scholar
  25. Pilarczyk, P. Computer assisted method for proving existence of periodic orbits. Topological Methods in Nonlinear Analysis 13 (1999), 365--377.Google ScholarGoogle ScholarCross RefCross Ref
  26. Sexton, H., and Johansson, M. V. JPlex, 2009. http://comptop.stanford.edu/programs/jplex/.Google ScholarGoogle Scholar
  27. Siek, J., Lee, L.-Q., and Lumsdaine, A. The Boost Graph Library: user guide and reference manual. Pearson Education, Inc., Upper Saddle River, NJ, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Storjohann, A. Near optimal algorithms for computing Smith normal forms of integer matrices. In Proc. International Conference on Symbolic and Algebraic Computation (1996), pp. 267--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Whitehead, J. H. C. Simplicial spaces, nuclei, and m-groups. Proceedings of the London Mathematical Society s2-45, 1 (1939), 243--327.Google ScholarGoogle ScholarCross RefCross Ref
  30. Yellin, D. M. Algorithms for subset testing and finding maximal sets. In Proc. ACM-SIAM Symposium on Discrete Algorithms (1992), pp. 386--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zomorodian, A. Computational topology. In Algorithms and Theory of Computation Handbook, M. Atallah and M. Blanton, Eds., second ed., vol. 2. Chapman & Hall/CRC Press, Boca Raton, FL, 2010, ch. 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zomorodian, A. Fast construction of the Vietoris-Rips complex. Computers & Graphics (2010). (To appear). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Zomorodian, A., and Carlsson, G. Computing persistent homology. Discrete & Computational Geometry 33, 2 (2005), 249--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zomorodian, A., and Carlsson, G. Localized homology. Computational Geometry: Theory & Applications 41, 3 (2008), 126--148. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The tidy set: a minimal simplicial set for computing homology of clique complexes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SoCG '10: Proceedings of the twenty-sixth annual symposium on Computational geometry
          June 2010
          452 pages
          ISBN:9781450300162
          DOI:10.1145/1810959

          Copyright © 2010 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 13 June 2010

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate625of1,685submissions,37%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader