
Dynamic Well-Spaced Point Sets

Umut A. Acar∗ Andrew Cotter∗ Benoı̂t Hudson∗ Duru Türkoğlu†

December 8, 2009

Abstract

In a well-spaced point set the Voronoi cells all have bounded aspect ratio, i.e., the distance from the Voronoi
site to the farthest point in the Voronoi cell divided by the distance to the nearest neighbor in the set is
bounded by a small constant. Well-spaced point sets satisfy some important geometric properties and yield
quality Voronoi or simplicial meshes that can be important in scientific computations. In this paper, we
consider the dynamic well-spaced point-sets problem, which requires computing the well-spaced superset of
a dynamically changing input set, e.g., as points are inserted or deleted. We present a dynamic algorithm that
allows inserting/deleting points into/from the input in worst-case O(log ∆) time, where ∆ is the geometric
spread, a natural measure that is bounded by O(log n) when input points are represented by log-size words.
We show that the runtime of the dynamic update algorithm is optimal in the worst case by showing that
there exists inputs and modifications that require Ω(log ∆) Steiner points to be inserted to the output. Our
algorithm generates size-optimal outputs: the resulting output sets are never more than a constant factor
larger than the minimum size necessary. A preliminary implementation indicates that the algorithm is indeed
fast in practice. To the best of our knowledge, this is the first time- and size-optimal dynamic algorithm for
well-spaced point sets.

∗Toyota Technological Institute at Chicago
†University of Chicago



1 Introduction

We call a set of points M well-spaced if the Voronoi cell of each point has a good aspect ratio, i.e., the ratio
of the distance to the farthest point in the Voronoi cell divided by the distance to the nearest neighbor in
M is small [Tal97]. Well-spaced point sets are strongly related to meshing and triangulation for scientific
computing, which require meshes to have certain qualities. In two dimensions, a well-spaced point set
induces a Delaunay triangulation with no small angles, which is known to be a good mesh for the finite
element method. In higher dimensions, well-spaced point sets can be post-processed to generate good
simplicial meshes [LT01, CDE+00]. The Voronoi diagram of a well-spaced point set is also immediately
useful for the control volume method [MTTW95].

Given a finite set of points N in the d-dimensional unit hypercube, [0, 1]d, the well-spaced point set
problem is to construct an output M ⊇ N that is well-spaced. We can construct the output by extending the
input set with so called Steiner points, taking care to insert as few Steiner points as possible. We call the
output and the algorithm size-optimal if the size of the output, |M|, is within a constant factor of the size
of the smallest possible well-spaced superset of the input, N. This problem has been studied since the late
1980s (e.g. [Che89, BEG94, Rup95]), with several recent results obtaining fast runtimes [HPÜ05, HMP06,
STÜ07, HT08]. We are interested in the dynamic version of the problem, which requires maintaining a well-
spaced output (M) while the input (N) changes dynamically due to insertion and deletion of points. Upon
a modification to the input, the dynamic algorithm should efficiently update the output preserving size-
optimality of the output with respect to the new input. There has been relatively little progress on solving
the dynamic problem. Existing solutions either do not produce size-optimal outputs (e.g., [NvdS04]) or they
are asymptotically no faster than running a static algorithm from scratch [LTU99, MBF04, CGS06].

In this paper, we present a dynamic algorithm for the well-spaced point set problem. Our algorithm
always returns size-optimal outputs and requires worst-case O(log ∆) time for an input modification (an
insertion or a deletion). Here ∆ is the geometric spread, a common measure, defined as 1

δ , where δ is the
distance between the closest pair of points in the larger input. If the spread is polynomially bounded in the
size of the input n, then log ∆ = O(log n) (e.g., when the input is specified using log n-bit number). Our
algorithm consumes linear space in the size of the output and our update runtime is optimal in the worst-case.

To solve the dynamic problem, we first present an efficient algorithm for constructing optimal-sized,
well-spaced supersets (Section 3). To enable dynamization, in addition to the output, the algorithm con-
structs a computation graph that represents the operations performed during the execution and the depen-
dences between them. A key property of this algorithm is that it is stable in the sense that it produces similar
computation graphs with similar inputs, e.g., that differ by one point. We make this property precise by de-
scribing a distance measure between computations graphs and bounding it by O(log ∆) when inputs differ
by a single point (Lemma 6.4). Informally, the distance measure corresponds to the number of output points
that are affected by an insertion/deletion of a point into/from the input.

Taking advantage of stability, we provide a dynamic update algorithm (Section 7) that updates the output
and the computation graph in time proportional the distance between them, i.e., in O(log ∆) time for a single
insertion/deletion. The dynamic update algorithm achieves fast updates by identifying the operations that
are affected by the modification to the input and deleting and re-executing them as necessary. At a high level,
the approach can be viewed as a dynamization technique, which has been used effectively for a relatively
broad range of algorithms (e.g. [Mul91, Sch91, BDS+92, CMS93]). Our dynamic update algorithm returns
an output and a computation graph that are isomorphic to those that would be obtained by executing from
scratch the static algorithm with the modified input (Lemma 7.2). Consequently, the output remains both
well-spaced and size-optimal with respect to the modified input (Theorem 7.3).

1



The run-time of the dynamic-update algorithm directly depends on the similarity between computa-
tions as measured by the number of affected output points. We make sure that this quantity is small by
carefully designing our stable algorithm to maintain several invariants. First, we structure the computation
into Θ(log ∆) levels—ranks and colors—such that the operations in each level depend only on the previ-
ous levels [STÜ07]. Second, we pick Steiner points by making local decisions only, using clipped Voronoi
cells [HT08]. These techniques enable us to process each point only once and help isolate and limit the
effects of a modification. Our proof follows from a spacing-and-packing argument. The spacing argument
shows that any affected point has an empty ball around itself whose radius is proportional to its distance to
the dynamic point v∗. Intuitively, the further away the affected points are from v∗, the further away they are
from each other. We then apply a packing argument to show that there can be only a constant number of
affected points at each level, consequently, O(log ∆) in total.

To asses the effectiveness of the proposed dynamic algorithm, we present a prototype implementation
and report the results of a preliminary experimental evaluation. Our experimental results confirm our theo-
retical bounds, showing asymptotic (linear) speedups over re-computing from scratch. These results suggest
that a well-optimized implementation can perform very well in practice.

2 Preliminaries

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

a

c

d

b

v

Figure 1: M = {a, b, c, d, v}.
NNM(v) = |va|. Thick solid
and dashed boundaries depict
Vorρ

M(v) and Vorβ
M(v).

We present several definitions and the notation used in the rest of the
paper; Figure 1 illustrates some of them. We work within the d-
dimensional unit hypercube [0, 1]d. In the static setting, our algorithm
takes as input a set of vertices, N, and produces as output a well-spaced
superset M. For clarity, we use the term point to refer to any point
in space and the term vertex to refer to the input and output points.
Given a vertex set M, the nearest-neighbor distance of v in M, written
NNM(v), is the distance from v to the nearest other vertex in M. The
Voronoi cell of v in M, written VorM(v), consists of points x ∈ [0, 1]d

such that for all u ∈ M, |vx| ≤ |ux|. The outradius of the Voronoi cell
of v is the distance from v to the farthest point in VorM(v) and the aspect
ratio of VorM(v) is its outradius divided by NNM(v). Following Tal-
mor [Tal97], we say that a vertex is ρ-well-spaced if the aspect ratio of
its Voronoi cell is bounded by ρ. We say thatM is ρ-well-spaced if every vertex inM is ρ-well-spaced. We
define the β-clipped Voronoi cell, written Vorβ

M(v), as the intersection of VorM(v) with the ball of radius
β NNM(v) centered at v [HT08]. Note that a point v is ρ-well-spaced if and only if Vorρ

M(v) = VorM(v).
We define local feature size of a point x ∈ [0, 1]d, written lfs(x), as the distance from x to the second-

nearest vertex of N. We say that a set of vertices M is size-conforming, if NNM(v) ∈ Ω(lfs(v)) for all
v ∈ M. Our algorithm guarantees that the output is size-conforming. Using this property, we prove the
optimality result on the output size which directly affects the runtime bound of our static algorithm.

Our algorithm uses a point location structure based on the balanced quadtree of Bern, Eppstein, and
Gilbert [BEG94] (Appendix A). It is relatively straightforward to dynamize the balanced quadtree and to
extend it to d dimensions (we use ‘quadtree’ and ‘quadtree node’ to mean 2d-tree and d-hypercube). Ex-
ternally, we use only the leaves of the quadtree, which we refer to as squares. The quadtree squares store
neighbor pointers and a list of the vertices they contain, to support fast searches. Vertices store the square
that contains them, avoiding the need to search through the tree structure. The quadtree supports the func-
tions QTBuild, QTAdd, QTRemove, QTApxNN, and QTClippedVoronoi. Function QTBuild(N)

2



Dimension: d, Parameters: ρ, β, κ

StableWS (N) =

Ω← ∅; Π← QTBuild(N)

foreach v ∈ N do
r ←

¨
logρ QTApxNN(v)

˝
Ω← Ω ∪ {NewOp(v,nil, r, 0)}

for r = min rank in Ω to
j
logρ

√
d

k
do

foreach op ∈ Ω|r,0 do Dispatch(op, Ω)

for c = 1 to κd do
foreach op ∈ Ω|r,c do Fill(op, Ω)

return (N, Π)

NewOp (v,parent, r, c) =

op.vertex← v; op.rank← r; op.color← c

op.children, op.steiners, op.reads← ∅
parent.children← parent.children ∪ {op}
return op

ClippedVoronoi (op)

v ← op.vertex

(CV, S)← QTClippedVoronoi(v, β)

foreach s ∈ S do s.access← s.access ∪ {op}
op.reads← S

return (v, CV, S)

Color (v, r) =

for i = 1 to d do ci ←
j
vi/(ρr/

√
d)

k
mod κ

return (c1, c2, . . . , cd) as a d digit number

Dispatch (op, Ω) =

(v, CV, S)← ClippedVoronoi(op)

r ←
¨
logρ NN(v)

˝
(via CV )

if r ≥ op.rank then
Ω← Ω ∪ {NewOp(v, op, r,Color(v, r))}

foreach neighbor u of v (via CV ) do
ru ←

¨
logρ |uv|

˝
if ru ≥ op.rank then

Ω← Ω ∪ {NewOp(u, op, ru,Color(u, ru))}

Fill (op, Ω) =

(v, CV, S)← ClippedVoronoi(op)

while v is not ρ-well-spaced do
choose u ∈ CV such that |uv| ≥ ρ NN(v)

s← square of S that contains u

u.square← s

s.vertices← s.vertices ∪ {u}
op.steiners← op.steiners ∪ {u}
Ω← Ω ∪ {NewOp(u, op,

¨
logρ |uv|

˝
, 0)}

update CV with u

Figure 2: The pseudo-code for our stable algorithm.

constructs a quadtree for the set of vertices N in O(n log ∆) time and returns the quadtree. Functions
QTAdd(Π, v) and QTRemove(Π, v) respectively add or remove an input vertex v into or from N and up-
date the quadtree Π to match the new input in O(log ∆) time. They return the updated quadtree and the set
of squares that are deleted or that become internal quadtree nodes. Function QTApxNN(v) returns a value
in Θ(NNN(v)) in O(1) time and QTClippedVoronoi(v, β) returns Vorβ

M(v) and the set of squares it
reads in O(1) time under certain assumptions [HT08] that our algorithm meets.

3 A Stable Algorithm

Given a set of inputs points N the algorithm starts by constructing a quad-tree and stores it in the variable
Π for use in dynamic updates (PropagateWS) . The algorithm computes the output by creating and
performing two kinds of operations, dispatch and fill, in a carefully controlled schedule to ensure efficiency
and stability; the operations are stored in the variable Ω. NewOp creates an operation, initializing its fields:
rank, color, the vertex that we say it acts on, a list of Steiner vertices that it creates (if any), a list of squares
that it reads, and pointers to its children, i.e., operations that it creates. Except for some initial operations,
the rank of an operation acting on a vertex v is the floor of the logarithm base ρ of the nearest neighbor
distance of v at the time of the operation’s creation. We define a color for each operation in order to limit
the dependences between operations of the same rank: two operations that share the same rank and color
are mutually independent (a fact used by Lemma 6.2). The color of a dispatch operation acting on a vertex
v is zero. For fill operations the color is the coordinates of v rounded to a periodic square lattice with scale
ρr/

√
d and period κ (see Appendix B). The rank and the color of an operation defines its time, ordered by

the natural lexicographic ordering on pairs, e.g., (r, 0) < (r, 1) < . . . < (r + 1, 0).
The algorithm starts by creating a quadtree and then creates a dispatch operation for each input vertex

using a constant factor approximation of their actual rank as computed by QTApxNN. It then executes the
operations in the order of their time by considering the Θ(log ∆) ranks and the κd +1 colors. In the pseudo-

3



code, we use Ω|r,c to refer to the operations with time (r, c). If an operation op acting on vertex v has
color zero, we apply function Dispatch, which creates a fill operation for v and for each vertex that is a
neighbor of v’s β-clipped Voronoi cell. If op has non-zero color, we apply function Fill, which checks
whether v is ρ-well-spaced by finding its β-clipped Voronoi cell. If v is ρ-well-spaced then the function
returns, otherwise, it creates Steiner vertices until v becomes ρ-well spaced, adding each created Steiner
vertex to the appropriate square and scheduling a dispatch operation for it.

Output and Time. We use M to refer to the set of output vertices (input and Steiner vertices). In the
analysis of the algorithm, we refer to time as a single entity rather than its components (rank and color). For
brevity, we define time t = 0 to be the beginning of time, when the dispatch operations for the input are
created but before any operations are performed, and define time t = ∞ to be the end of the algorithm. We
write Mt to refer to the output at time t, e.g., M0 is equal to the input, N, and M∞ is equal to the final output,
M. For readability, we use t instead of Mt in the subscript, e.g., NNt instead of NNMt .

Computation Graph. When executed, our algorithm creates a representation of the execution, which we
call a computation graph G = (V,E). The nodes, V = Σ ∪ Ω, consist of the set of squares (Σ) and
the set of operations (Ω) at the completion of the algorithm. The edges represent various dependences
between operations and squares. If an operation op creates another operation op′ then (op, op′) becomes
an edge ((op, op′) ∈ E, recorded by storing op′ in the children field of op). If an operation op reads a
square s via the QTClippedVoronoi operation then (s, op) becomes an edge (recorded by storing op in
s.access and s in op.reads). Finally, if an operation op writes a square s by inserting a new Steiner
vertex u into it then (op, s) becomes an edge (recorded by storing u in the steiners field of op, u points to
s via its square field). We consider each edge to be tagged with the time (rank and color) of the operation
that creates it, e.g., in the description above this is the time of op.

4 Output Quality and Size

We prove that our algorithm guarantees that the output, M, is ρ-well-spaced and size-optimal with respect
to N. We prove size-optimality by showing that M is size-conforming using a technique introduced by
Ruppert [Rup95]; due to space restrictions we leave this proof to Appendix C. For ρ-well-spacedness, we
establish the key invariant that after running Fill on a vertex (i.e., making it well spaced), we never need
to visit it again—we incrementally progress towards a ρ-well-spaced output.

Lemma 4.1 For all t, Mt is size-conforming. Consequently, M is size-optimal with respect to N.

Lemma 4.2 Let v be a vertex in M such that every vertex u ∈ M with NNM(u) ≤ NNM(v)/ρ is ρ-well-
spaced. Then no fill operation can create a new nearest neighbor for v.
Proof: Assume that the fill operation acts on a vertex w. If w is ρ-well-spaced in M, the operation does
not create any Steiner vertices and the lemma holds trivially. Otherwise, the operation inserts a vertex w′.
Our algorithm chooses Steiner vertices in VorM(w)—in particular, |vw′| ≥ |ww′|—at distance |ww′| ≥
ρ NNM(w). Given that w is not ρ-well-spaced, ρ NNM(w) > NNM(v). Unwinding the inequalities, we
get |vw′| > NNM(v). That is, w′ cannot be a new nearest neighbor of v.

Lemma 4.3 (Progress) At time t = (r, 0), every vertex v ∈ Mt with NNt(v) < ρr is ρ-well-spaced.

4



Proof: At the minimum rank, there are no vertices with smaller nearest neighbor distance, so the claim is
trivially true. Assume that the lemma is true up to rank r, that is, for t = (r, 0), every vertex u ∈ Mt with
NNt(u) < ρr is ρ-well-spaced. We want to show that our claim holds for t′ = (r + 1, 0). Consider a vertex
v ∈ Mt′ with NNt′(v) < ρr+1. All Steiner vertices inserted at rank r have their nearest neighbors at distance
at least ρr+1. This implies that v is not a Steiner vertex inserted at rank r; so NNt(v) is defined and < ρr+1

as well. We know that if NNt(v) ≥ ρr, there exists a fill operation that acts on v at rank r (Lemma C.1).
After executing that operation, v becomes ρ-well-spaced. Also, Lemma 4.2 shows that all ρ-well-spaced
vertices u ∈ Mt with NNt(u) < ρr+1 remain ρ-well-spaced. Therefore, our claim holds.

Theorem 4.4 The static algorithm constructs a size-optimal ρ-well-spaced superset M of its input N.
Proof: That M is ρ-well-spaced follows from the Progress Lemma and the fact that our algorithm iterates
over all ranks. Lemma 4.1 proves the size bound.

5 Runtime

We analyze the running time of our static algorithm and emphasize two lemmas that turn out to be useful in
the analysis of our dynamic algorithm. The first lemma (Lemma 5.1) proves that throughout the algorithm,
the nearest neighbor distance of a vertex v changes only by a constant factor. The second (Lemma 5.2)
proves that all operations acting on v have rank blogρ NN∞(v)c ± O(1); none are scheduled too early, nor
too late. Due to space restrictions, we leave most of the proofs to Appendix D.

Lemma 5.1 Let t be the time at which v is created (t = 0 for input vertices). Then NNt(v) ∈ Θ(NN∞(v)).

Lemma 5.2 If an operation that acts on v runs at rank r, then NN∞(v) ∈ Θ(ρr).

Lemma 5.3 Every operation runs in O(1) time.
Proof: Pick an operation that acts on v at time t = (r, c). The main costs are the QTClippedVoronoi
calls and the loops. The Progress Lemma shows that every vertex u ∈ Mt with NNt(u) < ρr is ρ-well-
spaced and Lemmas 5.2 and 5.1 together show that NNt(v) ∈ Θ(ρr). Hudson and Türkoğlu [HT08] show
that these are sufficient conditions to guarantee QTClippedVoronoi runs in constant time.

The dispatch operation loops as many times as there are clipped Voronoi neighbors. Since QTClipped-
Voronoi runs in constant time, there can be only O(1) neighbors. The fill operation has a loop that adds
vertices until v is ρ-well-spaced. Each vertex u is chosen in Vorβ

t (v) but far from v: NNt(u) = |uv| ≥
ρ NNt(v). Therefore, we can associate non-overlapping empty balls of radius ρ NNt(v)/2 around every
Steiner vertex. Since all of the Steiner vertices are in a ball of radius β NNt(v) around v, a packing argu-
ment shows that there are O(1) Steiner vertices created for each fill operation.

Lemma 5.4 For every vertex v ∈ M, there are O(1) operations that act on v.

Theorem 5.5 The static algorithm runs in O(n log ∆) time.
Proof: Building the quadtree using QTBuild takes O(n log ∆) time. There are a constant number of
operations that act on a vertex in the output and each operation takes constant time. Thus, the total runtime
is O(n log ∆ + m), where m = |M |. That m ∈ O(n log ∆) follows from our dynamic runtime bound.

5



6 Dynamic Stability

We call two inputs N and N′ related if they differ by one vertex, i.e., one can be obtained from the other
by inserting or deleting a vertex. To analyze the stability of algorithm StableWS, we define a notion of
distance between its executions with related inputs and prove that this distance is bounded by O(log ∆) in
the worst-case, where ∆ is the larger geometric spread among the two inputs N and N′ (Lemma 6.4).

As described in Section 3, StableWS(N) creates G = (V,E) by building a quadtree Σ and a set of
operations Ω, V = Σ∪Ω, and the edges E are defined by the pointer structure that is constructed. Similarly
define V ′, E′, Σ′, and Ω′ for StableWS(N′). We say that two squares s ∈ Σ and s′ ∈ Σ′ are identical,
written s ≡ s′, if s and s′ have the same geometry, i.e., the same corner points and size. We say that two
operations op ∈ Ω and op′ ∈ Ω′ are identical, written op ≡ op′, if op and op′ have the same time and act
on the same vertex. We define a matching µ : V → V ′ between G and G′ as µ = µo ∪ µs, where µo is the
largest set satisfying µo = {(op, op′) | op ∈ Ω ∧ op′ ∈ Ω′ ∧ (op ≡ op′) ∧ (parent(op), parent(op′)) ∈ µo}
and µs = {(s, s′) | s ∈ Σ∧s′ ∈ Σ′∧s ≡ s′}. Informally, the matching pairs squares of G with the identical
squares of G′ and pairs the operations of G with the identical operations of G′ as long as their parents (the
operations that create them, if any) are also paired. We use dom(µ) and range(µ) to refer to the domain and
the range of µ. We say that nodes u ∈ V and u′ ∈ V ′ match if µ(u) = u′.

Given G = (V,E) and G′ = (V ′, E′) and their matching µ, let the matching µ′ = µ ∪ {(u, u) | u ∈
V ′ \ range(µ)} be a surjective matching onto the nodes V ′ of G. We combine the computation graphs in a
union graph as follows: G∪ = (V ∪ µ′(V ′), E ∪ µ′(E′)), where µ′(E′) = {(µ′(u), µ′(v)) | (u, v) ∈ E′}.
The union graph injects G′ into G under the guidance of µ by extending G with the unmatched nodes of
G′, unifying the matched nodes, and adding the edges of G′ while redirecting them to the matched nodes
appropriately. In the union graph, we say that a path (u0, u1, . . . , uh) is a dependence path if the times of
the edges (u0, u1), (u1, u2), . . . , (uh−1, uh) increase monotonically.

We partition the nodes of the union graph G∪ = (V ∪, E∪) into several categories. The nodes V − =
V \ dom(µ) are called the obsolete nodes (squares Σ−, operations Ω−); these are the nodes of G that have
no matching pairs in G′. The nodes V + = V ′ \ range(µ) are called fresh nodes (squares Σ+, operations
Ω+); these are the nodes of G′ that have no matching pairs in G. Additionally, we call a square s ∈ V ∪

inconsistent if it is fresh or obsolete, or if it contains the vertex v∗. We say that an operation op ∈ dom(µ) is
inconsistent if it is reachable from an inconsistent square via a dependence path. We represent inconsistent
nodes with V × (squares Σ×, operations Ω×). We define the distance between the execution of two related
inputs N and N′ with graphs G and G′ as the number of obsolete, fresh, or inconsistent operations of the
union graph, i.e., distance(StableWS(N),StableWS(N′)) = |Ω− ∪ Ω+ ∪ Ω×|.

Lemma 6.1 For every operation in Ω− ∪ Ω+ ∪ Ω×, there exists a dependence path from a square in Σ×.

As proven in [HT08], QTClippedVoronoi satisfies the following property: given a size-conforming
set of vertices M and a square s read by QTClippedVoronoi(v, β), for all x ∈ s, |vx| ∈ O(NNM(v)).
By using this locality property, we relate the operations on a dependence path geometrically.

Lemma 6.2 Consider two operations op1 and op2 in G∪ acting on vertices v1 and v2. If there exists a
dependence path from op1 to op2 and op2 is at rank r, then |v1v2| ∈ O(ρr).
Proof: First, we show that for any edge, the distance between its nodes is short. We define the distance
between a square and an operation to be the distance from the vertex of the operation to the farthest point
in the square. The distance between two operations is the distance between the vertices on which they act.
Without loss of generality, pick an edge e ∈ E with time te = (re, ce). The edge e consists of an operation

6



op ∈ Ω acting on v at time te and either a square s that it accesses (reads/writes) or another operation op′

that it schedules. Then, using the locality result from [HT08], we bound the distance between op and s by
O(NNte(v)). Also, op′ is within the same distance. Lemmas 5.1 and 5.2 bound NNte(v) by O(ρre); thus,
the distance between the nodes of e is at most αρre , where α is a constant.

Following the definition of dependence paths, the times of the edges on the path from op1 to op2 mono-
tonically increase. Then, assuming that the rank of op1 is r′, there can be at most κd many edges for
each rank between r′ and r. Therefore, in the worst case, the distance between v1 and v2 is bounded by∑r

i=r′ κ
dαρi = ακd ρr+1−ρr′

ρ−1 < ακd ρr+1

ρ−1 . Consequently, |v1v2| ∈ O(ρr).

In order to bound the distance between two executions, we focus on the vertices rather than the opera-
tions. We say that a vertex is affected if there exists an unmatched or an inconsistent operation that acts on
it. Since there are a constant number of operations acting on a given vertex (Lemma 5.4), the number of
affected vertices exactly measures the distance between two executions. We define the sets of affected ver-
tices in both executions: M̂ = {op.vertex | op ∈ Ω− ∪ Ω×} and M̂′ = {op.vertex | op ∈ Ω+ ∪ Ω×}.
The following two lemmas demonstrate the spacing and packing arguments respectively.

Lemma 6.3 For any vertex v ∈ M̂, |vv∗| ∈ O(NNM(v)) and for any v ∈ M̂′, |vv∗| ∈ O(NNM′(v)).
Proof: We prove the lemma for v ∈ M̂; symmetric arguments apply for M̂′. By definition of M̂, there exists
an operation opv ∈ Ω− ∪ Ω× acting on v at rank r. Lemma 6.1 suggests that there exists a dependence
path from a square s ∈ Σ× to opv. Let opu be the operation on this path that reads s; opu acts on a vertex
u at rank ru. By Lemma 6.2, we know that |vu| ∈ O(ρr). By that fact that opu reads s, we know |us| is
in O(ρru) and Lemmas A.1 and A.2 imply |sv∗| ∈ O(|s|) which is in O(ρru) as well. Using the triangle
inequality and the fact that ru ≤ r, we bound |vv∗| by O(ρr). It only remains to prove that there is a ball
around v of radius Ω(ρr) empty of vertices in M. Lemma 5.2 proves precisely this.

Lemma 6.4 (Distance) The distance between two related executions is bounded by O(log ∆).
Proof: Consider the vertices v ∈ M̂ with |vv∗| ∈ [2i, 2i+1). By Lemma 6.3, we can assign non-overlapping
empty balls of radius Ω(2i) to them. Therefore, there are at most a constant number of such vertices for any
i. At most O(log ∆) values of i cover M̂, so |M̂| ∈ O(log ∆). The same argument applies to M̂′.

7 Dynamic Update Algorithm

We describe an algorithm for updating the output of StableWS dynamically when the input is modified by
an insertion or deletion of a vertex, prove that it is correct (Lemma 7.2) and efficient (Theorem 7.3).

After we run StableWS with some input set to obtain an output and a computation graph, we can
change the input dynamically and update the output and the computation graph. Figure 3 shows the pseudo-
code for the Add and Remove functions for inserting and deleting a vertex v∗ into and from the input (re-
spectively), and the PropagateWS function for dynamic updates. Given v∗, Add and Remove update the
quadtree and determine the set of inconsistent squares Σ⊗ and call PropagateWS with this set. The struc-
ture of PropagateWS is similar to that of StableWS but more involved. It maintains distinct operation
sets marked for removal Ω	, for execution Ω⊕, and for re-execution Ω⊗. As their notation suggests these
are related to the obsolete, fresh, and inconsistent operations defined in the stability analysis; Lemma 7.1
makes this correspondence precise. PropagateWS takes the previous input set N and the inconsistent
squares Σ⊗. It starts by updating the operation sets by finding the input vertices that are contained in these
squares, deleting their dispatch operations, and creating new dispatch operations for them. The algorithm

7



Globals: ρ, β, κ, Ω	, Ω⊕, Ω⊗

Add (N, Π, v∗) =

(Π′, Σ−)← QTAdd(Π, v∗)

r ←
¨
logρ QTApxNN(v∗)

˝
Ω⊕ ← {NewOp(v∗,nil, r, 0)}; Ω	, Ω⊗ ← ∅
Propagate(N, Σ− ∪ {v∗.square})
return (N ∪ {v∗}, Π′)

Remove (N, Π, v∗) =

(Π′, Σ−)← QTRemove(Π, v∗)

Ω	 ← {Dispatch of v∗}; Ω⊕, Ω⊗ ← ∅
Propagate(N, Σ− ∪ {v∗.square})
return (N \ {v∗}, Π′)

UndoOps (r, c) =

foreach op ∈
`
Ω	 ∪ Ω⊗

´˛̨
r,c

do

Ω	 ← Ω	 ∪ op.children

foreach s ∈ op.reads do
s.access← s.access \ {op}

foreach v ∈ op.steiners do
s← v.square

s.vertices← s.vertices \ {v}
MarkReaders(s, (r, c))

Ω⊗ ← Ω⊗ \ Ω	
˛̨
r,c

ResetEdges(Ω⊗
˛̨
r,c

)

PropagateWS (N, Σ⊗) =

foreach s ∈ Σ⊗ do
MarkReaders(s, 0)

foreach v ∈ s.vertices ∩ N do
Ω	 ← Ω	 ∪ {Dispatch of v}
rv ←

¨
logρ QTApxNN(v)

˝
Ω⊕ ← Ω⊕ ∪ {NewOp(v,nil, rv , 0)}

R← min rank in Ω	 ∪ Ω⊕ ∪ Ω⊗

for r = R to
j
logρ

√
d

k
do

UndoOps(r, 0)

foreach op ∈
`
Ω⊕ ∪ Ω⊗

´˛̨
r,0

do

Dispatch(op, Ω⊕)

for c = 1 to κd do
UndoOps(r, c)

foreach op ∈
`
Ω⊕ ∪ Ω⊗

´˛̨
r,c

do

Fill(op, Ω⊕)

foreach v ∈ op.steiners do
MarkReaders(v.square, (r, c))

MarkReaders (s, t) =

foreach op ∈ s.access do
if (op.rank, op.color) > t then

Ω⊗ ← Ω⊗ ∪ {op}

Figure 3: The pseudo-code for the dynamic algorithm.

12 3 4 567 89 10 11 12 13 14p

Figure 4: Dynamic up-
date after insertion of p.
Solid vertices are in-
put (N), vertices marked
+ are inserted, vertices
marked − are deleted.
Gray squares are incon-
sistent. The four bold-
lines squares are fresh;
they replace the bigger
obsolete square.

then proceeds in time order, first undoing the operations marked for removal and re-execution (Ω	 ∪ Ω⊗)
by calling UndoOps, then performing operations marked for (re-) execution (Ω⊕ ∪ Ω⊗) by appropriately
calling Dispatch and Fill (Figure 2). UndoOps undoes the work of the operations in Ω	 ∪ Ω⊗ by
marking all of their children for removal and by deleting quadtree dependences (edges) from the computa-
tion graph. It also prepares the operations in Ω⊗ \ Ω	 for re-execution by resetting dependences tracked
by these operations. Dispatch and Fill appropriately insert new nodes and edges into the computation
graph. When removed or executed, fill operations can update the squares causing more operations to become
inconsistent, which are identified by MarkReaders.

When completed, PropagateWS updates the output (to M̃) and the computation graph (to G̃) as if the
algorithm StableWS is run from-scratch with the updated input which computes M′ and G′ (Lemma 7.2).

Lemma 7.1 The set of operations processed in the dynamic update algorithm, Ω	 ∪ Ω⊕ ∪ Ω⊗, is equal to
the set of obsolete, fresh, and inconsistent operations, Ω− ∪ Ω+ ∪ Ω×.

Lemma 7.2 (Isomorphism) The output sets M̃ and M′ are equal and there is an isomorphism φ : G̃ → G′

that preserves the vertex and time of each operation.

Theorem 7.3 The Add and Remove functions modify the output in O(log ∆) time, for a well-spaced output
of size within a constant factor of the optimal with respect to the updated input.
Proof: By Lemma 7.2, we know that the output is the same as what would have been generated by running
Refine from scratch with the new input; therefore, Theorem 4.4 applies. The quadtree can be updated in
O(log ∆) time. Furthermore, Lemmas 6.4 and 7.1 bound the runtime of Propagate as desired.

8



0
1

0
2
0

3
0

0
2
5
0

5
0
0

7
5
0

0 2500 5000 7500

2
D

 e
x
ac

t 
o
p
er

at
io

n
s 

(m
il

li
o
n
s)

3
D

 e
x
ac

t 
o
p
er

at
io

n
s 

(m
il

li
o
n
s)

Input points

2D

3D

0
1

0
0

2
0
0

3
0

0
4

0
0

5
0
0

0
2

4
6

8
1
0

0 2500 5000 7500

2
D

 s
p
ee

d
u
p

3
D

 s
p
ee

d
u
p

Input points

2D

3D

Figure 6: Left: cost of StableWS on random inputs. Center: a model of Lake Superior meshed by
StableWS. Right: speedup of PropagateWS one unit changes relative to StableWS from scratch.

8 Lower bound

Figure 5: Inserting
x creates Ω(log ∆)
Steiner vertices.

We prove a lower bound that any algorithm that explicitly maintains the well-spaced
superset must take Ω(log ∆) time per dynamic update. Consider dynamically in-
serting a new point very close to an existing input vertex. Even the optimal dynamic
algorithm is forced to insert geometrically growing rings of new Steiner vertices
around the dynamically inserted vertex. We prove that we can iterate this process
using a gadget. This shows that our algorithm is worst-case optimal compared to all
other explicit algorithms, even in an amortized setting.

Theorem 8.1 (Lower Bound) There exists an initial input and a set of n dynamic
insertions that forces any algorithm to insert Ω(n log ∆) new Steiner vertices.

9 Implementation and Experiments

We implemented StableWS and PropagateWS algorithms in C++. Given a set of vertices N, StableWS
can be run to compute a well-spaced superset M of N, and PropagateWS can update the output dynam-
ically as the input is modified by insertions and deletions. Our implementation is a preliminary prototype
that closely follows the algorithmic description with relatively small optimizations. As with prior meshing
software, ours is highly susceptible to numerical error. For rapid development, we used an exact arith-
metic package based on floating-point filters and GMP rather than implementing Shewchuk-style adaptive
predicates [She97]. This is an engineering concern independent of the choice of algorithm. Although not
optimized, our implementation is reasonably well tested: we verified that it correctly yields well-spaced
outputs on numerous randomly generated point sets as well as on real models. To focus on algorithmic
concerns we use exact arithmetic operation counts to measure run-time costs. These dominate the runtime
of even highly optimized meshing codes.

Synthetic Data. We generate point sets of double-precision floating-points numbers with varying sizes
drawn uniformly at random from the unit box in two and three dimensions. For a given input, we measured
the cost for running our algorithm from scratch with the input, and the average cost of a dynamic update after
a unit change: removing a random input vertex, updating, adding a new vertex and updating again. Figure 6
shows the speedup of dynamic updates, calculated by dividing the cost of the from-scratch run (StableWS)

9



Application d Input size # Operations in Millions # Operations per vertex
SVR StableWS PropagateWS SVR StableWS

Cape Cod 2 20930 47 99 0.234 423 1170
Lake Superior 2 33487 90 188 0.303 419 1190
New Zealand 2 18595 56 115 0.248 403 1190
SF Bay 2 85910 191 393 0.239 425 1170
Armadillo 3 172974 4380 13400 572 5460 22600
Bunny 3 35947 1090 3220 307 5330 22500

Table 1: Operation counts for SVR and StableWS, and for unit changes with PropagateWS.

by the average cost of one dynamic update (PropagateWS). Each point is the average of performing 100
different unit changes on each of 10 random inputs. We include 2D and 3D measurements on the same
plot; note that the y-axis scales are different, since the constant factors are larger in 3D. Consistent with our
analysis, the measurements show that in both 2D and 3D the cost of our algorithm grows close to linearly
with the input sizes, while dynamic updates yield linear speedups.

Real Data. We performed experiments with several real-world models (e.g., from Stanford 3D scanning
repository) and compared the performance of StableWS and PropagateWS to the fastest available well-
spaced superset code, SVR [AHMP07]. For these experiments, we use a version of SVR that uses the
same quality criteria as our algorithms. Depending on other parameter settings, the algorithms can generate
outputs of slightly different sizes (the variance is often less than 50%). We therefore measure the cost per
output point, which offers a better basis of comparison. Table 1 shows our measurements. For each output
point, our prototype of StableWS performs at most four times as many operations as SVR; cumulative cost
measures are consistent with these measures. Dynamic updates are at least two orders of magnitude faster
even than SVR in 2D, and still provide a large benefit in 3D.

10 Conclusion

We present a dynamic algorithm for computing a well-spaced point set of a dynamically changing set of
input points. Our algorithm is time-efficient, consumes linear space, finds an optimal-size output, and re-
sponds to dynamic modifications in worst-case optimal time. The underlying technique to these results is a
stable algorithm for computing well-spaced point sets whose executions can be represented with computa-
tion graphs that remain similar when the input points themselves are similar. To achieve stability (similarity
of computation graphs), our stable algorithm operates on the input set by using local operations based on a
notion of restricted Voronoi cell calculation and carefully schedules these operations to reduce dependen-
cies between them by taking advantage of two key properties: 1) all computations can be partitioned into
logarithmic number of sets such that only computations within each set interact (ranks), and 2) computa-
tions operating on far-enough points can be processed independently (coloring). These properties suffice to
prove the desired stability results. We present a dynamic update algorithm that takes advantage of stability
to update the output efficiently. Our analysis involves some tricky calculations and our asymptotic bounds
have reasonably large constant factors. To assess the practicality of our approach we present a prototype
implementation. Our experiments show that the algorithm can be implemented, and delivers performance
consistent with our theoretical bounds competing reasonably well with state of the art mesher and delivering
asymptotic speedups. We expect a well-polished implementation will provide static performance directly
comparable to the current state of the art, and dynamic performance orders of magnitude speedups.

10



References

[AHMP07] Umut A. Acar, Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. SVR: Practical engineering
of a fast 3D meshing algorithm. In International Meshing Roundtable, pages 45–62, 2007.

[BDS+92] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Applications of random
sampling to on-line algorithms in computational geometry. Discrete Computional Geometry,
8:51–71, 1992.

[BEG94] Marshall Bern, David Eppstein, and John R. Gilbert. Provably Good Mesh Generation. Journal
of Computer and System Sciences, 48(3):384–409, 1994.

[CDE+00] Siu-Wing Cheng, Tamal Krishna Dey, Herbert Edelsbrunner, Michael A. Facello, and Shang-
Hua Teng. Sliver Exudation. Journal of the ACM, 47(5):883–904, 2000.

[CGS06] Narcis Coll, Marité Guerrieri, and J. Antoni Sellarès. Mesh modification under local domain
changes. In 15th International Meshing Roundtable, pages 39–56, 2006.

[Che89] L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report TR-89-983, Depart-
ment of Computer Science, Cornell University, 1989.

[CMS93] Kenneth L. Clarkson, Kurt Mehlhorn, and Raimund Seidel. Four results on randomized incre-
mental constructions. Computational Geometry Theory and Application, 3:185–212, 1993.

[HMP06] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Sparse Voronoi Refinement. In Proceedings
of the 15th International Meshing Roundtable, pages 339–356, 2006. Long version in Carnegie
Mellon University Tech. Report CMU-CS-06-132.

[HPÜ05] Sariel Har-Peled and Alper Üngör. A time-optimal Delaunay refinement algorithm in two
dimensions. In 21st Symposium on Computational Geometry, pages 228–236, 2005.

[HT08] Benoı̂t Hudson and Duru Türkoğlu. An efficient query structure for mesh refinement. In
Canadian Conference on Computational Geometry, 2008.

[Hud07] Benoı̂t Hudson. Dynamic Mesh Refinement. PhD thesis, School of Computer Science, Carnegie
Mellon University, December 2007. Available as Technical Report CMU-CS-07-162.

[LT01] Xiang-Yang Li and Shang-Hua Teng. Generating well-shaped Delaunay meshes in 3D. In
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 28–
37, 2001.

[LTU99] Xiang-Yang Li, Shang-Hua Teng, and Alper Üngör. Simultaneous refinement and coarsening
for adaptive meshing. Engineering with Computers, 15(3):280–291, 1999.

[MBF04] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual node algorithm for changing mesh
topology during simulation. In SIGGRAPH, 2004.

[MTTW95] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington. A Delaunay based
numerical method for three dimensions: generation, formulation, and partition. In Proceedings
of the 27th Annual ACM Symposium on Theory of Computing, pages 683–692, 1995.

11



[Mul91] Ketan Mulmuley. Randomized multidimensional search trees (extended abstract): dynamic
sampling. In Proceedings of the seventh annual symposium on Computational geometry, pages
121–131. ACM Press, 1991.

[NvdS04] Han-Wen Nienhuys and A. Frank van der Stappen. A Delaunay approach to interactive cut-
ting in triangulated surfaces. In Fifth International Workshop on Algorithmic Foundations of
Robotics, 2004.

[Rup95] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J.
Algorithms, 18(3):548–585, 1995.

[Sch91] Otfried Schwarzkopf. Dynamic maintenance of geometric structures made easy. In Proceed-
ings of the 32nd Annual IEEE Symposium on Foundations of Computer Science, pages 197–
206, 1991.

[She97] Jonathan Richard Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast Robust
Geometric Predicates. Discrete & Computational Geometry, 18(3):305–363, 1997.

[STÜ07] Daniel Spielman, Shang-Hua Teng, and Alper Üngör. Parallel Delaunay refinement: Algo-
rithms and analyses. IJCGA, 17:1–30, 2007.

[Tal97] Dafna Talmor. Well-Spaced Points for Numerical Methods. PhD thesis, Carnegie Mellon
University, August 1997. Available as Technical Report CMU-CS-97-164.

12



A Quadtree

The balanced quadtree is originally defined by Bern, Eppstein, and Gilbert. We extend it to d dimensions.
The quadtree is constructively defined as follows: we start with the root node [0, 1]d. We split quadtree nodes
that are either crowded or unbalanced, largest first. A leaf node, i.e., a square, is crowded if it contains at
least two vertices of N, or if it contains exactly one vertex of N, and one of its neighbors also contains a
vertex. A square is unbalanced if one of its neighbors is one quarter its size, where the size of a square is
the length of one of its edges. Upon splitting a node, we split it into 2d children along its geometric middle.
We keep neighbor pointers between the leaves of the quadtree: a square points to neighboring squares. Each
square (not an internal node) stores a list of vertices that it contains; upon splitting, we reassign the vertices
appropriately to the new children and change the original square into an internal node.

The QTAdd(Π, v) routine starts a top-down search from the root of Π to find the square s that contains v,
adds v to the list of vertices in s, then applies the recursive construction. The square s itself and its neighbor
may now be crowded, which induces a set of splits. Crucially, we bound the splits geometrically:

Lemma A.1 Consider a node s that is split due to crowding during QTAdd(v). Then |sv| ≤
√

d|s|.
Proof: Consider the state of the quadtree when s is split. We know that either s contains v, or s contains
some vertex u and neighbors a square s′ that contains v. In the former case, |sv| = 0. In the more interesting
latter case, we know that QTAdd splits in order of size, largest first. So |s| ≥ |s′|. At worst, s and s′ meet at
a corner and v is as far as possible: at the opposite corner of s′. Then |sv| ≤

√
d|s′| ≤

√
d|s|.

Lemma A.2 Consider a node s that is split due to balancing during QTAdd(v). Then |sv| ≤
√

d|s|.
Proof: By definition, when s is split due to balancing, it has a neighbor s′ of one quarter its size. Before the
call, s′ cannot have existed, because then s would have been unbalanced. So we know that s′ was created
by QTAdd—in other words, its parent s′′, of size |s′′| = |s|/2, was split. It was split either due to crowding
or balancing; inductively we can assume that |s′′v| ≤

√
d|s′′|. In the worst case, the line segment from v to

s goes through s′′ crossing the diagonal of s′′: |sv| ≤ |s′′v|+
√

d|s′′| ≤
√

d|s|.

Lemma A.3 QTAdd returns O(log ∆) new squares and runs in O(log ∆) time.
Proof: Consider the square s returned by QTAdd that contains v. It has size at least ` = δ′/4, where δ′ is
the nearest neighbor distance of v in the new input. Consider all the squares returned by QTAdd that have
size `. They do not overlap, each has volume `d, and by previous lemmas, they all lie within distance

√
d`.

A packing argument shows that there are O(1) of them. The same holds for squares of size 2`, 4`, and
geometrically up. In total, there are O(log ∆) sizes of squares, thus, QTAdd returns O(log ∆) new squares.

Furthermore, the work done amounts to finding the square that contains v, then splitting the squares.
The former takes a search in a quadtree that has depth O(log ∆). The latter takes only constant time to split
each square, since the squares being split can only contain one vertex at most (excluding v), a total of an
additional O(log ∆) time.

The QTBuild can be viewed as constructing a quadtree incrementally by calling QTAdd with every
input vertex. Thus the bounds on QTBuild is n times those of QTAdd. The QTRemove routine does the
reverse of QTAdd: it finds the square s that contains v, then checks whether any of the ancestors of s would
have been split if v were not in the input, and also checks their neighbors. If so, processing ends. If not,
it merges the siblings of s and/or of the neighbours’, and repeats. Given that this exactly reverses the work
that QTAdd does, all the same bounds hold, but with ∆ referring to the input before QTRemove was called,
rather than, as with QTAdd, referring to the input after QTAdd is invoked.

13



B Geometric Coloring

To bound the cost of a dynamic update, we find it critical to color the operations in the computation graph
into a constant number of independent sets per rank. To achieve this, we first define the notion of indepen-
dence. Then, we show that we can compute a coloring using just a simple geometric calculation (due to
Spielman, Teng, and Üngör [STÜ07]). At rank r, the static algorithm executes all the dispatch operations
before executing any fill operation, and dispatch operations do not change the set of vertices. Therefore, exe-
cution of the dispatch operations at rank r does not depend on the order we execute them. For fill operations,
this is not the case. A fill operation may insert a Steiner vertex which may affect the β-clipped Voronoi cell
computation of another fill operation, provided that the vertices these operations act on are sufficiently close
to each other. More specifically, we say that two fill operations at rank r acting on vertices v1 and v2 are
independent if the function calls QTClippedVoronoi(v1, β) and QTClippedVoronoi(v2, β) cannot
possibly read the same quadtree square.

Recall that QTClippedVoronoi(v, β) only accesses squares s that are close to v: for all x ∈ s,
|vx| ∈ O(NNM(v)). Let γ0 > 1 be the constant in the big-Oh notation. For fill operations at rank r,
Lemma C.1 and the fact that our algorithm does not schedule fill operations for a rank smaller than the
current one guarantee that the nearest neighbors of v1 and v2 are at most ρr+1 away. Using γ = ργ0, we see
that two fill operations at rank r acting on vertices v1 and v2 are independent if |v1v2| < 2γρr. To exploit
this observation, we impose a grid upon space — a periodic square lattice — such that every unit square
of the lattice contains at most one active vertex. We guarantee this by simply making sure that the farthest
points in a unit square are at most 2γρr far apart. The scale of the lattice, i.e., the length of one of the edges
of the unit square, `r, should satisfy `r

√
d < 2γρr; we choose `r = ρr/

√
d.

The period of this lattice, κ, is the number of colors we use for every dimension. The color of a fill
operation op at rank r acting on vertex v can be calculated as follows: take each coordinate of v, divide
by `r, take the floor, and take modulo κ. The coordinates of v transformed in this way is the color of
op. Note that there are κd possible values of colors used for coloring a fill operation. For independence
among fill operations of the same color, it is sufficient to ensure that same colored lattice squares are at
least 2γρr = 2γ`r

√
d far apart. Using κ colors, this distance is (κ − 1)`r; choosing κ > 1 + 2γ

√
d grants

independence between the fill operations of the same color.

C Output Quality and Size

Lemma 4.1 For all t, Mt is size-conforming. Consequently, M is size-optimal.

Proof: By definition of size-conforming we want to show that for every v ∈ Mt, we have NNt(v) ∈
Ω(lfs(v)). This proof is inductive over the order in which the algorithm inserts the vertices. In the base case,
every vertex is an input vertex and the nearest neighbor of a vertex v is exactly the local feature size. For
the inductive case, assume that for every vertex v ∈ M we have cNNM(v) ≥ lfs(v), where c is the con-
stant in the asymptotic notation. Furthermore, assume that v inserts a Steiner vertex u and the new output is
M′ = M∪{u}. We analyze the inductive claim for u and for any vertex w ∈M separately. For u we know
that NNM′(u) = |uv| and that u is chosen far from v: |uv|/ρ ≥ NNM(v). It is known that lfs satisfies the
Lipschitz condition: lfs(v)+|uv| ≥ lfs(u). By the inductive hypothesis, cNNM(v) ≥ lfs(v). Therefore, we
have

(
c
ρ + 1

)
|uv| ≥ lfs(u). Now, for any vertex w ∈ M, if NNM(w) = NNM′(w) then the claim holds

trivially. So, assume NNM(w) > NNM′(w) = |uw|. By the Lipschitz condition, |uw| + lfs(u) ≥ lfs(w).
Since u is in the Voronoi cell of v, |uw| ≥ |uv|. Combining this fact by the bound we obtained for lfs(u),

14



we get
(

c
ρ + 2

)
|uw| ≥ lfs(w). Solving for c ≥

(
c
ρ + 2

)
, we conclude that c ≥ 2ρ

ρ−1 suffices.

The Progress Lemma appeals to the claim that every vertex has a fill operation scheduled at the “right”
time. We make this precise and prove the claim.

Lemma C.1 At time t = (r, 0), assume that every vertex u ∈ Mt with NNt(u) < ρr is ρ-well-spaced. Then,
for every vertex v ∈ Mt with NNt(v) ∈ [ρr, ρr+1), there exists a fill operation in Ω that acts on v at rank r.

Proof: Let v be a vertex satisfying the premises and u be the nearest neighbor of v at time t = (r, 0).
If we can prove that the dispatch operation that acts on v runs at rank ≤ r and u is a nearest neighbor at
that time then this operation schedules a fill operation at rank r. Alternatively, it is also enough to prove
that the dispatch operation that acts on u runs at rank r′ ≤ r and v is a β-clipped Voronoi neighbor of u at
time t′ = (r′, 0). Analyzing the cases: if both v and u are input vertices then the dispatch operation of v
is scheduled to run at rank ≤ r. In the case that v is a Steiner vertex and u already exists when v is being
created, consider the vertex v′ that creates v. Since v is in the Voronoi cell of v′ at the time of creation, we
have |vv′| ≤ |uv|, which implies that the dispatch operation that acts on v must be running at rank ≤ r. The
final case to consider is that u is a Steiner vertex and v already exists at the time of creation of u. Similar to
the previous case, we can say that the dispatch operation that acts on u must be running at rank r′ ≤ r. Since
u is the nearest neighbor of v at time t, v is a Voronoi neighbor of u at time t′. If u is already ρ-well-spaced
at time t then |vu| ≤ 2ρ NNt(u) < 2β NNt′(u). Otherwise, by the assumption of the lemma, we deduct
ρr ≤ NNt(u), which again implies |vu| = NNt(v) < ρNNt(u) < 2β NNt′(u). Either way, v is a β-clipped
Voronoi neighbor of u at time t′.

D Runtime

Lemma 5.1 Let t be the time at which v is created (t = 0 for input vertices). Then NNt(v) ∈ Θ(NN∞(v)).

Proof: As time progresses, more vertices are added, so the nearest neighbor distance can only shrink:
NNt(v) ≥ NN∞(v). For the other direction, we analyze Steiner vertices and input vertices separately.
An input vertex v by definition has lfs(v) = NN0(v). The algorithm is size-conforming (Lemma 4.1), so
NN0(v) = lfs(v) ∈ O(NN∞(v)). When a Steiner vertex v is created at time t = (r, c), its nearest neighbor
is at distance at most βρr+1 and at least ρr+1. Any other vertex u created during the processing of rank r or
later also has its nearest neighbor upon creation at distance at least ρr+1; in particular, |uv| ≥ ρr+1. Thus
NNt(v) ≤ βρr+1 ≤ β NN∞(v).

Lemma 5.2 If an operation acts on v at rank r, then NN∞(v) = Θ(ρr).

Proof: First we prove the upper bound. Consider a dispatch operation that acts on an input vertex v. The
rank of this operation is calculated as r =

⌊
logρ QTApxNN(v)

⌋
, which implies r ≥

⌊
logρ(1− ε) NN0(v)

⌋
.

In other words, NN∞(v) ≤ NN0(v) ≤ ρr+1/(1 − ε). Out of the dispatch operations of Steiner vertices
and the insert-Steiners operations of all the vertices, assume an operation op that acts on v is scheduled
at rank r or at time t. Then we know that r =

⌊
logρ |uv|

⌋
for a vertex u (an operation that acts on

u schedules op). Since NNt(v) ≤ |uv|, we get NNt(v) < ρr+1. Therefore, the upper bound holds:
NN∞(v) ≤ NNt(v) = O(ρr).

For the lower bound, consider an operation op that acts on v at rank r and assume that op was scheduled
at time t. Trivially, lfs(v) ≥ NNt(v) and by Lemma 4.1, we know that NN∞(v) = Ω(lfs(v)); therefore it

15



suffices to show that NNt(v) = Ω(ρr). If v is an input vertex and op is a dispatch operation, then by the
guarantees of the call QTApxNN (v), we get NN0(v) = Ω(ρr) and the proof is done. Otherwise, assume
that the operation that schedules op acts on u at rank r′ < r or at time t. Since this operation schedules
op for rank r, r =

⌊
logρ |vu|

⌋
, which implies |vu| ≥ ρr. If NNt(v) < ρr′ , then by Progress Lemma, v is

ρ-well-spaced at time t. Furthermore, we know that v is a β-clipped Voronoi neighbor of u, which implies
that u is a ρ-clipped Voronoi neighbor of v at time t. Therefore, 2ρ NNt(v) ≥ |vu| ≥ ρr and we are done. In
the other case, NNt(v) ≥ ρr′ . Again, since v is a β-clipped Voronoi neighbor of u, |vu| ≤ 2β NNt(u). Ap-
plying the upper bound result from the first part for the operation that acts on u, we get NNt(u) = O(ρr′);
thus |vu| = O(ρr′). This implies NNt(v) = Ω(|vu|) and NNt(v) = Ω(ρr) as desired.

Lemma 5.4 For every vertex v ∈ M, there are O(1) operations that act on v.

Proof: By Lemma 5.2, we know that any operation that acts on v has rank
⌊
logρ NN∞(v)

⌋
± O(1).

Therefore, if we can show that the number of the operations that acts on v at each rank is constant, our claim
will hold. There is only one dispatch operation for each vertex, so we are reduced to counting fill operations
scheduled by other dispatch operations. Now, fix r and consider a dispatch operation at time t′ = (r′, 0) that
acts on u and schedules a fill operation that acts on v at rank r. Then v must be in Vorβ

t′(u), consequently
|uv| ≤ 2β NNt′(u). The fact that the fill operation is scheduled for rank r implies ρr ≤ |uv| < ρr+1. Con-
sidering the dispatch operation, Lemmas 5.1 and 5.2 show that NNt′(u) = O(ρr′). These facts altogether
imply ρr = O(ρr′). Again by Lemma 5.2, we know that there exists an empty ball around u with radius
Ω(ρr′), which is Ω(ρr) by the previous assertion. We already know that |uv| < ρr+1, therefore a packing
argument suffices to prove our claim.

E Dynamic

Consider two executions of the static algorithm with inputs N and N′ that are related by the insertion/deletion
of some point v∗. Let M be the output and G = (Ω ∪Σ, E) be the computation graph of the execution with
N and let M′ be the output and G′ = (Ω′ ∪ Σ′, E′) to be the computation graph of the execution with N′.

Lemma 6.1 For every operation in Ω− ∪ Ω+ ∪ Ω×, there exists a dependence path from a square in Σ×.

Proof: By definition of inconsistent operations, an operation op ∈ Ω× can be reachable via a dependence
path from Σ×. For unmatched operations, i.e., operations in Ω− ∪ Ω+, assume towards a contradiction
that there exist some that cannot be reachable. Let op be the earliest of such operations. Since op does not
depend on an inconsistent square, it does not read an inconsistent square. Let us assume that op is a dispatch
operation acting on an input vertex v, which must be a common vertex to both executions. Thus, v lies in
identical squares of two executions, which implies that QTApxNN returns the same rank for v in both execu-
tions. Then, the definition of µo covers op since there exists an operation op′ in the other execution which is
identical to op: op and op′ act on v at the same time. Therefore, op is not a dispatch operation acting on an
input vertex. Then, consider the operation op′′ that creates op. By minimality of op, op′′ can be reached via
a dependence path from a square in Σ×. Extending that dependence path to op proves the contradiction.

Lemma 7.1 The set of operations processed in the dynamic update algorithm, Ω	 ∪ Ω⊕ ∪ Ω⊗, is equal to
the set of obsolete, fresh, and inconsistent operations, Ω− ∪ Ω+ ∪ Ω×.

16



Proof: Let A = Ω	 ∪ Ω⊕ ∪ Ω⊗ and B = Ω− ∪ Ω+ ∪ Ω×. We prove the equality by showing con-
tainment in both directions. Towards a contradiction, assume that A 6⊂ B. Let op be the earliest operation
in A \ B. If op ∈ Ω	 then either op is a dispatch operation acting on an input vertex or there is another
operation op′ ∈ Ω	 ∪ Ω⊗ that creates op. In the first case, op depends on a square in Σ×, which implies
op ∈ B. In the second case, by minimality of op, op′ ∈ B, hence op ∈ B. Similar arguments show that
op ∈ Ω⊕ implies op ∈ B. Therefore op must be in Ω⊗, i.e., op reads a square s for which the algorithm calls
the function MarkReaders(s, t) with a smaller time t than the time of op. If s ∈ Σ⊗ then clearly op ∈ B;
if not, there must be another operation op′ running at time t that writes into s. Again, by minimality of op,
op′ ∈ B and there exists a dependence path from op′ to op which puts op in B. Contradiction.

For the other direction, similarly assume the contrary and let op be the earliest operation in B \ A.
If op ∈ Ω− then either op is a dispatch operation acting on an input vertex or there is another operation
op′ ∈ Ω− ∪ Ω× that creates op. In the first case, op depends on a square in Σ×, which implies op ∈ A.
In the second case, by minimality of op, op′ ∈ A. Since the update algorithm processes all children of op′,
op ∈ A. Similar arguments show that op ∈ Ω+ implies op ∈ A. Therefore op must be in Ω×, i.e., there
exists a dependence path from a square s ∈ Σ× to op. Pick the longest dependence path that reaches op and
let op′ 6= op be the latest operation on that path. If no such op′ exists then op is a dispatch operation acting
on an input vertex that reads a square from Σ×. The initialization in Propagate puts op in A. In the other
case that op′ exists, by minimality of op, op′ is in A and the dependence path from op′ to op ensures that
our update algorithm schedules op to one of the sets Ω	, Ω⊕, or Ω⊗, depending on the type of dependence
between op and op′. Contradiction.

When the update algorithm is executed, it transforms the first execution to the second one by updating
the computation graph (G to G̃), consequently the output (M to M̃).

Lemma 7.2 (Isomorphism) The output sets M̃ and M′ are equal and there is an isomorphism φ : G̃ → G′

that preserves the vertex and time of each operation.

Proof: We prove equality of the output and build φ inductively. Define the sets of operations accord-
ing to their creation times: Ω	t = {op ∈ Ω	 | op is created at time < t}. For t = 0 we say Ω	0 =
{Dispatch of v | v ∈ M−0 }. We define a similar assemblage for the ⊕, ⊗, and ′ sets. Let G̃t be the sub-
graph of G̃ induced by the nodes Ω̃t ∪ Σ̃ excluding the edges with time ≥ t; these are the edges related to
the execution of the operations in Ω̃t scheduled to execute at time ≥ t. Similarly, let G′t be the subgraph of
G′ induced by the nodes Ω′t ∪ Σ′ excluding the edges with time ≥ t.

Initially, M̃0 = M′0 = N′ and Σ̃ = Σ′. Therefore, there exists a natural correspondence between the
dispatch operations in Ω̃0 and Ω′0 and we have a natural isomorphism φ0 : G̃0 → G′0. For the inductive
step at time t, assume that M̃t = M′t and that we have an isomorphism φt : G̃t → G′t which preserves the
vertex and the time of each operation. Pick any node op ∈ Ω̃t that is scheduled to execute at time t. Let
op′ = φt(op). We aim to prove that op and op′ execute in the same way. Because our functions are all
deterministic, it suffices to show that op and op′ read the same data. There are three cases: op is either in
Ω⊕t , in Ω⊗t , or it is not scheduled in any of the Ω	, Ω⊕, and Ω⊗ sets, i.e., it is consistent.

Assume that op is in Ω⊕t . We know Σ̃ = Σ′, therefore, op and op′ traverse the same quadtree structure
in their execution. For a vertex v that op reads, v cannot be in M−t because the vertices in M−t are removed
at time < t. Thus, op reads only the vertices in M̃t = M′t, in other words op reads the same data as op′ does.
The case that op ∈ Ω⊗t is similar, because the re-execution of the inconsistent operations follow the same
rules. In the remaining case, op is a consistent operation. Consider a square s that op accesses. Because the

17



update algorithm did not schedule op for re-execution, we know that s is not in Σ−. Furthermore, for the
same reason, s is not in Σ×, i.e., s does not contain a vertex in M−t ∪M+

t . Therefore, op only reads vertices
in M′t ∩Mt; op reads the same data as op′ does. Hence, in all cases, op and op′ execute similarly.

Then, we have a natural correspondence between the operations that op and op′ create. If op and op′ are
fill operations, then the Steiner vertices they create are at the same coordinates. Therefore, M̃t+1 = M′t+1.
Furthermore, because op and op′ read and write the same squares in Σ̃ = Σ′, the edges between these
operations and the squares have natural correspondences as well. Extending φt to φt+1 by adding these
correspondences completes proof of the inductive step.

F Lower Bound

We define a gadget (see Figure 5) consisting of points in the hypercube [0, k−1/d]d. We have two vertices at
distance δ from each other in the middle of the box; we say that one of them is the “dynamic” vertex that will
be inserted. We also have a grid of O(1) vertices on each of the faces of the hypercube, chosen according to
the scheme of Hudson [Hud07, p.79]. Our initial input consists of tiling [0, 1]d with the gadgets, without any
dynamic vertex. Our insertion sequence consists of inserting the k dynamic vertices, one for each gadget.

Lemma F.1 Inserting the dynamic vertex to a single gadget requires adding Ω(log ∆) Steiner vertices.
Proof: Let N be the set of vertices before adding the dynamic vertex v; also, let N′ = N ∪ {v}. Draw the
segment from v to the farthest point in VorN′(v). This segment has length at least ` = 1

4 −
δ
2 . Consider

the Voronoi diagram after computing a ρ-well-spaced superset of N′ and consider the Voronoi cells that this
segment cuts. Let q1 . . . qk be the vertices of those Voronoi cells, in order. We know that the Voronoi cells in
the output have aspect ratio < ρ, therefore, |q1v| ≤ 2ρ NNN′(v) = 2ρδ. So the nearest neighbour distance
of q1 is at most |q1v|. We can use the same argument to get |q1q2| ≤ 2ρ|q1v| and repeat. In other words,
distance from v grows only geometrically as we walk down the segment: covering the distance ` requires
Ω(log 1/δ) = Ω(log ∆) many Steiner vertices to be inserted.

Lemma F.2 Inserting k dynamic vertices to an initial input of k gadgets requires inserting Ω(k log ∆)
Steiner vertices.
Proof: We refer to a technique of inserting vertices to the hypercube faces [Hud07]. It was developed
precisely to make sure that certain algorithms need not add vertices outside the hypercube when making
the interior ρ-well-spaced. Contrapositively, adding vertices outside a gadget does not help make the gad-
get, with its dynamic vertex, be ρ-well-spaced. Thus the prior lemma applies to each gadget individually,
showing that the final well-spaced superset must contain at least Ω(k log ∆) Steiner vertices, for a carefully
selected ρ. Since, there exists a constant ρ > 1 such that the original input of k gadgets is ρ-well-spaced,
our proof is complete.

18


