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ABSTRACT

A simple way to reconstruct a shape A ⊂ R
N from a sample

P is to output an r-offset P + rB, where B = {x ∈ R
N |

‖x‖ ≤ 1} designates the unit Euclidean ball centered at the
origin. Recently, it has been proved that the output P + rB
is homotopy equivalent to the shape A, for a dense enough
sample P of A and for a suitable value of the parameter r
[12, 22]. In this paper, we extend this result and find convex
sets C ⊂ R

N , besides the unit Euclidean ball B, for which
P + rC reconstructs the topology of A. This class of convex
sets includes in particular N -dimensional cubes in R

N . We
proceed in two steps. First, we establish the result when
P is an ε-offset of A. Building on this first result, we then
consider the case when P is a finite noisy sample of A.
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1. INTRODUCTION
In this paper, we study the Minkowski sum between a

convex set and a point set that samples a shape, generalizing
previous results that establish the Minkowski sum retrieves
the topology of the shape when the convex set is a Euclidean
ball.

Prior work and problem.
Motivated by surface reconstruction from 3D scan data

and manifold learning from point clouds, several authors
have formulated precise conditions under which a recon-
struction algorithm outputs a topologically correct approxi-
mation of a shape, given as input a possibly noisy sample of
it [4, 14, 10, 22, 12]. Maybe one of the simplest algorithm
consists in outputting a Euclidean r-offset of the sample,
that is the union of Euclidean balls with radius r centered
on the sample points. Assuming the reach of the shape is
positive and data points form a sufficiently dense and accu-
rate sample of the shape, authors in [22, 12] have established
that r-offsets of the data points are homotopy equivalent to
the shape for suitable values of the offset parameter r (see
Figure 1, left). The aim of this work is to understand how
this result generalizes when, instead of unions of Euclidean
balls, we consider for the reconstruction unions of translated
and scaled copies of a convex set C centered on the data
points. In other words, writing B for the unit Euclidean
ball centered at the origin and letting P be a sample of the
shape A, we would like to understand what happens if we
replace the Euclidean r-offset P +rB by the Minkowski sum
P + rC. Do we keep the topology of the shape A as in Fig-
ure 1, middle or do we lose it as in Figure 1, right? We are
particularly interested in the case where C is a polytope.

Motivation.
Our motivation to study this question is two-fold. First,

in many practical applications such as stereo vision or im-
age analysis, the accuracy of measures varies in magnitude
according to the direction of measurements. In this context,
it seems reasonable to recover the topology of the shape,
using a convex set which takes into account the anisotropy
of the measurement device. Second, we believe that unions
of cubes could present some advantages over unions of Eu-
clidean balls for topological computations in high dimension.
In practice, the reconstruction represented by an α-offset
is replaced by the more convenient corresponding α-shape
which shares the same homotopy type [15]. Indeed, the α-
shape has a simpler geometry and, being a simplicial com-
plex, can benefit from existing theorems and algorithms ded-
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hole

Figure 1: The union of disks and squares retrieve the topology of the sampled curve unlike the union of

triangles.

icated to topological computations. However, if the ambient
dimension is large, the α-shape may have a high complex-
ity [1] and its computation may be rather expensive and
requires sophisticated data structures [8]. Our idea to cir-
cumvent this problem is the following. Given ε > 0, we
define the cubical grid Gε = (εZ)N ⊂ R

N and replace the
sample P ⊂ R

N by a nearby sample Pε ⊂ Gε. Applying our
result to the unit N -dimensional cube C = [−1, 1]N ∈ R

N ,
we shall see that the set Pε + kεC retrieves the homotopy
type of the shape, for some well-chosen integer k. Hence, our
result allows us to reconstruct with the right homotopy type
a shape by a union of voxels with vertices the cubical grid
(see [5] for a precise statement of this corollary and [6] for
an application). Such a “cubical set” has a simpler structure
than the α-shape and may be more convenient for topologi-
cal computations in high dimension. Following this idea, our
work might contribute to build a bridge between the point
of view of distance functions in computational topology and
the world of voxels in digital image processing.

Chosen approach and contributions.
A first idea to tackle the problem mentioned above is to

use the framework of semi-concave functions. Specifically,
one can associate to any symmetric convex set C with a non-
empty interior a norm ‖.‖C defined by x 7→ ‖x‖C = inf{α >
0 | x ∈ αC}. The balls of the associated distance dC are
translated and scaled copies of C. The metric dC is invariant
by translation but is not isotropic unless C is the Euclidean
ball. Suppose the boundary of C is smooth with a bounded
curvature. Given a subset Y ⊂ R

N , the squared distance-
to-Y function x 7→ miny∈Y ‖x− y‖2

C is semi-concave [9] and
has therefore a generalized gradient which induces a contin-
uous flow. Hence, a theory similar to what has been done in
the Euclidean case [10, 11, 12] can be developed. However,
we are interested in convex sets, such as polytopes, whose
boundary are not necessarily smooth nor has a bounded cur-
vature. It follows that the semi-concavity property is lost
and no generalized gradient of the squared distance-to-Y
function can induce a flow. The proof technique used in this
paper should be of independent interest since it overcomes
the limitation of flow-based methods and applies to convex
sets with non-smooth boundary. Taking inspiration in [22]
where a deformation retract of a Euclidean offset of the sam-
ple onto the shape is constructed explicitly, we move away
from this approach and introduce a new proof scheme based
a sandwich lemma (Lemma 1). Results in this paper are
positive as well as negative. We carefully identify a class of
convex sets to which the above result can be extended. We

also give examples of convex sets outside this class which
won’t provide a correct reconstruction. We proceed in two
steps. First, we state a reconstruction theorem, when the
sample P is an arbitrarily small Euclidean offset of the shape
and secondly when P is a finite sample.

Outline.
Section 2 presents definitions and the formal statements

of our two reconstruction theorems. Section 3 proves the
first reconstruction theorem and Section 4 proves the second.
Section 5 concludes the paper.

2. STATEMENT OF RESULTS
Before we state our results in Section 2.3, we first intro-

duce the necessary background in topology in Section 2.1
and identify in Section 2.2 classes of convex sets to which
our results will apply.

2.1 Homotopy equivalences
First, we review some classical definitions in topology that

can be found for instance in [18, 21]. Two continuous maps
h, k : X → Y are homotopic and we write h ≃ k if there is
a continuous map F : X × [0, 1] → Y such that F (x, 0) =
h(x) and F (x, 1) = k(x) for all x ∈ X. Let f : X → Y
and g : Y → X be two continuous maps. Suppose that
f ◦ g : Y → Y is homotopic to the identity map of Y and
g ◦ f : X → X is homotopic to the identity map of X, i.e.
suppose we have f ◦g ≃ 1Y and g ◦f ≃ 1X . Then, the maps
f and g are called homotopy equivalences, and each is said
to be a homotopy inverse of the other. Furthermore, the
spaces X and Y are said to have the same homotopy type,
which we denote by X ≃ Y . We say that a subspace A of
X is a deformation retract of X if there exists a continuous
map H : X × [0, 1] → X such that H(x, 0) = x, H(x, 1) ∈ A
for all x ∈ X and H(a, t) = a for all a ∈ A and all t ∈ [0, 1].
Such a function H is called a deformation retraction of X
onto A. Let r : X → A be the retraction defined by r(x) =
H(x, 1) and let i : A → X the inclusion map. We have
i◦r ≃ 1X and r◦ i = 1A. Thus, if A is a deformation retract
of X, the inclusion i : A → X is a homotopy equivalence.
Note that assuming X deformation retracts to A is stronger
than assuming the inclusion map A →֒ X is a homotopy
equivalence, which in turn is stronger than assuming A ≃ X,
as illustrated in Figure 2. We now state a technical lemma
that will provide us key tools in establishing that two shapes
have the same topology.



Figure 2: Two nested shapes A ⊂ X which are close

in Hausdorff distance and have the same homotopy

type but for which the inclusion A →֒ X is not a

homotopy equivalence.

Lemma 1 (Sandwich Lemma). Consider four nested
spaces A0 ⊂ X0 ⊂ A1 ⊂ X1. If A1 deformation retracts to
A0 and X1 deformation retracts to X0, then X0 deformation
retracts to A0. If the inclusions A0 →֒ A1 and X0 →֒ X1

are homotopy equivalences, then the inclusion A0 →֒ X1 is
a homotopy equivalence.

Proof. To prove the first part of the lemma, suppose
F is a deformation retraction of A1 onto A0 and G is a
deformation retraction of X1 onto X0. Then, one can check
that the map H : X0 × [0, 1] → X0 defined by H(x, t) =
G(F (x, t), 1) is a deformation retraction of X0 onto A0.
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j◦i0
>

<..............
r

.............. A1

X0
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s
..............
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X1
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Figure 3: Diagram for the proof of Lemma 1. All

arrows but the dotted ones are inclusions.

To prove the second part of the lemma, let i0 : A0 → X0,
j : X0 → A1 and i1 : A1 → X1 denote inclusions (see
Figure 3). Suppose r is a homotopy inverse of j ◦ i0 and s
is a homotopy inverse of i1 ◦ j. We prove that the inclusion
k = i1 ◦ j ◦ i0 from A0 to X1 is a homotopy equivalence
with homotopy inverse r ◦ j ◦ s. Indeed, using the fact that
composition preserves the relation ≃, we have k◦(r◦j ◦s) =
i1 ◦ (j ◦ i0 ◦ r) ◦ j ◦ s ≃ i1 ◦ 1A1

◦ j ◦ s ≃ 1X1
and similarly

(r◦j ◦s)◦k = r◦j ◦(s◦ i1 ◦j)◦ i0 ≃ r◦j ◦1X0
◦ i0 ≃ 1A0

.

2.2 Properties on convex sets
In this section, we define two properties that will help us

identify classes of convex sets.

2.2.1 θ-roundness

We associate to every compact convex set a non-negative
real number called the θ-roundness which can be interpreted
as a certain kind of curvature. Given a convex set C in R

N ,
the normal cone N (x) to C at x is the set of unit vectors n
such that (x − y) · n ≥ 0, for all points y ∈ C.

Definition 1. Let θ ∈ [0, π] and κ ≥ 0. We say that
the compact convex set C is (θ, κ)-round if for all points
c1, c2 ∈ C and all vectors n1 ∈ N (c1) and n2 ∈ N (c2), the
following implication holds:

∠(n1, n2) ≥ θ =⇒ (c1 − c2) · (n1 − n2) ≥ κ ‖c1 − c2‖2.

The θ-roundness of C is the supremum of κ ≥ 0 such that
C is (θ, κ)-round.

Note that if the compact convex set C has θ-roundness
κ, then C is (θ, κ)-round. If C is (θ, κ)-round, then C is
(θ′, κ′)-round whenever θ ≤ θ′ and κ

′ ≤ κ. It is not difficult
to see that C is (π, κ)-round if and only if the diameter of C
is upper bounded by 2

κ
. Suppose the boundary of C is a C2-

smooth hypersurface in R
N and orient ∂C such that normals

point outside the convex set. Then, for all points x ∈ ∂C,
the normal cone at x is reduced to a single vector which is
the normal to ∂C at x. The absolute values of the principal
curvatures at point x ∈ ∂C are non-negative real numbers
|κ1(x)| ≥ |κ2(x)| . . . ≥ |κN−1(x)| and we let κmin(C) be the
minimum of |κN−1(x)| over all points x ∈ ∂C.

Lemma 2. A compact convex set C whose boundary is
C2-smooth has 0-roundness κmin(C).

See Appendix B for a proof. For our reconstruction the-
orems, we shall consider compact convex sets which have
the property to be (θ, κ)-round for a positive κ and a small
enough θ. Specifically, we will require θ ≤ θN = arccos(− 1

N
).

Not all convex sets satisfy this property. To construct a
counterexample, consider a compact convex set C which is
contained in an affine space of dimension i with 0 < i < N .
Let n be a unit vector orthogonal to the smallest affine space
containing C. For every point c ∈ C, both n and its op-
posite vector −n belong to N (c). Consider two distinct
points c1, c2 ∈ C and let n1 = n and n2 = −n. We have
∠(n1, n2) = π, (c1 − c2) · (n1 − n2) = 0 and ‖c1 − c2‖ 6= 0,
showing that there are no κ > 0 such that C is (π, κ)-round.
Equivalently, the π-roundness of C is zero. As a counterex-
ample with a non-empty interior, take a triangular prism in
R

3. Its θ3-roundness is zero. In the technical report [5], we
compute the θ2-roundness of regular polygons in the plane
and establish that the θN -roundness of the N -dimensional
cube B∞ = [−1, 1]N ⊂ R

N is:

κ(B∞) =

8

>

<

>

:

1

2
√

2

`

cos π
4

+ cos π
12

´

if N = 2,
1√
6

if N = 3,
1

(N−2)
√

N
if N ≥ 4,

2.2.2 Eccentricity

In this section, we associate to every subset C ⊆ R
N a

parameter called eccentricity. Intuitively, eccentricity can
be thought of as a measure of how much intersections of
translated copies of C centered at points in Q deviate from
the convex hull of Q. We recall that the Minkowski sum of
two subsets X ⊂ R

N and Y ⊂ R
N is the subset defined by

X + Y = {x + y | x ∈ X, y ∈ Y }. To simplify notations, we
shall write x + Y instead of {x} + Y . Let B = {x ∈ R

N |
‖x‖ ≤ 1} be the unit Euclidean ball centered at the origin.
Given a non-negative real number r, we call the Minkowski
sum X + rB the Euclidean r-offset of X and denote it by
Xr. We write Conv(Q) for the convex hull of Q ⊂ R

N .



Definition 2. Given ξ ≥ 0, we say that C is ξ-eccentric
if for all compact Q ⊂ R

N , the following implication holds
(see Figure 4):

\

q∈Q

(q + C) 6= ∅ =⇒
 

\

q∈Q

(q + C)

!

∩ (Conv(Q) + ξC) 6= ∅.

The eccentricity of C is the infimum of ξ ≥ 0 such that C
is ξ-eccentric.

cq1 cq2

q2q1

q1 + C q2 + C

q1q2 + ξC

x

q1

q1 + Cν q2 + Cν

q2
x

q1q2 + ξCν

Figure 4: Top: two translated copies of a triangle C.

The intersection point x does not belong to any set

Conv({q1, q2})+ξC for ξ < 1, thus showing that the ec-

centricity is 1. Bottom: bulging the triangle makes

its eccentricity drops to a value smaller than 1.

Note that the eccentricity is a real number between 0 and
1. If the eccentricity of a compact set C is ξ, then C is ξ-
eccentric. The property to be ξ-eccentric is invariant under
bijective linear transformations. We now give eccentricities
for simple objects and adopt the convention that all objects
we consider in this paragraph have their centroids at the ori-
gin. Computations can be found in the technical report [5].
The eccentricity of the unit N -dimensional Euclidean ball
B is zero. More generally, i-dimensional Euclidean balls for
0 ≤ i ≤ N have eccentricity 0. Ellipsoids which can be
obtained from Euclidean balls by applying a linear transfor-
mation also have eccentricity 0. Symmetric compact convex
sets in the plane have eccentricity 0 as well. At the oppo-
site end of the spectrum, triangles have eccentricity 1 (see
Figure 4). In [5], we show that N -dimensional cubes have
eccentricity 1 − 2

N
, for N ≥ 2.

2.3 Reconstruction Theorems
First, we formulate a sampling condition inspired by the

work in [2, 3, 10]:

Definition 3. Given a non-negative real number ε and
a subset C ⊂ R

N , we say that P ⊂ R
N is an (ε, C)-sample

of A ⊂ R
N if A ⊂ P + εC and P ⊂ A + εB.

Notice that P is an (ε, B)-sample of A if and only if the
Hausdorff distance between P and A does not exceed ε. If

B ⊂ C, then an (ε, B)-sample is also an (ε, C)-sample. The
reason why our definition is not symmetric with respect to
A and P is to enhance conditions that are used in the proofs
of our reconstruction theorems. Given a compact subset A
of R

N , we recall that the medial axis M of A is the set of
points in R

N which have at least two closest points in A.
The reach of A is the infimum of distances between points
in A and points in M :

reach(A) = inf
a∈A,x∈M

‖a − x‖.

Shapes with a positive reach include, but are not limited
to, compact smooth surfaces with bounded curvatures. In-
tuitively, a shape with a positive reach cannot have sharp
concave edges. Suppose A has a positive reach. Given a
convex set C and an (ε, C)-sample P of A, we would like to
know whether the Minkowski sum P+rC retrieves the topol-
ogy of A. Theorem 1 answers the question when P = Aε is
a Euclidean ε-offset of A and Theorem 2 provides an answer
when P is a finite sample of A. Before stating our results,
we start with an example which illustrates that not all con-
vex sets C can be used to reconstruct the topology of shapes
with a positive reach.

Figure 5: Cycle in the Minkowski sum of the mo-

ment curve with a segment.

Specifically, we take A to be the moment curve A =
{(x1, x2, x3) ∈ R

3 | x2 = x2
1, x3 = x3

1} and prove that
for r arbitrarily small, we can always find a convex set
C such that the Minkowski sum A + rC is not homotopy
equivalent to A. For this, let C be a segment of length
2 centered at the origin and contained in the straight-line
Lt = {(x1, x2, x3) ∈ R

3 | x2 = 0, x3 = t2x1} for some
positive real number t. Observe that translated copies of
Lt intersect the moment curve A in at most one point, ex-
cept when the translated copy meets A in the two points
at = (t, t2, t3) and bt = (−t, t2,−t3). Hence, as r increases,
the Minkowski sum A + rC undergoes a topology change
when the two segments at + rC and bt + rC meet (see Fig-
ure 5). This happens for r = ‖at − bt‖/2 which can be made
arbitrarily small by choosing t small enough. We now list
conditions we shall need on the compact convex set C, the
last condition being only for the second theorem:

(i) B ⊂ C ⊂ δB for some δ ≥ 1;

(ii) C is (θ, κ)-round for θ ≤ θN = arccos(− 1
N

) and κ > 0;

(iii) C is ξ-eccentric for ξ < 1.

The two conditions (ii) and (iii) do not imply each other.
Indeed, any equilateral triangle in R

2 with centroid the ori-
gin has eccentricity 1 and a positive θ-roundness for all
0 < θ ≤ θ2. Hence, it satisfies (ii) for some θ ≤ θ2 and
some κ > 0 but not (iii) for any ξ < 1. Conversely, a seg-
ment in R

2 has θ2-roundness 0 and eccentricity 0. Hence, it



satisfies (iii) for ξ = 0 but not (ii) for any θ ≤ θ2 and κ > 0.
Table 1 gathers for different compact convex sets C values
of δ, θ, κ and ξ for which conditions (i), (ii) and (iii) hold.
To state our theorems, let us introduce:

Rr = R − r

4
−
r

r

4

“

2R +
r

4

”

,

and note that Rr tends to R as r
R

→ 0.

Theorem 1. Let A be a compact subset of R
N with pos-

itive reach R. Let C be a compact convex set of R
N satis-

fying conditions (i) and (ii). Then, Aε + rC deformation
retracts to A for all real numbers ε > 0 and r > 0 such that
ε + (δ − 1)r < min{R − r, Rr/κ

}.

The proof of Theorem 1 is given in Section 3. Theorem 1
will be useful in establishing our second theorem:

Theorem 2. Let A be a compact subset of R
N with posi-

tive reach R. Let C be a compact convex set of R
N satisfying

conditions (i), (ii) and (iii). Let P be a finite (ε, C)-sample
of A. Then, the inclusion A →֒ P +rC is a homotopy equiv-
alence for all real numbers ε > 0 and r > 0 such that (1)
(δ−1)r < min{R−r, Rr/κ

}, (2) δr < R−ε, (3) δ(r+α0) < R
and (4):

2R−
p

(R − ε)2 − (δr)2−
p

R2 − δ2(r + α0)2 < (1−ξ)r−ε,

where α0 = ξr + R −
p

(R − ε)2 − (δr)2.

The proof of Theorem 2 is given in Section 4. Notice that
Theorem 2 requires that θ ≤ θN , κ > 0 and ξ < 1. If
these three conditions are fulfilled, then by choosing r =
4ε

1−ξ
and ε

R
small enough, all the assumptions of Theorem 2

are satisfied, implying that the inclusion A →֒ P + rC is a
homotopy equivalence. Given a fixed convex set C, Table 1
gives numerical approximations of the largest value of ε

R
for

which assumptions of Theorem 2 hold.
To conclude this section, we prove that condition (iii) in

Theorem 2 is necessary. In other words, if we take a com-
pact convex set C which satisfies conditions (i) and (ii) but
whose eccentricity is 1, it may happen that for some sample
P , the Minkowski sum P +rC does not recover the topology
of A, no matter what value r takes in the interval [ε, R− ε].
To construct such an example, consider a parabola A in the
plane with equation y = x2 and a finite sample P ⊂ A sym-
metric with respect to the y-coordinate axis. Furthermore,
we let C be the equilateral triangle with centroid the origin
and vertices (0,−2), (

√
3, 1) and (−

√
3, 1). We note that

with increasing value of r, holes appear in the Minkowski
sum P + rC each time two triangles scaled by r meet at a
common vertex on the y-axis (see Figure 6). We then adjust
the height of the sample points in such a way that P + εC
does not have the correct topology and as r increases, a
hole appears in P + rC each time a hole gets destroyed, as
illustrated in Figure 6.

3. PROOF OF THEOREM 1
In this section, we prove Theorem 1. In other words, we

prove that for r and ε small enough with respect to the reach
of A, the Minkowski sum Aε + rC deformation retracts to
A. Our strategy is as follows. We consider two positive real
numbers ε′ and ε′′ such that there is chain of inclusions:

A ⊂ Aε + rC ⊂ Aε′ ⊂ Aε′′ + rC (1)

Figure 6: As the size of triangles increases, the hole

created by the 4 upper points appears exactly when

the hole created by the 4 lower points fills up.

and find conditions under which the third set deformation re-
tracts to the first set and the fourth set deformation retracts
to the second set. Applying the Sandwich Lemma allows us
to conclude. All the difficulty comes from the second part of
the proof which involves comparing the topology of two Eu-

clidean offsets of A+rC, namely Aε+rC and Aε′′+rC. This
leads us to study in details Euclidean offsets of Minkowski
sums in Section 3.2. A powerful tool for detecting changes
in the topology of Euclidean offsets consists in studying the
critical points of distance functions. Key results concerning
distance functions are recalled in Section 3.1.

3.1 Background on distance functions
The distance function d(·, Y ) to the compact subset Y

of R
N associates to each point x ∈ R

N its Euclidean dis-
tance to Y , d(x, Y ) = miny∈Y ‖x − y‖. The distance func-
tion d(·, Y ) is 1-Lipschitz, but is not differentiable in gen-
eral. Nonetheless, it is possible to define a notion of crit-
ical points analogue to the classical one for differentiable
functions. Specifically, Grove defines in [17, page 360] crit-
ical points for the distance function to a closed subset of a
Riemannian manifold. Using Equation (1.1)’ in [17, page
360], we recast this definition in our context as follows. Let
ΓY (x) = {y ∈ Y | d(x, Y ) = ‖x− y‖} be the set of points in
Y closest to x:

Definition 4. A point x ∈ R
N is a critical point of the

distance function d(·, Y ) if x ∈ Conv(ΓY (x)). The criti-
cal values of d(·, Y ) are the images by d(·, Y ) of its critical
points.

Slightly recasting Proposition 1.8 in [17, page 362], we
have:

Lemma 3 (Isotopy Lemma [17]). Let 0 < ε ≤ ε′. If
the distance function d(·, Y ) has no critical value in the in-

terval [ε, ε′], then Y ε is a deformation retract of Y ε′ .

If furthermore Y has a positive reach R, then the pro-
jection map πY which associates to each point x ∈ Y ε its
closest point πY (x) on Y is well defined and continuous [16,
page 435]. Thus, the map H : [0, 1] × Y ε → Y ε defined by
H(t, x) = (1 − t)x + tπY (x) is a deformation retraction of
Y ε onto Y . It follows that:



Table 1: Columns 2 to 5: values of δ, θ, κ and ξ for which B ⊂ C ⊂ δB and the convex set C is (θ, κ)-round

and ξ-eccentric. Columns 6 and 7: values of R/ε and r/ε for which Theorem 2 holds. Numerical values are

obtained by brute force, enumerating all pairs (ε, r) in a grid, checking if they satisfy conditions of Theorem

2 and keeping the one with largest ε.

convex set C δ θ κ ξ R/ε r/ε

Euclidean ball B ⊂ R
N 1 0 1 0 12.9781 3.95723

cube B∞ in R
N

√
N arccos(− 1

N
) κ(B∞) 1 −

2
N

cube B∞ in R
2

√
2 2π

3
0.65974 0 24.9973 4.04227

cube B∞ in R
3

√
3 0.608 π 1√

6
1/3 96.4687 6.14485

cube B∞ in R
4

√
4 0.5804 π 1/4 1/2 247.528 8.1826

cube B∞ in R
5

√
5 0.5641 π 0.149071 3/5 508.183 10.2006

cube B∞ in R
10

√
10 0.5319 π 0.03953 4/5 4505.44 20.2264

cube B∞ in R
100 10 0.503183 π 0.0010204 49/50 4948245 200.232

p-gon Pp in R
2 (p even) 1

cos π
p

2π
3

κ(Pp) 0

square in R
2

√
2 2π

3
0.65974 0 24.9973 4.04227

hexagon in R
2 1.1547 2π

3
0.69936 0 16.9858 3.99837

octagon in R
2 1.08239 2π

3
0.793353 0 15.04119 3.98101

dodecagon in R
2 1.03528 2π

3
0.8660254 0 13.84148 3.968

36-gon in R
2 1.00382 2π

3
0.951917 0 13.07011 3.95844

360-gon in R
2 1.00004 2π

3
0.9949868 0 12.97897 3.95724

Lemma 4. If Y has a positive reach R, then Y ε deforma-
tion retracts to Y , for all 0 ≤ ε < R.

3.2 Distance functions to Minkowski sums
In what follows, A designates a compact subset of R

N with
positive reach R and C designates a compact convex set of
R

N . We begin with a technical lemma which will help us
to situate critical points of the distance function to A + C,
assuming C is round enough.

Lemma 5. Consider a point x ∈ R
N such that d(x, A +

C) < R. Let y1, y2 ∈ ΓA+C(x) be two points on A + C
with minimum distance to x. Suppose C is (θ, κ)-round for
κ > 0 and ∠y1xy2 ≥ θ. Then, d(x, A + C) ≥ R1/κ

.

Figure 7: Notations for the proof of Lemma 5.

Proof. Let ρ = d(x, A+C). For i ∈ {1, 2}, let yi = ai+ci

with ai ∈ A and ci ∈ C. Since ρ = ‖(x − ci) − ai‖ < R, it
follows that x − ci has a unique projection ai = πA(x − ci)
onto A (see Figure 7). On the other hand, we know from

[16, page 435] that the projection map πA onto A is
“

R
R−ρ

”

-

Lipschitz for points at distance less than ρ from A. Thus,

‖a1 − a2‖ ≤ R

R − ρ
‖c1 − c2‖.

Let ni = x−ai−ci

‖x−ai−ci‖ . Squaring both sides of the above in-

equality and plugging a2 − a1 = c1 − c2 + ρ(n1 − n2) into

the left side, we obtain

2(c1 − c2) · (n1 −n2) + ρ ‖n1 −n2‖2 ≤ 2R − ρ

(R − ρ)2
‖c1 − c2‖2.

For i ∈ {1, 2}, the unit vector ni belongs to N (ci). Since C
is (θ, κ)-round and ∠(n1, n2) ≥ θ, it follows that (c1 − c2) ·
(n1 − n2) ≥ κ‖c1 − c2‖2 and

ρ‖n1 − n2‖2 ≤
„

2R − ρ

(R − ρ)2
− 2κ

«

‖c1 − c2‖2.

In particular, this implies that 2κ ≤ 2R−ρ
(R−ρ)2

or equivalently

ρ2 − 2
`

R − 1
4κ

´

ρ + R2 − R
κ

≤ 0. Solving this quadratic
inequality yields to the result.

As a consequence of the lemma above, if x is sufficiently
close to A + C, then the angle between any two vectors
connecting x to points in ΓA+C(x) is small which implies,
in turn, that x is not a critical point of d(·, A + C). The
following lemma makes this idea precise.

Lemma 6. If C is (θ, κ)-round with θ ≤ arccos(− 1
N

) and
κ > 0, then the distance function d(·, A + C) has no critical
value in the interval (0, R1/κ

).

In order to prove Lemma 6, we need the following result
also known as Jung’s Theorem. Given a compact subset
K ⊂ R

N , we denote by diam(K) = maxp,q∈K d(p, q) the
diameter of K.

Lemma 7 (Jung’s Theorem). The smallest ball enclos-
ing a compact subset K of R

N has radius

r ≤ diam(K)

s

N

2(N + 1)
.

Equality is attained for the regular N-simplex.

For a short proof of Jung’s theorem, see [13].



Proof of Lemma 6. Let x ∈ R
N and ρ = d(x, A + C).

Suppose 0 < ρ < R1/κ
and let us prove that x is non-

critical. By Lemma 5, for all points y1, y2 ∈ ΓA+C(x), we
have ∠y1xy2 < θ. It follows that diam(ΓA+C(x)) < 2ρ sin θ

2
.

Using

sin
θ

2
=

r

1 − cos θ

2
≤
r

N + 1

2N
,

and applying Jung’s Theorem, we get that the smallest ball
B enclosing ΓA+C(x) has radius r < ρ. Let S denote the
sphere centered at x with radius ρ. Observe that ΓA+C(x) ⊂
S ∩ B. Since the radius of B is smaller than ρ, the rad-
ical hyperplane Π of the two spheres S and ∂B separates
x from ΓA+C(x). Thus x 6∈ Conv(ΓA+C(x)) and x is non-
critical.

Combining Lemma 3 and Lemma 6 and using the fact
that if C is (θ, κ)-round, then rC is (θ, κ

r
)-round, we get

immediately conditions under which a Euclidean offset of
A + rC deformation retracts to another Euclidean offset:

Lemma 8. If C is (θ, κ)-round with θ ≤ arccos(− 1
N

) and

κ > 0, then Aε + rC is a deformation retract of Aε′′ + rC
for all positive real numbers r, ε and ε′′ such that ε ≤ ε′′ <
Rr/κ

.

We are now ready to establish the proof of our first recon-
struction theorem.

Proof of Theorem 1. Equation (1) holds whenever ε′ =
ε + δr and ε′′ = ε + (δ − 1)r. Since by hypothesis ε ≤ ε′′ <

Rr/κ
, Lemma 8 implies that Aε′′ + rC deformation retracts

to Aε + rC. By hypothesis, we have ε′ < R and therefore,

Aε′ deformation retracts to A from Lemma 4. Applying the
Sandwich Lemma allows us to conclude.

4. PROOF OF THEOREM 2
In this section, we present our proof of Theorem 2. A

designates a compact subset of R
N whose reach R is positive,

C is a compact convex set of R
N satisfying conditions (i),

(ii) and (iii) and P is a finite (ε, C)-sample of A. First,
we introduce a set which will play a key role. Given three
positive real numbers α, β and r, we set Ap(α) = (p+rC)∩
(Aβ + αC) and define

H(α) =
[

p∈P

ConvAp(α).

Our proof uses two carefully chosen positive constants α0

and α1 such that for all sufficiently small β, we have the
sequence of inclusions (see Figure 8):

A ⊂ H(α0) ⊂ Aβ + α1C ⊂ P + rC (2)

Having established this sequence of inclusions in Section 4.1,
we find in Section 4.2 conditions under which H(α0) →֒
P + rC is a homotopy equivalence. Combined with the
conditions we found in Section 3 which ensure that A →֒
Aβ + α1C is a homotopy equivalence, we deduce immedi-
ately using Lemma 1 (Sandwich Lemma) conditions under
which A →֒ P + rC is a homotopy equivalence.

4.1 Establishing a key sequence of inclusions
In this section, we find conditions under which inclusions

in (2) hold. To establish the middle inclusion, we need the
following key inclusion, illustrated in Figure 8:

Conv Aq(α0)

q
A

Conv Ap(α0)
p

Aβ + α0C

P + rC

Aβ + α1C

C

Figure 8: Nested sequence of objects considered for

the proof of Theorem 2. Constants α0 and α1 are

chosen such that ConvAp(α0) is contained in A+α1C
for all p ∈ P .

Lemma 9. Suppose δ(r + α0) < R − β and α1 − α0 ≥
R −

p

(R − β)2 − δ2(r + α0)2. Then,

ConvAp(α0) ⊂ A + α1C.

Proof. Let A′ = Aβ ∩ (p + rC + α0(−C)). Note that
Ap(α0) ⊂ A′ + α0C for if x belongs to Ap(α0) = (p + rC)∩
(Aβ + α0C), we can find c0, c1 ∈ C and a′ ∈ Aβ such that
x = a′ + α0c0 = p + rc1, showing that a′ ∈ A′ and x ∈
A′ + α0C. Thus and using lemma 15,

ConvAp(α0) ⊂ Conv(A′ + α0C) = Conv(A′) + α0C.

By construction, A′ is contained in a ball of radius δ(r+α0).
Applying Lemma 14 with Q = A′, ε = β and ρ = δ(2r − ε),
we get

Conv(A′) ⊂ A + (R −
p

(R − β)2 − ρ2)B

if ρ < R − β. Thus, for all p ∈ P we have ConvAp(α0) ⊂
A + α1C whenever δ(r + α0) < R − β and α1 − α0 ≥ R −
p

(R − β)2 − δ2(r + α0)2.

Taking the union over all points p ∈ P on both sides of
the inclusion in Lemma 9 we get immediately the middle
inclusion in (2), i.e. H(α0) ⊂ Aβ + α1C. The left-most
and right-most inclusions in (2) are easy to establish, using
A ⊂ P + εC and B ⊂ C.

Lemma 10. The sequence of inclusions in (2) holds when-
ever α1 ≤ r − ε − β, δ(r + α0) < R − β and α1 − α0 ≥
R −

p

(R − β)2 − δ2(r + α0)2.

4.2 A homotopy equivalence for nested collec-
tions of convex sets

It is not difficult to see that the inclusion H(α) ⊂ P + rC
holds for all positive real numbers α and β. The goal of this
section is to find conditions under which the inclusion map
H(α) →֒ P +rC is a homotopy equivalence. For this, we use
covers of H(α) and P + rC by finite collections of convex
sets. Specifically, we have H(α) =

S

p∈P ConvAp(α) and

P + rC =
S

p∈P (p + rC). Since sets in the two collections

{ConvAp(α)}p∈P and {p+rC}p∈P are convex, we can apply
Leray’s theorem [20] to each, and obtain that the union of
sets in each collection has the same homotopy type as its
associated nerve:

H(α) ≃ Nerve{ConvAp(α)}p∈P

P + rC ≃ Nerve{p + rC}p∈P



A key step consists in proving that, for suitable values of α,
the nerves of the two collections are actually the same. As
a consequence, H(α) and P + rC have the same homotopy
type. We strengthen this result thanks to Lemma 11: and
state conditions under which the inclusion H(α) →֒ P + rC
is a homotopy equivalence in Lemma 12.

Lemma 11. Consider two finite collections of compact con-
vex sets of R

N , C = {Ci}i∈I and D = {Di}i∈I such that
Ci ⊂ Di for all i ∈ I and suppose the two collections have
the same nerve. Then, the inclusion

S

i Ci →֒ S

i Di is a
homotopy equivalence.

From Corollary 4G.3 in [18] also known as Leray’s the-
orem [20] or the Nerve Lemma, it is clear that

S

i Ci and
S

i Di which share the same nerve have the same homotopy
type. But, we need here a stronger result, namely that the
inclusion

S

i Ci →֒ S

i Di is a homotopy equivalence. Even
though this fact can be deduced from a result in [7], we pro-
vide below a short proof to make the paper self-contained.

Proof. Let K(C) be the abstract simplicial complex whose
simplices are the (non-empty) subsets of indices σ ⊂ I such
that

T

i∈σ Ci 6= ∅. Since the two collections C and D have
the same nerves, K(C) = K(D) and we let K = K(C).

For every subset of indices σ /∈ K, a standard compactness
argument yields a real number ρσ > 0 such that

T

i∈σ Dρσ

i =
∅. Let ρ = minσ /∈K ρσ and define the open set Oi = {x ∈
R

N , d(x, Di) < ρ} for every i ∈ I. By construction, the
nerve of the collection O = {Oi}i∈I is the same as the nerve
of D and K(O) = K. For each σ ∈ K, we introduce the
possibly empty open set:

Uσ =
\

i∈σ

Oi \
[

i/∈σ

Di.

It is obvious from the definition that
S

σ∈K Uσ ⊂ S

i∈I Oi.
Let us associate to each point x ∈ S

i∈I Oi the subset of
indices τ(x) = {i ∈ I, x ∈ Oi}. Since x ∈ Uτ(x), it follows
that:

[

σ∈K

Uσ =
[

i∈I

Oi.

Let us consider a partition of unity {φσ}σ∈K subordinate to
the open cover {Uσ}σ∈K [23, page 22]. Note that the map
φσ is identically zero for the simplices σ for which Uσ = ∅.
For each simplex σ ∈ K, we choose an arbitrary point cσ ∈
T

i∈σ Ci and introduce the map h :
S

i∈I Di → R
N defined

by:

h(x) =
X

σ∈K

φσ(x)cσ.

By construction, h is continuous. We claim that x ∈ Di =⇒
h(x) ∈ Ci. Indeed, if x ∈ Di and φσ(x) 6= 0, one has i ∈ σ
and therefore cσ ∈ Ci. Hence, the non-zero terms in the
above sum is a convex combination of points in Ci and the
claim follows from the convexity of Ci. Let us prove that h is
a homotopy inverse of the inclusion map g :

S

i Ci →
S

i Di.
In other words, we have to check that g ◦ h is homotopic to
the identity of

S

i Di and h◦g is homotopic to the identity of
S

i Ci. This can be done using twice the homotopy H(x, t) =
(1−t)·x+t·h(x), first considered as a map from

S

i Di×[0, 1]
into

S

i Di, second considered as a map from
S

i Ci × [0, 1]
into

S

i Ci.

Lemma 12. Consider positive real numbers r, ε, α and β
such that δr < R − ε, δ(r + α) < R − β and α ≥ ξr + R −
p

(R − ε)2 − (δr)2. Then, the inclusion H(α) →֒ P + rC is
a homotopy equivalence.

Proof. We prove the lemma in three stages:
(a) First, we prove that for δr < R − ε and α ≥ ξr + R −
p

(R − ε)2 − (δr)2, we have

Nerve{p + rC}p∈P = Nerve{Ap(α)}p∈P . (3)

Note that this is equivalent to proving that for all subsets
Q ⊂ P ,
\

q∈Q

(q + rC) 6= ∅ ⇐⇒
\

q∈Q

[(q + rC) ∩ (Aβ + αC)] 6= ∅.

One direction is trivial: if a point belongs to the intersection
on the right, then it belongs to the intersection on the left.
Suppose now that

T

q∈Q(q + rC) 6= ∅. In particular, using
C ⊂ δB this means that Q can be enclosed in a ball of radius
ρ = δr. Since C is ξ-eccentric, there exists z ∈ Tq∈Q(q+rC)

such that z ∈ Conv(Q) + ξrC. Since P is an (ε, C)-sample
of A, we have Q ⊂ P ⊂ Aε. Applying Lemma 14, we get
that Conv(Q) ⊂ Aα−ξr. Hence and using B ⊂ C, we get
z ∈ A + (α − ξr)B + ξrC ⊂ Aβ + αC.
(b) Second, we prove that

Nerve{p + rC}p∈P = Nerve{ConvAp(α)}p∈P . (4)

From Lemma 9, we obtain the sequence of inclusions

Ap(α) ⊂ ConvAp(α) ⊂ Ap(α′),

for δ(r+α) < R−β and α′ = α+R−
p

(R − β)2 − δ2(r + α)2.
Taking the intersection over all points q ∈ Q, we get

\

q∈Q

Aq(α) ⊂
\

q∈Q

ConvAq(α) ⊂
\

q∈Q

Aq(α
′),

and consequently

Nerve{Ap(α)} ⊂ Nerve{ConvAp(α)} ⊂ Nerve{Ap(α′)},
where p ranges over P . By Equation (3), the two nerves on
the left and on the right are equal to Nerve{p + rC}p∈P ,
showing that Nerve{ConvAp(α)}p∈P = Nerve{p + rC}p∈P .
(c) Third, noticing that ConvAp(α) ⊂ p + rC for all p,
we apply Lemma 11 to the two collections of convex sets
C = {ConvAp(α)}p∈P and D = {p + rC}p∈P .

We conclude this section by the proof of our second re-
construction theorem.

Proof of Theorem 2. For β small enough, we have β+
(δ − 1)r < min{R − r, Rr/κ

}, δ(r + α0) < R − β and

2R −
p

(R − ε)2 − (δr)2 −
p

(R − β)2 − δ2(r + α0)2

≤ (1 − ξ)r − ε − β.

Setting α1 = α0 + R −
p

(R − β)2 − δ2(r + α0)2, the above
inequality can be rewritten as α1 ≤ r − ε− β. Thus, the se-
quence of inclusions in (2) holds by Lemma 10. Furthermore,
the inclusion H(α) →֒ P + rC is a homotopy equivalence by
Lemma 12. Since α1 ≤ r and β+(δ−1)r < min{R−r, Rr/κ

}
imply β + (δ − 1)α1 < min{R − α1, Rα1/κ

}, the inclusion

A →֒ Aβ + α1C is a homotopy equivalence by Theorem 1.
Applying the Sandwich Lemma allows us to conclude.



5. DISCUSSION
In this paper, we have exhibited a class of compact convex

sets whose Minkowski sum with a sufficiently dense sample
retrieves the topology of the sampled shape. Compact con-
vex sets in this class possess three properties: a non-empty
interior, a positive θN -roundness and an eccentricity smaller
than 1. In particular, this class contains Euclidean balls but,
more interestingly, also includes N -dimensional cubes, with
potential algorithmic applications in high dimensions.

Results in this paper raise a number of questions. For
instance, it would be interesting to know what is the lowest
density of sample points Theorem 2 authorizes and if this
number is tight, especially for N -dimensional balls. Also,
Theorem 2 requires the sample P to be finite and the shape
A to have a positive reach. Can we relax these two condi-
tions?
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APPENDIX

A. BASIC PROPERTIES
In this appendix, we present basic properties relating the

smallest ball enclosing Q ⊂ R
N and the convex hull of Q.

Lemma 13. Consider a subset Q ⊂ R
N whose smallest

enclosing ball has radius r. Then, Conv(Q) ⊂ Sq∈Q B(q, r).

Proof. For all q ∈ Conv(Q), there are points q1, . . . , qn

in Q and non-negative real numbers α1, . . . , αn summing up
to 1, such that q =

Pn
i=1 αiqi. Let πi(x) = ‖x− qi‖2 − r2 be

the power distance of x ∈ R
N from Bi = B(qi, r) and note

that Bi = π−1
i (−∞, 0]. Let π(x) =

Pn
i=1 αiπi(x) and set

B = π−1(−∞, 0]. We prove that
Tn

i=1 Bi ⊂ B ⊂ Sn
i=1 Bi.

Indeed, if a point x belongs to all balls Bi, then πi(x) ≤ 0
for all 1 ≤ i ≤ n, which implies π(x) ≤ 0. On the other
hand, if π(x) ≤ 0 then πi(x) ≤ 0 for at least one index i,
which implies that x belongs to at least one ball Bi. Now,
our choice of r as the radius of the smallest ball enclosing
Q implies that

Tn
i=1 Bi 6= ∅, showing that B is non-empty.

Thus, B is a ball and it is not difficult to see that its center
is point q. It follows that q ∈ B ⊂ Sn

i=1 Bi, which concludes
the proof.

The next lemma states that the convex hull of a set of
points cannot be too far away from a shape with positive
reach, assuming the set of points is close to the shape and
are enclosed in a ball of small radius. Formally:

Lemma 14. Consider a subset Q ⊂ Aε in R
N and suppose

Q can be enclosed in a ball of radius ρ < R − ε. Then,
Conv(Q) ⊂ Aα for α ≥ R −

p

(R − ε)2 − ρ2.

http://hal.inria.fr/inria-00277899


Figure 9: Notations for the proof of Lemma 14.

Proof. Suppose R < +∞ for otherwise, A is convex and
Conv(Q) ⊂ Aε. Let x be a point on Conv(Q) furthest away
from A. By Lemma 13, there exists a point q ∈ Q such that
‖x− q‖ ≤ ρ. Thus, d(x, A) ≤ ‖x− q‖+ d(q, A) ≤ ρ + ε < R,
showing that x has a unique projection a onto A. We claim
that the plane H passing through x and orthogonal to the
segment xa is a supporting plane of the convex hull of Q. To
prove this, consider the two open half-spaces that H bounds
and let H− be the one half-space that does not contain a.
Furthermore, consider the half-line with origin a that passes
through x and let z be the point on this half-line at distance
R from a (see Figure 9). By construction, B(z, R) is tangent
to A at a and its interior does not intersect A. We prove
that Conv(Q) ∩ H− = ∅. Suppose for a contradiction that
there exists a point y ∈ Conv(Q) ∩ H−. Then, the whole
segment xy belongs to Conv(Q) and in particular intersects
B(z, ‖z−x‖). But points in the interior of B(z, ‖z−x‖) are
furthest away from A than x, contradicting the definition of
x as the point of Conv(Q) furthest away from A. It follows
that H is a supporting plane of the convex hull of Q as
claimed. Thus, Q∩H is non-empty and can be enclosed in a
ball of radius smaller or equal to ρ. The convex hull of Q∩H
contains x and by Lemma 13, there exists a point q′ ∈ Q∩H
such that ‖x−q′‖ ≤ ρ. On the other hand, ‖z−q′‖ ≥ R−ε.

It follows that ‖x − a‖ = R −
p

‖z − q′‖2 − ‖x − q′‖2 ≤
α.

Lemma 15. For any subset Q ⊂ R
N and any convex set

C ⊂ R
N , Conv(Q + C) = Conv(Q) + C.

The proof is straightforward and hence omitted.

B. PROOF OF LEMMA 2
We start with a preliminary lemma.

Lemma 16. For all points c1, c2 ∈ C, c1 6= c2 and all
vectors n1 ∈ N (c1) and n2 ∈ N (c2), we have

(c1 − c2) · (n1 − n2)

‖c1 − c2‖2
=

1

2
(κc1,n1

(c2) + κc2,n2
(c1)),

where κx,n(y) is the curvature of the sphere passing through
points x and y and with outer normal n at point x.

Proof. See Figure 10, left. Let Si be the sphere passing
through points c1 and c2 with outer normal ni at ci, for

i ∈ {1, 2}. Let n′
2 be the outer unit normal to S1 at c2 and

n′
1 be the outer unit normal to S2 at c1. We have

(c1 − c2) · (n1 − n′
2) = κc1,n1

(c2)‖c1 − c2‖2

(c1 − c2) · (n′
1 − n2) = κc2,n2

(c1)‖c1 − c2‖2

(c1 − c2) · (n′
2 + n1) = 0

(c2 − c1) · (n′
1 + n2) = 0

Summing up these four equations gives the result.

Figure 10: Notations for the proof of Lemma 16 and

Lemma 2.

Proof of Lemma 2. We first prove that for all points
c1, c2 ∈ ∂C with normals n1 and n2 respectively:

(c1 − c2) · (n1 − n2) ≥ κmin(C)‖c1 − c2‖2.

Consider a sphere S tangent to ∂C at point x and meeting
∂C in another point y 6= x. Let D be the ball that S bounds.
We begin by proving that κmin(D) ≥ κmin(C). Consider a 2-
dimensional plane P passing through x and y and containing
the common normal to ∂D and ∂C at point x. In particular,
P passes through the center of D. We think of D̃ = D ∩ P
and C̃ = C ∩ P as two compact convex sets in R

2. By
construction, ∂D̃ and ∂C̃ are C2-smooth curves tangent at
point x and meeting at point y 6= x. Thus, we reduced the
geometric situation in R

N to the same situation in R
2. Let us

prove that κmin(D̃) ≥ κmin(C̃). Suppose for a contradiction

that κmin(D̃) < κmin(C̃). In other words, the curvature

of circle D̃ is smaller than the curvature at any point on
the curve C̃. Theorem 1 in [19] tells us that C̃, except for

x, lies in the interior of D̃, as illustrated in Figure 10 right.
But, this contradicts the fact that C̃ intersects the boundary
of D̃ in y 6= x. Thus, κmin(D̃) ≥ κmin(C̃) and it follows
that κmin(D) = κmin(D ∩ P ) ≥ κmin(C ∩ P ) ≥ κmin(C),
as claimed. In other words, given two points x 6= y on
the boundary of C and a unit vector n ∈ N (x), we have
just proved that the curvature κx,n(y) of the sphere passing
through x and y with outer normal n at point x satisfies
κx,n(y) ≥ κmin(C). Applying Lemma 16 gives the claimed
inequality.

To prove that the inequality is tight, note that if c2 tends
to c1 along a curve γ in ∂C, then the ratio

(c1 − c2) · (n1 − n2)

‖c1 − c2‖2

tends to the absolute value of the normal curvature of γ at
c1. In particular, if |κN−1(x)| reaches its minimum at x = c1

and the tangent line to γ at c1 is the associated principal
direction, then the ratio tends to κmin(C).
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