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LOAD BALANCING VIA RANDOM LOCAL SEARCH IN

CLOSED AND OPEN SYSTEMS

A. GANESH, S. LILIENTHAL, D. MANJUNATH, A. PROUTIÈRE, AND F. SIMATOS

Abstract. In this paper, we analyze the performance of random load re-
sampling and migration strategies in parallel server systems. Clients initially
attach to an arbitrary server, but may switch servers independently at random
instants of time in an attempt to improve their service rate. This approach
to load balancing contrasts with traditional approaches where clients make
smart server selections upon arrival (e.g., Join-the-Shortest-Queue policy and
variants thereof). Load resampling is particularly relevant in scenarios where
clients cannot predict the load of a server before being actually attached to
it. An important example is in wireless spectrum sharing where clients try to
share a set of frequency bands in a distributed manner.

We first analyze the natural Random Local Search (RLS) strategy. Under
this strategy, after sampling a new server randomly, clients only switch to it if
their service rate is improved. In closed systems, where the client population is
fixed, we derive tight estimates of the time it takes under RLS strategy to bal-
ance the load across servers. We then study open systems where clients arrive
according to a random process and leave the system upon service completion.
In this scenario, we analyze how client migrations within the system inter-
act with the system dynamics induced by client arrivals and departures. We
compare the load-aware RLS strategy to a load-oblivious strategy in which
clients just randomly switch server without accounting for the server loads.
Surprisingly, we show that both load-oblivious and load-aware strategies sta-
bilize the system whenever this is at all possible. We further demonstrate,
using large-system asymptotics, that the average client sojourn time under
the load-oblivious strategy is not considerably reduced when
clients apply smarter load-aware strategies.

1. Introduction

Load balancing is a key component of today’s communication networks and
computer systems in which resources are distributed over a wide area or across
a large number of systems and have to be shared by a large number of users.
Load balancing enables efficient resource utilization and thereby tends to improve
the quality of service perceived by users. Traditionally, load balancing has been
achieved by applying smart routing policies: when a new demand arrives, it is
routed towards a particular resource depending on the current loads of the various
resources, see [14] and references therein. In contrast, we are interested in systems
where a new task is initially assigned to a resource chosen at random irrespective
of the current resource loads, but where tasks can be re-assigned, i.e., migrate from
one resource to another.

Our primary motivation stems from the increasing popularity of Dynamic Spec-
trum Access (DSA) techniques [1] as a potential mechanism for broadband access in
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future wireless systems. A common implementation platform for DSA is the use of
reprogrammable Software-Defined-Radios (SDRs). These new radios are frequency-
agile or flexible, and have the ability to rapidly jump from one frequency band to
another in order to explore and exploit large parts of the spectrum. A central
question in DSA is how multiple users may fairly and efficiently share spectrum in
a distributed manner. Typically, the service rate of a user on a given frequency
band is inversely proportional to the number of users transmitting on this band,
i.e., to the load of the band. As new users entering the system have no way of
determining the load on each frequency band, they have to initially select a band
randomly. Should a user receive a quite poor quality of service on a given band, she
may resample a new band at random and decide to switch to it. The overall system
performance then strongly depends on the distributed resampling and switching
strategy implemented by each user.

Though our primary motivation is DSA, our methods and results could provide
insight into a number of other applications. One such pertains to wireline networks,
where there has recently been interest in multipath routing [15]. Here, users may
use several path to download files, and have to select the appropriate path or the
set of paths. Another application is in transport networks, where one might wish
to understand how Wardrop equilibria, which correspond to the equalization of
journey times across alternative routes, are achieved or approximated by network
users acting on limited information. Our results could also shed insight on how
quickly such equilibria can be re-established following major disruptions or other
changes to the network. Finally, note that distributed load resampling can also
be thought of as a game between selfish users. In fact, it is an instance of a
congestion game (see e.g. [18]), and our results shed light on the time to reach a
Nash equilibrium in such a game, but it also helps understanding the outcome of
the game with a dynamic population of players.

We consider a generic system consisting of multiple servers (in DSA, frequency
bands) employing the Processor Sharing (PS) service discipline, shared by clients
who have to initially pick a server at random, and may later resample servers and
migrate during their service. We restrict our attention to two natural distributed
resampling and migration strategies, the Random Local Search (RLS) and Random
Load-Oblivious (RLO) strategies. When implementing the RLS algorithm, a user
resamples a new randomly chosen server at the instants of a Poisson process, and
migrates to this new server if its load is smaller than that of the initial server. In
contrast, under the RLO algorithm, a user hops between servers according to a
random Markovian jump process irrespective of the loads of the visited servers.

We investigate both closed systems with fixed population of clients, and open
systems with a population whose dynamics are governed by client arrivals and the
completions of their services. In closed systems, we are interested in characterizing
the time that it takes under the RLS algorithm to balance all server loads (note that
here the RLO algorithm does not balance loads except in an average sense – so we
do not study this algorithm in closed systems). In open systems, users arrive at the
various servers according to independent stochastic processes of fixed intensities,
and leave upon service completion. In this scenario, client migrations within the
system interact in a complicated manner with the system dynamics induced by
client arrivals and departures. We aim at characterizing system stability under the
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RLS and RLO strategies, as well as at deriving estimates of user sojourn times.
Our contributions are as follows:

• Closed systems. We show that, starting from an arbitrary allocation of
users to servers, the time τ it takes to achieve perfect balance of server

loads scales at most as log(m)
(

m2

n + log(m)
)

, where m and n denotes the
number of servers and users, respectively. This considerably improves over
the existing bounds that stated that τ scales at most as m2 (see e.g. [12]).
We also investigate the time τǫ to reach an approximate ǫ-balance (a system
reaches an approximate ǫ-balance if there exists p such that the number of
users associated to any server lies between (1− ǫ)p and (1+ ǫ)p). Achieving
such balance is much faster than reaching a perfect balance, and we show
that τǫ scales at most as log(m)/ǫ.

• Open systems. We demonstrate that both RLS and RLO strategies achieve
the largest stability region possible, i.e., that the system is stable under
these two algorithms provided that

∑m
i=1 λi <

∑m
i=1 µi, where λi denotes

the initial user arrival rate at server i and µi is the service rate of this server.
The result is not surprising for RLS, but less intuitive for RLO since, under
this algorithm, users take no account of server loads when migrating. For
both RLS and RLO strategies, we derive approximate estimates of the
average user sojourn time using large-system asymptotics. The estimates
are shown to be exact when the number of servers grows large, but turn out
to be quite accurate for systems of limited sizes as well. Our first numerical
results suggest that again, surprisingly, the average client sojourn time
under the load-oblivious RLO strategy is not considerably reduced when
clients apply smarter load-aware RLS strategy. To our knowledge, this
paper is the first to analyze the performance of RLS and RLO algorithms
in open systems.

The paper is organized as follows. In the next section, we describe our model and
notation. Sections 3 and 4 are devoted to the analysis of closed and open systems,
respectively. We give the related work in Section 5, and provide concluding remarks
in Section 6.

2. Model description and notation

We consider a set ofm Processor Sharing servers of respective capacities µ1, . . . , µm.
The system is homogeneous if µi = 1 for all i = 1, . . . ,m. The system state at
time t is represented by the number of clients associated to each server, N(t) =
(N1(t), . . . , Nm(t)). The service rate of a client associated to server i at time t is
then µi/Ni(t). Clients independently resample and switch servers to selfishly im-
prove their service rate. They have a myopic view of the system in the sense that
they are aware of their current service rates, but do not know the service rate they
would achieve at other servers. Given this myopic view, it is natural to consider and
analyze the two following random distributed resampling and migration algorithms:

• Random Local Search (RLS) algorithm. At the instants of a Poisson process
of intensity β > 0, a client picks a new server uniformly at random and
migrates to it if and only if this would increase her service rate. In other
words, if at time t, a client associated to server i picks server j, she migrates
to j if and only if µj/(Nj(t) + 1) > µi/Ni(t).
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• Random Load-Oblivious (RLO) algorithm. After arriving in the system,
each client visits successive servers according to a continuous-time random
walk with transition matrix Q = {qij , i, j = 1, . . . ,m}. The random walks
are independent across clients, and irreducible. We denote by π the station-
ary distribution of this random walk. Note that as a consequence of irre-
ducibility, clients visit all servers eventually, i.e., πi > 0 for all i = 1, . . . ,m.

Note that under the RLO algorithm, clients do not take loads into account when
switching servers. In particular they may move to a server with a higher load. An
example of such a resampling strategy is as follows. Each client has a Poisson clock
of rate β > 0 and, when her clock ticks, she picks a new server uniformly at random
and moves there irrespective of its load.

We analyze the performance of distributed resampling and migration strategies
in closed and open systems. In closed systems, the total population of clients is
fixed, equal to n. For such systems, we investigate the time it takes under the
RLS algorithm to balance clients across servers, starting from any arbitrary system
state. In open systems, exogenous clients associate to server i according to a Poisson
process of intensity λi (the arrival processes are independent across servers). Client
service requirements are i.i.d. exponentially distributed with unit mean. Under
RLS and RLO algorithms, (N(t), t ≥ 0) is a Markov process. In open systems,
we are interested in characterizing the stability region of RLS and RLO strategies,
defined as the set of arrival rates λ = (λ1, . . . , λm) such that the system is stable,
i.e., such that (N(t), t ≥ 0) is positive recurrent. We also aim at estimating the
average client sojourn time.

3. Closed systems

In this section, we analyze the performance of the RLS resampling strategy in
a closed homogeneous system, and obtain tight bounds on the expected time to
balance the server loads.

Recall that there are n clients distributed among m servers. Let n = qm + r,
0 ≤ r ≤ m− 1. We now define the following:

• The state N(t) = (N1(t), . . . , Nm(t)) is balanced if |Ni(t) − Nj(t)| ≤ 1 for
1 ≤ i < j ≤ m. The time to balance, τ, is defined as

τ := inf{t > 0 : N(t) is balanced}.

• The stateN(t) is ǫ-balanced if (1−ǫ)p ≤ Ni(t) ≤ (1+ǫ)p for all i = 1, . . . ,m,
where p = n/m. The time, τǫ, to ǫ-balance is defined as

τǫ := inf{t > 0 : N(t) is ǫ-balanced}.

Let f, g : N → R+. We say f(k) = O(g(k)) if there exist k0 ∈ N and c ∈ R+

such that f(k) ≤ cg(k) for all k ≥ k0. Similarly, for f, g : N
2 → R+, we say

f(k, l) = O(g(k, l)) if there exist k0, l0 ∈ N and c ∈ R+ such that f(k, l) ≤ cg(k, l)
for all k ≥ k0 and l ≥ l0.

3.1. Time to reach balance. We now characterize the time required by the RLS
algorithm to reach perfect balance and ǫ-balance.

Theorem 3.1. The expected time, E[τ ], for randomized local search to achieve

balance is O(log(m)(m
2

n + log(m))).
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Theorem 3.2. The expected time, E[τǫ] for randomized local search to achieve
ǫ-balance is O(log(m)/ǫ).

Remarks

(1) It is easy to see, applying Markov’s inequality, that the same upper bounds
on the time to balance hold in probability as in expectation.

(2) We now compare our bounds on τ with that from [12]. From Theorem 2.7
of [12], the expected number of attempted moves before reaching balance
is O(m2n). Since move attempts (resampling) occur at rate n, this gives us
a time complexity of O(m2). Our bound in Theorem 3.1 is much tighter.

(3) Our bound is close to the best possible. To see this, suppose m divides
n exactly. At some stage, the algorithm will reach an allocation in which
one server has n/m + 1 clients, one other server has n/m − 1 clients and
all others have exactly n/m clients. Each of the n/m + 1 clients at the
overloaded server attempts to move at rate 1, and each move attempt is
successful with probability 1/m. Hence, the mean time for just the final
move is m2/(m+ n) ≥ m2/(2n). Our bound is only a logm factor higher
than the time for the last move.

Alternatively, consider the situation when m2 = o(n) and all n clients
are initially at the same server. Then, at least n − ⌈n/m⌉ clients need to
move out of this server to reach balance. When there are k clients at the
server, the expected time to the next move is at least 1/k (possibly more,
as the move attempt may not be successful). Hence, the expected time to
reach balance is at least

n
∑

k=⌈n/m⌉+1

1

k
≥

∫ n

n/m

1

x
dx = logm.

Again our bound is only a logm factor higher than the above lower bound
on the time to reach balance.

3.2. Proofs. Without loss of generality, we take the rate β of the independent
Poisson clocks at each client to be unity. A client at server i whose clock has ticked
at time t attempts to move by sampling a server uniformly at random from all m
servers. It moves to the sampled server, say j, if and only if Ni(t) − Nj(t) > 1.
Clearly, N(t) evolves as a continuous time Markov chain.

3.2.1. Proof of Theorem 3.1. Define V (t) := max1≤j≤m Nj(t), i.e., V (t) is the
maximum number of clients associated with any server at time t. Define Cv(t) to
be the number of servers with exactly v clients, Bv(t) to be the number with exactly
v− 1 clients and Av(t) to be the number with strictly less than v− 1 clients, all at
time t.

The idea of the proof is as follows. The evolution of N(t) towards balance is
divided into phases. If V (t) = v, then N(t) is said to be in phase v. Thus, Cv(t) is
the number of maximally loaded servers in phase v. Since a client never moves to
a server that has more clients than its current server, V (t) is monotone decreasing
and, in each phase, Cv(t) is also monotone decreasing. Phase v ends when Cv(t) = 0.
Let τv denote the (random) length of phase v. Each phase can be further divided
into sub-phases, say (v, c), when Cv(t) = c. Let τv,c denote the random length of
time that it takes for Cv(t) to decrease from c to c− 1. Observe that τv =

∑

c τv,c
and τ =

∑

v τv. When N(t) is balanced, V (t) = ⌈ n
m⌉, C⌈ n

m
⌉(t) = r if r > 0 and
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C⌈ n
m

⌉(t) = m otherwise. This gives us the maximum range for v. The number
of sub-phases in each phase is also similarly bounded. The theorem is proved by
bounding the expected times of each of the sub-phases and phases.

Proof. In phase v, observe that

vCv(t) + (v − 1)Bv(t) ≤ n and m−Bv(t)− Cv(t) = Av(t).

Further, for ⌈n/m⌉ ≤ v ≤ ⌈n/(m− 1)⌉, n/(v − 1) ∈ (m − 1,m], but if N(t) is not
balanced, then there has to be at least one server with v − 2 or fewer clients (i.e.,
Av(t) ≥ 1). Hence

(1) Av(t) ≥ max
{

m−
n

v − 1
, 1
}

.

Each of the vCv(t) clients at one of the maximally loaded servers samples one of
the m servers at random at unit rate. If the sampled server happens to be one of
the Av(t) servers with v − 2 or fewer clients, then the client moves to the sampled
server and Cv(t) decreases by 1. This event has probability Av(t)/m. Hence, Cv(t)
decreases by 1 at a rate no smaller than vCv(t)Av(t)/m and from (1), we obtain
that τv,c � τ̃v,c ∼ Exp(λv,c) where

(2) λv,c := vCv(t)
Av(t)

m
=
(

vc
(

max
{

1−
n

m(v − 1)
,
1

m

}))

.

Here we write X � Y to mean that X is stochastically dominated by Y, (i.e., for
all t, P[X > t] ≤ P[Y > t]), X ∼ Y to mean that they have the same distribution
and Exp(x) to denote an exponentially distributed random variable with rate x. In
particular,

(3) E[τv,c] ≤ E[τ̃v,c] ≤
1

vc
min

{ m(v − 1)

[m(v − 1)− n]+
,m
}

,

where x+ denotes max{x, 0}.
At any time t, Cv(t) is bounded above by ⌊n/v⌋, since there cannot be more

than this many servers with v clients. Since phase v ends when Cv = 0, we have

E[τv] ≤
∑⌊n/v⌋

c=1 τv,c, and we obtain

(4) E[τv] ≤ min
{ m(v − 1)

[m(v − 1)− n]+
,m
}1

v

⌊n/v⌋
∑

c=1

1

c
.

Finally, τ , the time it takes to reach perfect balance, satisfies

(5) τ ≤
n
∑

v=⌈n/m⌉+1

τv +
m
∑

c=r+1

τ⌈n/m⌉,c.

Now, we have by (3) that,

m
∑

c=r+1

E[τ⌈n/m⌉,c] ≤
m

⌈n/m⌉

m
∑

c=r+1

1

c

≤
m2

n

(

1 +

∫ m

1

1

x
dx
)

=
m2

n
(1 + logm).(6)
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For all v ≥ ⌈ n
m⌉, we also readily see that,

⌊n/v⌋
∑

c=1

1

c
≤ 1 +

∫ n/v

1

1

x
dx ≤ 1 + log

n

v
≤ 1 + logm.

Hence, from (4), (5) and (6), we obtain

(7)
E[τ ]

1 + logm
≤

m2

n
+

⌈n/(m−1)⌉
∑

v=⌈n/m⌉+1

m

v
+

n
∑

v=⌈n/(m−1)⌉+1

m

m(v − 1)− n
.

The number of terms in the first sum above is at most max{1, n
m(m−1)}. Each sum-

mand is no more than m2/n. Hence, the first sum is bounded above by max{m2

n , 2}.
The second sum is bounded above by

m
mn
m−1 − n

+

∫ n

n
m−1+1

m

m(x− 1)− n
dx =

m(m− 1)

n
+ log

m(n− 1)− n
mn
m−1 − n

.

Substituting these expressions in (7) and simplifying, we get

E[τ ] ≤ (1 + logm)
(

max{
m2

n
, 2}+

m2

n
+ log(m2) +

m2

n

)

≤ 3(1 + logm)
(m2

n
+ logm+ 1

)

.

This completes the proof. �

3.2.2. Proof of Theorem 3.2. We need the following definitions.

• Let p = n/m. Server i is ǫ-balanced at time t if (1 − ǫ)p ≤ Ni(t) ≤
(1+ ǫ)p, underloaded if Ni(t) < (1− ǫ)p and overloaded if Ni(t) > (1+ ǫ)p.
MC(t), MU (t) and MO(t) denote the number of ǫ-balanced, underloaded
and overloaded servers, respectively.

• The underflow from server i is defined to be

ui(t) =

{

0 if Ni(t) ≥ p

p−Ni(t) otherwise.

Also, let U(t) :=
∑m

i=1 ui(t). Similarly, define the overflow from server i as

oi(t) =

{

0 if Ni(t) ≤ p

Ni(t)− p otherwise,

and O(t) :=
∑m

i=1 oi(t).

Proof. Let NO(t) be the number of ‘overflowing’ clients defined as

NO(t) :=
∑

i∈MO(t)

(Ni(t)− (1 + ǫ)p) ,

where MO(t) is the set of overloaded servers at time t. We can write

U(t) ≤ (MU (t)× p) +MC(t)× (ǫp),

O(t) ≥ NO(t) + (m−MU (t)−Mc(t))× (ǫp).

Since O(t) = U(t), we obtain

p MU (t) + (ǫp)MC(t) ≥ NO(t) + (m−Mu(t)−MC(t))(ǫp),
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which yields

NO(t) ≤ p(MU (t) +MC(t))(1 + ǫ)− ǫm)

MC(t) +MU (t) ≥
NO(t)

(1 + ǫ)p
+

ǫ

1 + ǫ
m ≥ max

{

NO(t)

(1 + ǫ)p
,

ǫ

1 + ǫ
m

}

.

Now consider a client that is attempting to move at time t.We say that this attempt
results in a good move if the attempt results in a migration that reduces NO(t). Let
G denote the event corresponding to a good move. When the state of the system
is (NO,MC ,MU ), the probability of a good move is

P (G) ≥
NO + (1 + ǫ)p

n

MC +MU

m
and the number of attempts between successive good moves is geometric with mean
at most mn

(NO+p)MU
.

Let KG denote the number of attempts before a good move occurs from the state
(NO,MC ,MU ). The expected number of attempts before a good move reduces NO

satisfies
E[KG] ≤

mn

(NO + (1 + ǫ)p)(MC +MU )
.

Let Kǫ denote the number of attempts to achieve ǫ-balance. In the worst case,
NO(t) starts at (m− 1)p and ends at 1. We can then bound E[Kǫ] as follows.

E[Kǫ] ≤

(m−1)p
∑

i=1

mn

((1 + ǫ)p+ i)(max{ i
(1+ǫ)p ,

ǫ
1+ǫm})

=

ǫn
∑

i=1

mn

((1 + ǫ)p+ i)
(

ǫ
1+ǫm

) +

(m−1)p
∑

i=ǫn+1

mn

((1 + ǫ)p+ i)
(

i
(1+ǫ)p

)

=
1 + ǫ

ǫ
n

ǫn
∑

i=1

1

((1 + ǫ)p+ i)
+mn

(m−1)p
∑

i=ǫn+1

1

i
−

1

(1 + ǫ)p+ i)

≤
1 + ǫ

ǫ
n log

(

(1 + ǫ)p+ ǫn

(1 + ǫ)p

)

+mn log

(

(m− 1)p

ǫn

(1 + ǫ)p+ ǫn

(1 + ǫ)p+ (m− 1)p

)

≤
n

ǫ
log(1 + ǫm) +mn

(

−
1

m
+

1 + ǫ

ǫm
−

ǫ

m

)

≤
n

ǫ
log(m).

Since each client is sampling at unit rate, the total sampling rate is n and the
average time to reach ǫ-balance, E[τǫ] is E[Kǫ]/n. Thus E[τǫ] = O((logm)/ǫ). �

4. Open systems

In open systems, we are interested in quantifying classical queueing performance
metrics, such as the stability region and the mean client sojourn time. We first
investigate the stability region achieved under RLO and RLS algorithms. Both
algorithms are shown to stabilize the system whenever this is at all possible, which
for load-oblivious RLO algorithm may be surprising. Then, we try to obtain more
detailed estimates of the system performance. As it turns out, the system equilib-
rium distribution is difficult, if not impossible, to derive, and we rely on large-system
asymptotics to provide insights into the way the system behaves.
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4.1. Stability. In the following, we denote λ = (λ1, . . . , λm) and µ = (µ1, . . . , µm)
the vectors representing the arrival and departure rates at the various servers. ‖·‖
denotes the L1-norm on R

m. We first provide an upper bound on the maximum
stability region defined as the set of λ such that there may exist a resampling and
migration strategy stabilizing the system. This set is obtained by assuming that
all servers’ resources are pooled.

Proposition 4.1. Assume that λ is such that
∑

i λi >
∑

i µi. Then there is no
resampling and migration strategy stabilizing the system.

Proof. The proof is straightforward. Remark that for any resampling and migration
strategy, the total service rate is less than

∑

i µi. Then if
∑

i λi >
∑

i µi, the average
number of clients in the system grows at a rate greater than

∑

i λi −
∑

i µi > 0.
The system is then unstable. ✷

The two following theorems state that both RLO and RLS strategies achieve
maximum stability.

Theorem 4.1. Assume that
∑

i λi <
∑

i µi. Then the system is stable under RLO
algorithm.

Theorem 4.2. Assume that
∑

i λi <
∑

i µi. Then the system is stable under RLS
algorithm.

A result somehow similar to that of Theorem 4.1 was first stated in [7] using
heuristic fluid limits arguments. Fluid limits are powerful techniques to study
ergodicity of Markov processes [8]. They comprise the study of the system behavior
in the following limiting regime: the initial condition is scaled up by a multiplicative
factor k, time is accelerated by the same factor, and k tends to ∞. Often the
system becomes tractable in this regime and even deterministic. If the system in
the fluid regime reaches 0 in a finite time, then the process is ergodic. In the
fluid regime, clients stay for very long periods of time in our system, and since,
under RLO algorithm, the client random walks are ergodic, the probability that a
given client is associated to server i should be proportional to πi (the equilibrium
distribution of the random walk). In such case, when the client population is
large (as in the fluid regime), all servers should be occupied and active, ensuring
that the system empties in finite time. This is the argument used in [7], but not
justified. The problem arises because the client migration process actually interacts
with arrivals and departures. Handling this interaction turns out to be extremely
difficult. Recently however, in [21], the authors were able to formally derive the
system fluid limits, and analyze its stability under very specific assumptions on the
client random walk (its transition matrix Q has to be diagonalizable). Their proof
is quite intricate. In the following, we prove Theorem 4.1 without the use of fluid
limits, and for any random walk. Our proof is much more direct than that in [21],
and hence is amenable to deal with more general cases and possible extensions. For
the proof of Theorem 4.2, we use a rather classic method, i.e., we exhibit a simple
Lyapunov function.

4.1.1. Proof of Theorem 4.1. Recall that by definition, under RLO strategy, the
process (N(t), t ≥ 0) is the Markov process with the following non-zero transition
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rates for 1 ≤ i 6= j ≤ m:

(8)







Ω(n, n+ ei) = λi,
Ω(n, n− ei + ej) = niqij ,
Ω(n, n− ei) = µi1{ni>0},

where n = (n1, . . . , nm) ∈ N
m and ei is the m-th dimensional vector with every

coordinate equal to 0, except for the ith one equal to 1. The matrix Q = (qij)
describes the migration of clients, and it is only assumed to possess a unique sta-
tionary distribution π = (πi) such that πi > 0 for each i = 1, . . . ,m. The aim of
the analysis is to use the following result, known as Foster’s criterion [20].
(Foster’s criterion) If there exist K and t ≥ 0 such that

(9) sup
n∈Nm:‖n‖≥K

En(‖N(t)‖ − ‖n‖) < 0,

where En(·) = E(·|N(0) = n), then (N(t), t ≥ 0) is ergodic.
Kolmogorov’s equation is the first step that leads to (9): for any t ≥ 0, the drift

En(‖N(t)‖ − ‖n‖) is given by

En(‖N(t)‖ − ‖n‖) = ‖λ‖t−

∫ t

0

En

(

m
∑

i=1

µi1{Ni(u)>0}

)

du.

This gives the following inequality, which is the basis of our drift analysis:

(10) En(‖N(t)‖ − ‖n‖) ≤ ‖λ‖t− ‖µ‖

∫ t

0

Pn (N(u) > 0) du,

where Pn[·] = P[·|N(0) = n], and for x ∈ N
n, x > 0 is to be understood coordinate-

wise, i.e., xi > 0 for each i = 1, . . . ,m.
The idea of the proof of (9) is that when the system starts with many clients,

then the number of arrivals and departures is negligible on the time interval [0, t]
and the system behaves like the closed one. For a closed system, it is not difficult to
show, using the fact that Q has an invariant measure, that P(N(u) > 0) for u > 0
is arbitrarily close to 1 as the number of clients in the system increases. In view
of (10) this gives a negative drift when

∑

i λi <
∑

i µi.
The following coupling initially proposed and formally justified in [21] is key to

relate the open and closed systems. For n ∈ N
m and ℓ, ρ ∈ R

m
+ , denote by Nn

ℓ,ρ the
process under RLO strategy starting in the initial state n, with arrival rate ℓi at
server i with capacity ρi. Then (Nn

ℓ,ρ(t)) is the Markov process with Nn
ℓ,ρ(0) = n,

and with non-zero transition rates given by (8) with ℓi instead of λi and ρi instead
of µi. Then the processes Nn

ℓ,0 and N0
ρ,0 can be coupled in such a way that for some

process Z(t) ≥ 0,

Nn
ℓ,ρ(t) = Nn

ℓ,0(t)−N0
ρ,0(t) + Z(t), t ≥ 0.

Moreover, the processes ‖N0
ρ,0‖ and Nn

ℓ,0 are independent, and ‖N0
ρ,0‖ is a Poisson

process with parameter ‖ρ‖. Essentially, this coupling realizes the process Nn
ℓ,ρ with

arrivals and departures as the difference between two processes without departures.
This coupling can be constructed as follows: consider a particle system with three
kinds of particles, colored blue, red and green. All the particles in the system are
performing independent continuous-time random walks, going from i to j at rate
qij , and the system starts with only blue particles.
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Consider two independent Poisson processes Nℓ and Nρ with respective parame-
ters ‖ℓ‖ and ‖ρ‖: at times of Nℓ, add a new blue particle at server i with probability
ℓi/‖ℓ‖. At times of Nρ, consider server i with probability ρi/‖ρ‖: if there is a blue
particle, choose one at random and turn it into a red one. If there is no blue
particle, add a green particle.

If Bi(t), Ri(t) and Gi(t) are respectively the number of blue, red and green
particles at server i at time t, then it is easy to see that:

• B is distributed like Nn
ℓ,ρ,

• B +R is distributed like Nn
ℓ,0,

• R+G is distributed like N0
ρ,0 and ‖B+G‖ = Nρ is independent of B +R.

This proves the coupling with Z(t) = G(t). The process Nn
ℓ,0 can be seen as the

superposition of the initial particles with the particles arriving at rate ‖ℓ‖, hence
the additional coupling Nn

ℓ,0 = Nn
0,0 +N0

ℓ,0 holds, and finally, Nn
ℓ,ρ can be written

Nn
ℓ,ρ(t) = Nn

0,0(t) +N0
ℓ,0(t)−N0

ρ,0(t) + Z(t), t ≥ 0,

with Nn
0,0 and ‖N0

ρ,0‖ independent, and Z(t) ≥ 0. Starting from (10), we now turn
our attention to proving the existence of constants K and t which satisfy (9). We
have, using the coupling’s notation, Pn(N(u) > 0) = P(Nn

λ,µ(u) > 0) and hence,
for any 0 ≤ u ≤ t and n ∈ N

m,

Pn(N(u) > 0) = P(Nn
0,0(u) +N0

λ,0(u) + Z(u) > N0
µ,0(u))

≥ P(Nn
0,0(u) > ‖N0

µ,0(u)‖).

Since the processNn
0,0 is independent of the random variable ‖N0

µ,0(t)‖, we can work
conditionally on the value of ‖Nn

µ,0(t)‖ and study the quantity P(Nn
0,0(u) > M).

Thus we only need to consider the closed processNn
0,0 henceforth, and so we simplify

the notation and note Nn
0,0 = Nn. Markov’s inequality gives

P(∃i ∈ {1, . . . ,m} : Nn
i (u) ≤ M) = 1− P(Nn(u) > M)

≤
m
∑

i=1

P(Nn
i (u) ≤ M) ≤ eM

m
∑

i=1

E

(

e−Nn
i (u)

)

.

For any i ∈ {1, . . . ,m},

E

(

e−Nn
i (u)

)

=

m
∏

j=1

[

Ej

(

e−1{ξ(u)=i}
)]nj

where ξ under Pj is a continuous-time Markov chain with transition rates Q = (qij),
and which starts at ξ(0) = j. If p(j, i, u) = Pj(ξ(u) = i), one gets for u ≥ t0 > 0
and n ∈ N

m with ‖n‖ ≥ K

E

(

e−Nn
i (u)

)

= e
∑

m
j=1 nj log(1−(1−1/e)p(j,i,u))

≤ e−‖n‖(1−1/e)p(t0) ≤ e−K(1−1/e)p(t0)

with p(t0) = infu≥t0 min1≤i,j≤m p(j, i, u). Note that since, for any 1 ≤ i, j ≤ m,
p(j, i, u) > 0 for any u > 0 and p(j, i, u) → πi > 0 as u → +∞, one has that
p(t0) > 0. Therefore, for u ≥ t0 and n with ‖n‖ ≤ K, integrating on the law of
‖N0

µ,0(t)‖ gives

P(Nn(u) > ‖N0
µ,0(t)‖) ≥ 1− ε(t,K, t0)
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with ε(t,K, t0) = me‖µ‖t(e−1)−K(1−1/e)p(t0). In particular, for t ≥ t0,

sup
n∈Nm:‖n‖≥K

En (‖N(t)‖ − ‖n‖) ≤ ‖λ‖t− ‖µ‖(t− t0)(1− ε(t,K, t0)).

Since by assumption ‖λ‖ < ‖µ‖, it is not difficult to choose constants t, t0 and
K such that the right hand side is strictly negative (for instance, t = 1, t0 small
enough and K large enough), which gives the result.

4.1.2. Proof of Theorem 4.2. Intuitively, it is clear that the load-dependent RLS
strategy performs better than the load-oblivious RLO policy, since it seems harder
under RLS to see an empty server. This simple observation shows that the number
of empty servers should be part of a Lyapunov function, and indeed this leads us
to define the function f : Nm → R+ by:

∀n, f(n) =

m
∑

i=1

max(ǫ, ni) = ‖n‖+ εk0(n)

with k0(n) = 1{n1=0} + · · · + 1{nm=0} the number of empty servers in state n. In
order for f to be a Lyapunov function, the constant 0 < ǫ < 1 has to satisfy

ǫ×
∑

i

µi <
∑

i

(µi − λi)− γ

for some γ > 0.
Let K0(n) (resp. K1(n)) be the set of servers that are empty (resp. have a single

client). Denote by k0(n) and k1(n) the respective cardinalities of these sets. Let us
compute the average drift ∆f(n) of the Markov process N(t) under RLS strategy.
We have:

∆f(n) =
∑

i

λi −
∑

i/∈K0(n)

µi + ǫ

(

∑

i∈K1(n)

µi −
∑

i∈K0(n)

λi − Y (n)

)

,

where Y (n) is the rate in state n at which empty servers are fed by migrating
clients.

• If k0(n) = 0, there is no empty servers in state n and in particular Y (n) = 0.
We have:

∆f(n) =
∑

i

(λi − µi) + ǫ
∑

i∈K1(n)

µi < −γ,

because of our choice of ǫ.
• If k0(n) > 0, there is at least one empty server in state n. Define p(n) =
maxi ni. Considering migrations of the p(n) clients from (one of) the
server(s) with maximum size to one of the empty servers, we obtain: Y (n) ≥
β×p(n)

m , which ensures that ∆f(n) < −γ when p(n) is large enough, say
greater than K.

We conclude the proof by considering the drift outside the set F = {n : f(n) <
m(K+ǫ)}. First remark that F is finite. Then, when n /∈ F , p(n) ≥ K. We deduce
that for all n /∈ F : ∆f(n) < −γ. The positive recurrence follows.
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4.2. Approximate performance estimates. The system behavior in stationary
regime under RLO and RLS strategies is extremely difficult to analyze. For exam-
ple, (N(t), t ≥ 0) is unfortunately not reversible under these strategies. To obtain
estimates of the steady state distribution and client sojourn times, we use large-
system asymptotics, i.e., we let m grow large. Recently, large-system asymptotics
have been successfully applied in many context in communication systems. They
have been used for example to understand load balancing issues such as those aris-
ing in the supermarket model [13, 17]. In the rest of the section, we denote by
N (m)(t) the vector representing the numbers of clients at time t at each server in a
system with m servers under either RLO or RLS algorithm.

In what follows, we consider homogeneous systems where λi = λ and µi = 1 for
all i. This restriction simplifies the notation and results, but is not essential. We
discuss at the end of this subsection how to deal with heterogenous systems. We
also assume that the number of clients associated to a given server is bounded by
a (possibly very large) constant B. Again this assumption is not crucial, and can
be relaxed at the expense of a more involved analysis.

4.2.1. RLO algorithm. We first consider RLO algorithms. We assume that a client
jumps from one server to another at the instants of a Poisson process of intensity
β, and that the next server is chosen uniformly at random. The analysis can be
extended to any random walk (see §4.2.3). We represent the system state at time

t by X
(m)
k (t) the proportion of servers with exactly k clients at time t. We also

define S
(m)
k (t) =

∑

l≥k X
(m)
l (t).

Let us compute the average change in the system state in a small interval of

time of duration dt, and more specifically the change in X
(m)
k . Arrivals occur at

rate λm: An arrival increases X
(m)
k if it occurs at servers with k − 1 clients, and

decreases X
(m)
k if it occurs at servers with k clients. Hence the change in X

(m)
k due

to exogenous arrivals is dtλ(X
(m)
k−1 −X

(m)
k ). Departures can be analyzed similarly.

Let us now compute the change due to client migrations. Clients migrating to

server with k − 1 (resp. k) clients increase (resp. decrease) X
(m)
k . In addition,

clients migrating from servers with k (resp. k+ 1) clients decrease (resp. increase)

X
(m)
k . The average change in X

(m)
k due to client migrations is thus: dtβ((X

(m)
k−1 −

X
(m)
k )

∑

j jX
(m)
j −kX

(m)
k +(k+1)X

(m)
k+1). In summary, the average change in X

(m)
k

during dt is:

dt×

[

λ(X
(m)
k−1 −X

(m)
k )− (X

(m)
k −X

(m)
k+1)

+ β
[

(X
(m)
k−1 −X

(m)
k )

∑

j

jX
(m)
j − kX

(m)
k + (k + 1)X

(m)
k+1

]

]

.

There is no explicit dependence in m, and hence we expect the dynamics of X
(m)
k (t)

to be close to those of a deterministic solution xk of the following sets of differential
equations: for all k ∈ {0, . . . , B},

(11) ẋk = λ(xk−1−xk)−(xk−xk+1)+β
[

(xk−1−xk)
∑

j

jxj−kxk+(k+1)xk+1

]

,
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with the convention that x−1 = 0 = xB+1. We may write similar differential

equations for the evolution of S
(m)
k . We obtain: for all k = 0, . . . , B,

(12) ṡk = (λ+ β
∑

j≥1

sj)(sk−1 − sk)− (1 + βk)(sk − sk+1),

with the convention that s−1 = 0 = sB+1. Next we formally justify the above
analysis and show that (11) gives an estimate of system behavior that becomes
exact when m → ∞.

Transient regime. The next theorem states that the approximation is exact over
finite time-horizons, and is a direct application of Kurtz’s theorem, see Chapter 11
in [9].

Theorem 4.3. Assume that limm→∞ X(m)(0) = x(0) almost surely. Fix t > 0.
We have: almost surely,

(13) lim
m→∞

sup
u≤t

‖X(m)(u)− x(u)‖ = 0,

where x(·) is the unique solution of (11) with initial condition x(0).

Proof. First, one can easily represent the family of processes (X(m)(t), t ≥ 0) as
a family of density dependent population processes as for example defined in [9].
Then, define F : RB+3 → R

B+3 by: for all x ∈ R
B+3, F−1(x) = 0 = FB+1(x) and,

for all k = 0, . . . , B,

Fk(x) = xk−1(λ+ β
∑

j

jxj)− xk(λ+ βk + 1) + xk+1.

Now (11) writes ẋ = F (x). F is Lipschitz on T = {x ∈ R
B+3
+ : x−1 = 0 =

xB+1,
∑B

k=0 xk = 1}. As a consequence, the conditions of the theorem stated in [9]
p 456 are met, and we deduce the expected result. ✷

Stationary regime. The above theorem holds for finite time-horizons only. It
does not say anything about the long-term behavior of the system and in particular
for example about the average stationary client sojourn time. To circumvent this
difficulty we may use the advanced framework formalized by Sznitman [22] and
further developed in [13], and more recently in [6]. Due to space limitations, we skip
all details. We invite the reader either to verify that results in [6] apply here or to
follow step by step the arguments in [13] to prove the convergence of the steady-state
behavior of finite systems towards the equilibrium point of dynamical system (11)

whenm → ∞. More precisely, denote byX
(m)
eq the stationary empirical distribution

of the system with m servers (such distribution exists because (N (m)(t), t ≥ 0) is a
irreducible finite-state Markov process, and thus positive recurrent).

Theorem 4.4. Assume that from any initial condition in T , the solution of (11)

converges to a unique equilibrium point ξ. Then X
(m)
eq converges to ξ when m → ∞.

From the previous theorem, we know that in a system of m servers, the pro-
portion of servers handling k clients in the stationary regime gets close to ξk as m
grows large. We may also approximate the average number of clients in the system
by
∑

k≥1 kξk and deduce an estimate of the average sojourn time using Little’s for-

mula. It remains to show that the system of differential equations (11) converges
to a unique equilibrium point ξ, and to characterize ξ.
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Let ξ be a fixed point of (11), then we easily see that: for all i = 1, . . . , B,

ξi = ξ0 ×
(λ+ βy)i

∏i
j=1(1 + βj)

,

where y =
∑

j jξj . ξ0 is obtained so that ξ is a probability measure. Finally, y
must solve:

(14) y ×

[

1 +

B
∑

i=1

(λ+ βy)i
∏i

j=1(1 + βj)

]

=

B
∑

i=1

i
(λ+ βy)i

∏i
j=1(1 + βj)

.

One can check that if λ < 1, (14) indeed has a unique positive solution y: if
z = λ+ βy, z must solve g(z) = 0 with:

g(z) = (z − λ)[1 +

B
∑

i=1

zi
∏i

j=1(1 + βj)
]−

B
∑

i=1

i
zi

∏i
j=1(1 + βj)

.

The result follows from g(λ) < 0 and g′(z) ≥ 0 for all z ≥ 0. In summary the
unique equilibrium point of (11) is ξ.

Theorem 4.5. From any initial condition x(0) ∈ T , if λ < µ, the system of
differential equations (11) converges to the unique equilibrium point ξ.

Proof. The system enjoys the following important monotonicity property. Consider
two initial conditions x(0) and x′(0) such that1 x(0) ≤st x′(0), then if x and x′

are the solutions of (11) with respective initial conditions x(0) and x′(0), we have
at any time t ≥ 0, x(t) ≤st x

′(t). The proof of this property is based on a prob-
abilistic interpretation of the dynamical system (11) as the Kolmogorov equations
of a collection of birth-death processes of birth rate λ + β

∑

j jxj and death rates

(1 + βk) in state k. The idea is that for any s ≥ 0, x(s) ≤st x′(s) implies that
∑

j jxj(s) ≤
∑

j jx
′
j(s), so the birth rate at time s for x is smaller than that for

x′, and by a standard coupling argument, we deduce that just after time s, we still
have x(s+) ≤st x′(s+). We may further deduce that this ordering remains valid
over time.

Denote by xE (resp. xF ) the solution of (11) when the system is initially empty
xE(0) = (1, 0, . . . , 0) (resp. full xF (0) = (0, . . . , 0, 1)). A direct consequence of the
above monotonicity property is that xE(t) (resp. xF (t)) is stochastically increasing
(resp. decreasing) over time. For example, for all h, t ≥ 0, xE(t + h) ≥st xE(t).
This implies that both xE(t) and xF (t) converge to ξ when t → ∞ (since the
equilibrium point is unique). We deduce that such convergence also holds start-
ing from any initial condition x(0), since again due to the monotonicity property
xE(t) ≤st x(t) ≤st x

F (t) for all t. ✷

4.2.2. RLS algorithm. The large-system approximation method developed above
applies to RLS algorithms. We can similarly derive a deterministic approximation
for the evolution of the system empirical measure X(m). When m → ∞, this

1≤st denotes the usual strong stochastic order, i.e., if x, y are probability measures on

{0, . . . ,m}, x ≤st y iff for all j,
∑j

i=0
xi ≥

∑j

i=0
yi.
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evolution is characterized by: for all k = 0, . . . , B,

(15) ẋk = λ(xk−1 − xk)− (xk − xk+1)+

β



xk−1

∑

j≥k+1

jxj − xk

∑

j≥k+2

jxj − kxk

∑

j≤k−2

xj + (k + 1)xk+1

∑

j≤k−1

xj



 ,

with by convention x−2 = x−1 = xB+1 = xB+2 = 0. Analyzing the dynamical
system (15) is not straightforward and deserves a full study, which we skip here
due to space limitations. In all numerical experiments presented below, we verified
the convergence of (15) to a unique equilibrium point.

4.2.3. Extension to heterogenous systems and arbitrary random walks (for RLO
algorithm). The above asymptotic analysis has been simplified by considering ho-
mogenous systems and uniform random walks (for RLO) only. However, in the case
of RLS algorithm, it can be easily extended to the case of heterogenous systems,
where the arrival rates and server speeds are not identical. To do so, we may classify
server according to their arrival rate and speed - servers of the same class have same
arrival rate and speed. Then, we can derive a set of differential equations, similar
to (11) or (15), approximating the evolution of the proportion of servers of a given
class and handling a given number of clients. We obtain a dynamical system whose
variables xv,k represent the proportion of servers of class v having k clients. In
the case of RLO algorithm, the analysis may also be extended to arbitrary random
walks; it suffices to include into the server class the rates at which clients jump
towards other servers. For example, servers of class v have the same arrival rate
and speed, and the rate at which a client at one of class-v servers jumps to a server
of class v′ depends on v and v′ only. In [6], the authors present such multi-class
asymptotic analysis in details.

4.3. Numerical experiments. We now illustrate the results derived in this sec-
tion via simple numerical experiments. To evaluate the relative performance of
RLO and RLS algorithms, we consider first an homogenous system (for all i, λi = λ,
µi = 1), and then an extreme heterogenous system where all clients arrive at the
same server (λ1 = mλ, and for all i ≥ 2, λi = 0). The system performance is
expressed in terms of the average client throughput, defined as the inverse of the
average sojourn time.

Figure 1 gives the average client throughput as a function of λ in homogenous
systems. We compare the results obtained through the large-system asymptotics
m = ∞ and those obtained for m = 10 servers. Note that the asymptotics results
are pretty accurate even for small systems. Actually at a load of 0.8, the relative
error made in our approximations of the average throughput under RLO and RLS
algorithms is less than 4% when m = 5, and becomes less than 0.5% for m = 20.
Note that RLO and RLS are both stable if and only if λ < 1. Surprisingly the
performance improvement achieved by the load-dependent RLS algorithm over that
obtained under the load-oblivious RLO algorithm is not that significant, typically
less than 20%.

Figure 2 provides the performance in heterogenous systems with m = 5 and
m = 10. We provide simulation results only, although, as explained above, we
could have obtained analytic asymptotic results. Again as expected, even if all
clients arrive at the same server, RLS and RLO stabilize the system whenever
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Figure 1. Mean throughput under RLS and RLO in homogenous
systems as a function of the load λ. β = 0.5.

possible (when λ < 1). The difference between the throughput achieved by RLS
and RLO is quite small irrespective of the number of servers considered. Hence
it seems that implementing a load-dependent resampling and migration algorithm
may not significantly improve the performance.

5. Related work

There have been many studies on distributed, selfish load balancing algorithms
and routing games in closed systems, see e.g. [16] and references therein. Refer
to [18] for a quite exhaustive survey. Much of the work in this area has concentrated
on finding the fastest sequence of moves that would balance the system, also called
Nashification [11]. One class of algorithms is the elementary step system, first
described in [19] in which a sequence of best response moves are performed by the
clients. Of course this requires that the clients know the status of all the other
servers. In [4, 5] the authors study closed systems with limited information about
the servers’ status. They consider a synchronous system where at each step, each
server samples a new server randomly and if the load of the sampled server is
smaller, then a client moves with probability (Nc − Nn)/Nc, where Nc is the load
on the current server and Nn is the load of the sampled server. It is shown that
the expected time to balance the system is O(log logm + n4). A modification of
this load balancing algorithm is studied in [5], and it is shown that the expected
time to balance the system is O(logm + n logn). In [12], the author considers
clients dynamics identical to those considered in this paper and uses the potential
function introduced in [10] to quantify the time to achieve system balance. It is
shown that the expected time to reach a balance scales at most as O(m2). We
provide significant improvements on this bound.
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Figure 2. Mean throughput under RLS and RLO in heterogenous
systems as a function of the load λ. β = 0.5.

In open systems, the client moves interact in a complicated manner with the
client arrival and departure processes. There is very little work trying to under-
stand this interaction. None of the existing work deals with a system similar to
that studied here. For instance, [2] analyzes the interaction in a game-theoretical
framework, where arrivals are adverserial, and where a central controller moves
clients with the aim of stabilizing the system. The performance of the classical
work stealing load-balancing scheme has also been studied, see e.g. [3] and refer-
ences therein. Of course there is an abundant literature on the performance of
classical load-balancing schemes in open systems where clients are assigned to a
given server for the entire duration of their service, see e.g. the analysis of the
supermarket model in [13, 17]. To our knowledge, the present paper provides the
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first analysis of natural distributed resampling and migration strategies in open
systems.

6. Conclusion

In this paper, we have analyzed the performance of distributed load balanc-
ing schemes where clients independently decide to resample and change server to
improve their service rate. We considered two natural random resampling and mi-
gration strategies: A load oblivious strategy RLO where clients randomly move
from one server to another without accounting for the actual server loads, and a
load-dependent selfish strategy RLS where clients randomly resample servers and
migrate only if their rate is improved.

In closed systems where the population of clients is fixed, we have provided a
new tight bound on the time to balance server loads under RLS strategy. This time
can be interpreted as the time to reach a Nash Equilibrium in this selfish routing
game. Our bound considerably improves the bounds available in the literature.
But it holds only in the case of homogenous systems where servers have identical
service rates. It seems challenging and interesting to figure out how to apply our
methodology to obtain bounds on the time to balance the system in the case of
heterogenous systems. It might also be interesting to investigate the time it takes
to balance the system in scenarios where client migrations are limited, in the sense
that from a given server, clients can migrate to a restricted subset of servers (as for
example specified via a graph).

In open systems where clients arrive at the various servers at different rates, we
provided a first analysis of the system dynamics. These dynamics are complicated
as the client arrival and departure processes interact with the client migration
processes. We have shown that both RLO and RLS load balancing strategies are
able to stabilize the system whenever this is at all possible. It may appear somehow
surprising that a completely distributed and load-oblivious algorithm such as RLO
can achieve maximum stability. Using large-system asymptotics, we also provided
approximate estimates of the mean client sojourn time. The results show that again,
surprisingly, the load-oblivious RLO strategy does not yield significant performance
losses compared to the load-dependent RLS strategy. These findings are valid for
exponential service requirements, and it would be interesting to know whether they
remain valid for other service requirement statistics.

An interesting extension of the present work (especially relevant when consider-
ing spectrum sharing issues) is to analyze the case where clients may use resources
from several servers simultaneously. There are some preliminary results in this di-
rection in [15], but neither the time to reach equilibrium or the population dynamics
are studied.
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