
Distributed User Profiling via Spectral Methods

Dan-Cristian Tomozei
EPFL, Switzerland

dan-cristian.tomozei@epfl.ch

Laurent Massoulié
INRIA, France

laurent.massoulie@inria.fr

Abstract

User profiling is a useful primitive for constructing personalised services, such as content recom-
mendation. In the present paper we investigate the feasibility of user profiling in a distributed setting,
with no central authority and only local information exchanges between users. We compute a profile
vector for each user (i.e., a low-dimensional vector that characterises her taste) via spectral transforma-
tion of observed user-produced ratings for items. Our two main contributions follow:

i) We consider a low-rank probabilistic model of user taste. More specifically, we consider that
users and items are partitioned in a constant number of classes, such that users and items within
the same class are statistically identical. We prove that without prior knowledge of the compo-
sitions of the classes, based solely on few random observed ratings (namely O(N logN) such
ratings for N users), we can predict user preference with high probability for unrated items by
running a local vote among users with similar profile vectors. In addition, we provide empiri-
cal evaluations characterising the way in which spectral profiling performance depends on the
dimension of the profile space. Such evaluations are performed on a data set of real user ratings
provided by Netflix.

ii) We develop distributed algorithms which provably achieve an embedding of users into a low-
dimensional space, based on spectral transformation. These involve simple message passing
among users, and provably converge to the desired embedding. Our method essentially relies on
a novel combination of gossiping and the algorithm proposed by Oja and Karhunen.

Keywords Spectral Decomposition Random Matrix, Message Passing, Distributed Spectral Embed-
ding, Distributed Recommendation System

ar
X

iv
:1

10
9.

33
18

v2
 [

cs
.L

G
]

 2
2

A
pr

 2
01

3

1 Introduction
Recommendation systems have attracted much interest lately, mostly because of their relevance to core
businesses of several major companies (e.g. Amazon, Netflix, Yahoo) who offer large catalogues of prod-
ucts to a vast user base. While the advertisement of highly popular items is straightforward, a significant
portion of business stems from sales of only mildly popular items. The latter cannot be advertised in-
discriminately, and must be recommended to the “right” users, through targeted recommendations. Such
companies dispose of large storage and computational resources which enable a centralised computation
of recommendations.

In this paper we take a different perspective on the problem of recommendation. Namely, we aim to
develop strategies suited to distributed operation, where the burden of recommendation is not offloaded
to the server, but is rather shared among the users. More specifically, we propose the following two-stage
approach for generating recommendations:

• In the first stage, distributed algorithms assign coordinates (or profiles) to the users within a certain
profile space, such that proximity in this space translates to proximity of user taste for content. We
say that such algorithms perform user profiling.

• In the second stage, recommendations are obtained via simple and distributed algorithms which
rely on the primitive of user profiling. We thereby avoid the need for complex machine learning
techniques.

The performance of such an approach will depend heavily on the properties of the considered embedding
of users in the profile space. For this reason, the focus in this paper is on the first stage of the process,
i.e., user profiling. Namely, we argue that spectral profiling techniques retrieve hidden structure.

The techniques employed in a centralised setting for generating content recommendation are widely
known under the generic name of “collaborative filtering”. They are typically implemented by a provider
who wishes to offer a recommendation service to a large customer base. In such a setting, the information
requested from the customers (or users) is typically related both to their identity (via the registration
procedure) and to their taste (via the opinions they express regarding the items).

It is not clear to which extent identity information characterises user taste. Moreover, the nature of
such information gives rise to privacy concerns. On the contrary, the opinions that users express about
items constitute the truly relevant data for solving the problem. For this reason, we advocate a purely
agnostic approach to recommending content, which does not use information about the real identity of
users, or the nature of content.

Opinions are expressed in the form of ratings assigned by a user to the items she has already pur-
chased. Ratings characterise the satisfaction of a user with respect to a specific item. They are discrete
and range from a lowest to a highest value (e.g., number of stars). In particular, the mere fact that a user
has consumed or not a specific item can be regarded as a binary rating. In this paper we consider the
latter form of rating.

Since the number of items on offer from the provider is overwhelmingly large, the vast majority of
users only consume a small fraction of items. Hence, for a typical user, only a small number of ratings
are known. In the case of binary ratings, if an item has not been consumed it does not necessarily follow
that the user dislikes it. It is possible that the user is simply unaware of the item’s existence. Hence, in
this case we cannot distinguish between missing ratings and disliked items.

A recent illustration of the possible machine learning techniques and of the corresponding perfor-
mance comes from the Netflix prize competition [17]. The goal of the competition was to design an
algorithm that, when trained on a data set made publicly available by Netflix, would manage to improve
prediction accuracy by 10% (measured via Root Mean Squared Error) compared to the proprietary Cine-
match algorithm. The designers of such an algorithm [13] were awarded a prize of $1M three years after

2

the start of the competition. It is important to note that the last two years of the three were spent trying to
improve the gain in prediction from 8.42% to 10.04%.

The strenuous advancement of the Netflix prize suggests the existence of an important obstacle in the
way of achieving high prediction accuracy. A possible explanation is given in the study conducted by
Amatriain et al. [1], which showed that when presented with a movie title several times, users provide
inconsistent ratings. Hence, there exists an implicit noise in any collection of ratings due to the fact that
human taste is variable and not easily quantified. The authors [1] used the RMSE to characterise the
distance between two sets of ratings assigned by the same users to the same movies. They found RMSE
values between 0.55 and 0.63. It is arguable whether these specific values can be compared to the target
RMSE value 0.8563 of Netflix (the considered movies in the conducted study [1] are indeed a subset of
the ones in the Netflix data set, but their number is significantly smaller, the user base is different and
also much smaller, etc.). However what they suggest is that there exists a RMSE threshold (of the order
of the Netflix target RMSE) that cannot be overcome by any recommendation algorithm, seeing as users
themselves do not necessarily provide consistent ratings. Since user preference has a significant random
component, parameters of a probabilistic model are the best suited to characterize user taste. Throughout
this paper we make the following

Assumption 1. The taste of each user is characterised by a certain probability distribution defined on the
set of all possible ratings for the set of items (which includes the possibility that an item is “not rated”).
A user’s observed ratings are obtained by sampling her corresponding multi-dimensional distribution.

We now restrict ourselves to the binary rating model, where we do not distingush between an item
that was not rated and a “disliked” item (i.e., 0-rated items). We describe a natural way of representing
the observed purchases. Denote the set of users by U and the set of items by F . Consider a rectangular
matrix S ∈ {0, 1}|U|×|F| which we call the rating matrix (in the literature it is also referred to as the
“term-document” matrix). Each row corresponds to a user and each column corresponds to an item. An
entry Sui corresponds to the user-item pair (u, i) ∈ U × F . The entry holds 1 if user u has purchased
item i, and 0 otherwise. As previously stated, most of the zero entries in the rating matrix correspond to
cases in which a user has not considered purchasing a specific item.

By Assumption 1, each row of the rating matrix is a realisation of a {0, 1} random |F|-dimensional
vector. Relying only on matrix S, we need to assign profiles to the users, such that users with similar
taste have similar profiles.

The instances of the problem we consider are extremely large, it is not uncommon to have a user base
U of the order of millions and a catalogue of items F of the order of tens of thousands. In the case of
binary ratings, simply representing the probability distribution in Assumption 1 for a single user requires
an exponential amount of memory 2|F|. We are thus constrained to consider very simple approximations
of such probability laws, for the sake of computational tractability.

Like most proposed models of user taste found in the literature (e.g., [11]), we consider a low-rank
model of user taste. We stress that our model is probabilistic, as opposed to the deterministic one of [11].
More specifically, we make the following

Assumption 2. Each entry Sui of the rating matrix is given by an independent Bernoulli random variable
of parameter S̄ui. The matrix S̄ = (S̄ui) has rank K, where K � |U| and K � |F|.

In Section 3 we propose a user profiling technique based on the Singular Value Decomposition of ma-
trix S. For a probabilistic model of user taste satisfying Assumption 2, and under further weak statistical
assumptions, we prove that a simple voting scheme among users with similar profiles manages to produce
accurate recommendations for most of the items with high probability. Furthermore, we use actual movie
ratings to compute the profiles of anonymous users of the Netflix system. We find that users with similar
profiles have indeed similar taste in movies.

3

Motivated by the ability to recover hidden structure of the spectral techniques, in the second part
of this paper (Section 4), we design a distributed algorithm that computes individual spectral profiles
based on local exchanges among users. We prove almost sure convergence of the algorithm and provide
evaluations on a synthetic trace. We conclude in Section 5.

2 Related Work
Keshavan et al. [11] consider the problem of low rank matrix completion. They show that for a constant
rank r = O(1) “well-behaved” matrix, it is sufficient to have Ω(N logN) revealed entries in order to be
able to achieve exact matrix reconstruction. For a square matrix, this corresponds to an average degree
of Ω(logN), just as in our result. The drawback to a direct application of this result to the user taste
prediction problem is the fact that the sought matrix is deterministic. Implicitly, it would mean that user
ratings are deterministic, and that rating matrices are low rank. In contrast, the models we consider are
probabilistic.

In Section 3 we consider a low-rank probabilistic model of user taste. Users are partitioned into
classes, such that users within the same class are statistically identical. We show (Theorems 1 and 2)
that the profile vectors corresponding to each user computed via spectral methods are clustered around
distinct points corresponding to the classes. In this respect, our results are related to spectral clustering.
There is a vast literature on the topic of spectral clustering, of which we now give a brief overview.

Among the most relevant work, Ng et al. [18] propose a clustering algorithm based on spectral decom-
position. Our results provide a comprehensive analysis by giving conditions under which the underlying
partition into classes is retrieved exactly.

In [6], Dasgupta et al. propose an algorithm based on iterative splitting of groups into two subgroups.
In contrast, we obtain the desired groups in one go. In [15], McSherry proposes a different clustering
method based on projections onto the column space of the original matrix. In both [6] and [15], the
probabilistic model of the observed similarity matrix is akin to ours (which extends the classical “planted
partition” model). However, our model is less expressive in the sense that we do not consider “mixtures”
of the distributions that characterise classes of users, and moreover in our case each user class accounts
for a constant fraction of the total number of users. That said, the required separability conditions are
similar, and we establish our results under far less stringent conditions on the average degree of the
observed matrix. Namely, we require an average degree of order Ω(log(N)) while they require an order
of Ω(log(N)6).

The recent paper [20] by Shi et al. discusses rationales for choosing which eigenvectors to use when
performing spectral clustering. This issue is to a large extent complementary to the ones we address in
this paper. We could rely on [20] to specify which eigenvectors to keep in our profiling context.

In Section 3.2 we extend the previous results in the more general setting of content recommendation,
where a sparse so-called rating matrix (or “term-document” matrix) is available. The literature in this
field is extensive, for brevity we mention only a few significant works: [4, 7, 14].

In Section 4.1 we propose a method for computing the eigenvectors of the adjacency matrix of a graph
in a distributed manner. A variant of the method was briefly described in [22]. Eigenvector extraction is
the object of Oja’s algorithm [19]. This basic algorithm was refined by Borkar and Meyn [2]. None of
these approaches is distributed however. Our contribution in Section 4.1 consists precisely in augmenting
these methods to make them distributed.

A significant contribution towards computing the top k eigenvectors of a symmetric weighted adja-
cency matrix in a distributed fashion was brought by Kempe and McSherry [10]. The setting is similar to
the one we consider in Section 4.1. The authors give bounds on the required running time of their algo-
rithm. Due to the fact that we explicitly introduce noise in our iterations, obtaining such bounds is more
difficult in our case. Both our algorithm and the distributed gossiping algorithm in [10] perform iterations

4

to converge to the desired eigenvectors. In the latter, at each iteration all participating nodes first perform
a coordinate-update step followed by an orthonormalisation step (that lasts for a determined number of
rounds ensuring a bounded error). By explicitly separating the two steps in each iteration, synchronised
time becomes a necessary assumption. In contrast, our approach facilitates an asynchronous implemen-
tation, since the coordinate-update and the orthonormalisation steps are performed simultaneously with
different gains (and thus on different time scales). Furthermore, the algorithm we propose in Section 4.1
uses few elementary computations at each node, whereas in [10] at every iteration each node needs to
perform a Cholesky factorisation.

A similar approach to the one presented in this paper has been taken in a recent publication [12]. The
authors aim to determine the eigenvectors of a deterministic matrix based on random sparse observations.
They derive useful bounds on convergence time. However, the gossiping stage in their proposed algorithm
is treated as a “black box”. We explicitly construct an algorithm that incorporates two stages: gossiping,
performed on a faster time scale, and Oja’s method, performed on a slower time scale. Moreover, we
explicitly determine multiple eigenvectors, whereas the authors of [12] focus on determining a single
eigenvector, and argue that the extension can be achieved. Finally, we propose an asynchronous algorithm.
We show on synthetic data that the latter determines the desired eigenvectors.

3 Spectral Recovery of Probabilistic Taste
We begin by analysing a simple setting in which the observations consist of measures of similarity be-
tween users. We prove that a profiling technique based on the spectral decomposition of the square matrix
regrouping the observed similarities between pairs of users successfully recovers hidden structure.

We apply these findings to the case in which ratings of items by users are observed. We show that a
simple distributed voting algorithm provides asymptotically accurate predictions for most items.

Finally, we observe the benefits of spectral profiling on a real trace.
We make use of notations described in Table 1. Unless otherwise indicated, all vectors are column

vectors.

A′ The transposition of matrix A
x′ The transposition of column vector x
e The all-ones column vector

diag(α) The K × K diagonal matrix having the elements on the main
diagonal given by the K-dimensional vector α

‖y‖α The α-norm of vector y, where (0 < αk < 1)Kk=1 and y are
column vectors with the same dimension, ‖y‖α :=

√∑
k αky

2
k

y(k), yk The k-th element of column vector y

Table 1: General notations

3.1 Similarity-based Profiling
Denote by N = |U| the number of users. Let us consider in this first stage that we are given partial
observations of user taste similarity in the form of a symmetric matrix

A ∈ {0, 1}N×N .

Namely, for any two users u, v the elementsAuv = Avu take value 1 if users u and v have been evaluated
as similar, and value 0 if the users are deemed dissimilar, or if the similarity between the two users has
not been evaluated. By convention Auu = 0.

5

We propose the following spectral representation of users based on these partial similarity observa-
tions. For some fixed dimension L, extract the normalised eigenvectors x1, . . . , xL corresponding to the
L largest magnitude eigenvalues of matrix A. We define the profile space as RL. In the profile space, to
each user u there corresponds a scaled row vector

√
Nz′u, where

z′u = (x1(u), . . . , xL(u)).

We refer to this vector as the profile of user u. The scaling factor
√
N is introduced to compensate for

the fact that the eigenvectors of the N ×N matrix A are taken of norm 1. In what follows, we propose a
simple probabilistic user taste model for which this spectral representation of users enables us to retrieve
hidden structure.

3.1.1 Statistical Model

We assume the following probabilistic model of user taste: The N users are partitioned into K classes
C1, . . . , CK , such that users within the same class are statistically identical. We denote the size of class
Ck, 1 ≤ k ≤ K, by |Ck| = αkN , for fixed αk > 0, which are such that

∑
k αk = 1. For any user u ∈ U

we denote by k(u) her unique corresponding class.
Each pair of classes 1 ≤ k, ` ≤ K is characterised by probabilities bk` = b`k as follows. User u ∈ Ck

and user v ∈ C` are similar with probability bk` and dissimilar with probability 1− bk`. Moreover, for all
pairs of users, their similarity is observed with probability p = ω

N , where ω is a parameter of the model.
The similarity of unobserved pairs of users is set to 0 by default.

Equivalently, for all ordered pairs of users u < v, the observed similarities Auv = Avu are the
outcome of independent Bernoulli random variables of parameters pbk(u)k(v). As previously stated, the
diagonal elements are all null, Auu = 0.

Given the observed similarity matrix A, without knowledge of the K × K profile similarity matrix
B = (bk`)k,`, we wish to recover the partition of users in the unknown classes Ck using their spectral
representation. Below we provide sufficient scaling assumptions for which such recovery is possible.

In Table 2 we summarise the notations we have introduced so far:

u, v Indices referring to users
k, ` User profile indices
k(u) Index of the profile containing user u : u ∈ Ck(u)

{Ck}Kk=1 Partition of users into K unknown disjoint profiles
α Vector grouping fractions of users per profile: |Ck| = αkN
B Constant unknown K ×K matrix of probabilities

p = ω
N Probing probability

L Dimension of profile space

Table 2: Notations and conventions

3.1.2 Scaling Assumptions

Let us describe the dependence of the various parameters of the model on the number of users.
We have made the Assumption 2, namely that our model is low-rank. Thus, we consider that the

number of classes K, as well as the fraction αk of users in each class, and the similarity probability
matrix B = (bk`)k,` are constant as the number of users in the system grows.

However, we assume that the probing probability p vanishes as the number of users grows. Namely,
ω goes to infinity slower than N ,

ω →N ∞, ω = o(N). (1)

6

Hence, each user probes on average a fraction p = ω
N → 0 of users with whom she evaluates taste

similarity. Equivalently, matrix A can be regarded as the adjacency matrix of a random graph on the set
of users having average degree of Θ(ω).

3.1.3 Hidden Structure Recovery

Theorem 1 below states that under mild conditions, for large N , the spectral representations
√
Nz′u of

users are clustered according to their respective classes Ck. Consider the vector

α := (αk)Kk=1.

The α-norm of aK-dimensional vector t is ‖t‖2α =
∑
k αkt

2
k (see Table 1). Define the following constant

matrix
M := (bk`α`)1≤k,`≤K .

Before stating the theorem, we introduce the following conditions:

The dimension of the profile space is upper bounded by L ≤ rank(M). (2a)
The L largest magnitude eigenvalues of M have distinct absolute values. (2b)
The corresponding eigenvectors normalised under the α-norm, y1, . . . , yL, satisfy:

t′k 6= t′`, 1 ≤ k 6= ` ≤ K,

where t′k := (y1(k), . . . , yL(k)). (2c)
ω ≥ C log(N), for some absolute constant C. (2d)

Theorem 1. Under assumptions (2), with probability 1− o(1), a fraction of 1− o(1) users u is such that
||
√
Nz′u− t′k(u)|| = o(1), where k(u) denotes the class of u. That is to say, most users have their (scaled)

profile vector close to a fixed vector characteristic of their class.

Each vector t′k corresponds to a class Ck. If two classes k, ` were such that tk = t` = t, the theorem
ensures that the profiles of users of both classes would be grouped around the constant vector t in the
profile space. Hence, it would be impossible to distinguish between the users of the two classes based
solely on their profile vectors. Condition (2c) ensures that

‖t′k − t′`‖ = Ω(1),

thus guaranteeing the ability to distinguish between distinct classes for a large enough number of users.
We prove that eigenvectors corresponding to non-zero eigenvalues of matrix A can be used to recover

the hidden classes. Condition (2a) ensures selection of a suitable dimension L. We impose the technical
condition (2b) for presentation ease.

Condition (2d) gives a lower bound of logN on order of the required average user neighbourhood
size ω. The theorem states that for ω growing at least as fast as logN , the initial partition in profiles Ck
can be recovered with high probability for almost all users.

Remark 1. Concerning condition (2d), it is plausible that an even lower requirement for ω (i.e. constant)
suffices. Such a case has been explored in the context of bounding the second eigenvalue of the adjacency
matrix of a sparse random graph to O(

√
ω), by removing high degree outlier nodes from the graph

(see [9, 5]).

7

Remark 2. Other flavours of matrices than the adjacency matrixA could be considered for spectral anal-
ysis (e.g. Laplacian matrix, normalised Laplacian matrix). We do not address either of these scenarios
in the present work.

We now give the main steps in the proof of Theorem 1. The auxiliary lemmas are proved in the
appendix. Consider the matrix

Ā := (pbk(u)k(v))u,v,

which, according to our model, is equal to the expectation EA of the partially observed similarity matrix
A. We can write A = Ā+Q, where Q := A− Ā.

The theorem relies on the fact that the block matrix Ā imposes the eigenvalues and eigenvectors of A,
while the perturbation matrix Q has little influence therein, as follows from the lemmas below:

Lemma 1. The top L largest magnitude eigenvalues of Ā have distinct absolute values and are order of
Θ(ω). The normalised eigenvectors (x̄`)

L
`=1 corresponding to these eigenvalues are constant on indices

corresponding to each user class. Specifically, using the y` defined in (2c), we can write

x̄`(u) =
y`(k(u))√

N
, ∀u ∈ U , 1 ≤ ` ≤ L. (3)

Use the following ordering of the eigenvalues of Ā and A:

|λ̄1| > |λ̄2| > ... > |λ̄L| (4)
|λ1| ≥ |λ2| ≥ ... ≥ |λL|.

We also denote by x̄k and xk the corresponding normalised eigenvectors.
To control the influence of the perturbation matrix Q we use the following

Lemma 2. Consider a square N × N symmetric 0-diagonal random matrix A such that its elements
Aij = Aji are independent Bernoulli random variables with parameters EAij = pij = aijωN

−1,
where the aij are constant and ω = Ω(logN). Then with high probability the spectral radius of the
matrix A− EA satisfies the upper bound ρ(A− EA) ≤ O(

√
ω).

We provide a proof of this lemma in Appendix B which relies on the work of Feige and Ofek [9].
Denote by D = diag(bk(u)k(u)

ω
N , 1 ≤ u ≤ N). By application of Lemma 2 to matrix A, we get

that the spectral radius of Q0 := A − EA is upper bounded by O(
√
ω) with high probability. Since

ρ(D) ≤ O(ωN), we have that the spectral radius of Q = Q0 −D is also upper bounded by O(
√
ω) with

high probability.
The previous two lemmas are instrumental in proving that Ā and A have the same spectral structure:

Lemma 3. Using the ordering (4) for the eigenvalues of Ā and A, it holds that for all 1 ≤ k ≤ K∣∣ |λk| − |λ̄k| ∣∣ ≤ O(
√
ω) whp, (5)

sin(x̂k, x̄k) ≤ O(ω−1/4) whp. (6)

We conclude by an averaging argument. Lemma 3 shows that with high probability we have ‖x` −
x̄`‖2 ≤ O(ω−1/2), for all 1 ≤ ` ≤ L. Condition (2c) guarantees that ‖t′k − t′l‖ = Ω(1).

The fraction of users that have their profile vectors at a distance larger than some constant a > 0 from
the vector tk corresponding to their class is

1

N

∣∣∣{u : ‖z′u − t′k(u)‖ ≥ a
}∣∣∣ ≤ 1

N

N∑
u=1

‖
√
Nz′u − t′k(u)‖

2

a2

(3)
=

L∑
`=1

‖x` − x̄`‖2

a2
= O(a−2ω−1/2).

Thus we will be able to conclude the result of the theorem if we can find an a such that a = o(1) and
a−2ω−1/2 = o(1). It is easy to see that for instance a = ω−1/6 satisfies these conditions. �

8

3.2 Application: Extension to Content Recommendation
Let us now consider the scenario exposed in Section 1. Denote again by N = |U| the number of users
and by F = |F| the number of items. Assume without loss of generality that N > F . We can write
F = γN , with 0 < γ < 1. We consider the rectangular observed rating matrix

S ∈ {0, 1}N×F ,

where Sui = 1 if user u has rated and liked item i and 0 otherwise. If an entry Sui is null, it is not
necessarily true that user u dislikes item i (the item might have simply not been rated).

We propose the following representation of users based on this collected information. For some
dimension L, extract the L normalised left singular vectors x1, . . . , xL of S, corresponding to its L
largest singular values. Like in the previous subsection, consider the L-dimensional profile space RL, in
which we associate a scaled row vector

√
Nz′u to user u, where

z′u = (x1(u), . . . , xL(u)).

The scaling by
√
N is again due to the fact that the singular vectors are normalised.

Recall that the Singular Value Decomposition (SVD) of a rectangular real matrix S = XΣY is always
well defined, where matrices X ∈ RN×F and Y ∈ RF×F are unitary and matrix Σ ∈ RF×F is positive
diagonal.

Again, we claim that users with similar taste will be mapped to close-by locations in the profile
space. More specifically, we show that local voting in the profile space provides users with accurate
recommendations for most of the items. In what follows, we give a probabilistic model of user taste and
scaling assumptions for which we prove these claims.

3.2.1 Statistical Model

We consider a probabilistic model of user taste similar to the one in Section 3.1.1. The N users are
partitioned into K disjoint classes C1, . . . , CK and the F items are partitioned into K ′ disjoint classes
D1, . . . , DK′ . Users and items in the same class are statistically identical. The size of user class Ck is
denoted by

|Ck| = αkN, 1 ≤ k ≤ K,
while the size of item class Dk′ is denoted by

|Dk′ | = βk′F, 1 ≤ k′ ≤ K ′.

The (αk)k and (βk′)k′ are strictly positive and sum to 1:∑
k

αk =
∑
k′

βk′ = 1, αk > 0, βk′ > 0.

For any user u ∈ U we denote by k(u) her unique corresponding user class, and for any item i ∈ F we
denote by k′(i) its unique corresponding item class.

Pairs of user and item classes (Ck, Dk′), 1 ≤ k ≤ K, 1 ≤ k′ ≤ K ′, are characterised by probabilities
rkk′ in the following way: Any user u ∈ Ck likes any item i ∈ Dk′ with probability rkk′ and dislikes
it with probability 1 − rkk′ . For all user-item pairs (u ∈ U , i ∈ F), u decides to rate i with probability
p = ω

N . Equivalently, any element Sui of the observed rating matrix S is obtained by drawing a Bernoulli
random variable of parameter p · rk(u)k′(i).

Given the observed rating matrix S, without knowledge of theK×K ′ affinity matrixR := (rkk′)k,k′ ,
we wish to recover the partition of users in the K classes Ck by making use of their spectral representa-
tion. We provide sufficient scaling conditions in what follows.

We summarise the notations in Table 3.

9

N Number of users
F = γN Number of items
k′(i) Index of the class containing item i : i ∈ Dk′(i)

{Ck}Kk=1 Partition of users into K disjoint classes
{Dk′}K

′

k′=1 Partition of items into K ′ disjoint classes
α Vector grouping fractions of users per class: |Ck| = αkN
β Vector grouping fractions of items per class: |Dk′ | = βk′F
R Constant unknown K ×K ′ affinity matrix

Table 3: Notations

3.2.2 Scaling Assumptions

We make again Assumption 2 and take the number of classes of users K and of items K ′ to be constant
withN . We assume that the fraction of users in each user class αk, the fraction of items in each item class
βk′ , the ratio between the number of items and the number of users γ = F

N , as well as the class affinity
matrix R = (rkk′)k,k′ are constant with respect to N . Thus, the class sizes, as well as the total number
of items grow linearly with N .

We assume that the rating probability p vanishes as the number of users N grows to infinity. Specifi-
cally, we again impose condition (1) on parameter ω. Note that the expected number of items rated by a
user is order of Θ(ω).

We now formulate an extension of Theorem 1 that we can apply in this setting.

3.2.3 Content Recommendation

Consider vectors
α = (αk)Kk=1, β = (βk′)

K′

k′=1,

and define the following constant square matrix

G := R diag(β)R′ diag(α) ∈ RK×K .

We impose the following conditions, similar to (2):

The dimension of the profile space is upper bounded by L ≤ rank(G). (7a)
The L largest eigenvalues of matrix G are distinct. (7b)

The corresponding eigenvectors {g`}L`=1 normalised for the α-norm satisfy:

χk 6= χ`, 1 ≤ k < ` ≤ K,

where χk = (g1(k), . . . , gL(k)). (7c)
ω ≥ C logN for some constant C. (7d)

We can now state the following

Theorem 2. Under conditions (7), with probability 1 − o(1), a fraction of 1 − o(1) users u is such that
‖
√
Nz′u−χ′k(u)‖ = o(1). That is to say, most users have their scaled profile vector close to a fixed vector

corresponding to their class.

10

We briefly explain how this seemingly distinct setup can be mapped to the previous one. Define the
following transformation which produces a square matrix:

τ : S 7→ A =

[
0 S
S′ 0

]
∈ R(N+F)×(N+F),

where S′ denotes the transposition of matrix S. The spectrum of such a matrix is symmetrical (i.e. if σ
is an eigenvalue of A, then so is −σ). Furthermore, the absolute values of the eigenvalues of A are the
singular values of S and its singular components are determined by the eigenvectors of A.1

We do not give the proof of Theorem 2, since follows closely that of Theorem 1. Essentially, we
use the transformation τ to obtain a square matrix, and subsequently we apply Lemma 2 and technical
lemmas that we reproduce in Appendix D that play the role of Lemmas 1 and 3 in the proof.

3.2.4 Characterising Performance of a Simple Voting Algorithm

Let us now analyse a simple recommendation algorithm that relies on local voting in the profile space.
We have defined for each user u a scaled L-dimensional profile vector which we denoted by

√
Nz′u. In

Section 4 we propose a method for computing such profile vectors in a distributed fashion based solely
on local information exchange.

Say we wish to characterise the taste of user u for item f . Consider a fixed constant d > 0. We define
the d-vicinity of u as the set of users that have profile vectors at a Euclidean distance of at most d from√
Nz′u in the profile space. More formally,

B(u, d) := {v ∈ U : ‖z′u − z′v‖2 ≤
d√
N
}.

Votes for item f are collected among users in B(u, d) reflecting their appreciation for item f . We
denote the number of collected votes by

Vu(f) :=
∑

v∈B(u,d)

Svf . (8)

The following proposition guarantees that, for well chosen d and as the number of users grows to
infinity, from the perspective of most users u, the quantities Vu(f) provide an accurate ranking for items
with high probability.

Recall that by (7d), ω ≥ C logN .

Proposition 1. If ρ0 <
1
6 infk,k′ ‖χk − χk′‖ and for a large enough constant C, for all but a vanishing

fraction of users u, the following property is true: Consider a sample of items I ⊂ F of constant
size picked uniformly at random. Then with high probability the item ranking given by the (Vu(f))f∈I
coincides with the item ranking given by the (rk(u)k′(f))f∈I .

1To see this, consider an eigenvalue σ of A and its corresponding eigenvector ζ =

[
x
y

]
, with x ∈ RN×1 and y ∈ RF×1.

Since Aζ = σζ, we can write:

A

[
x
y

]
=

[
Sy
S′x

]
= σ

[
x
y

]
and A

[
x
−y

]
=

[
−Sy
S′x

]
= −σ

[
x
−y

]
,

and thus x′Sy = y′S′x = σ‖x‖2 = σ‖y‖2. Then, we have that x is a left singular vector, and that y is a right singular vector for
matrix S. For more details see for instance [21].

11

Proof. We consider a fixed user class Ck. For a specific item f ∈ D`, define Vk(f) to be the total number
of votes it received from users in class Ck. It is distributed as a binomial: Bin(αkN, rk`ω/N). We want
Vk(f) to be contained in the interval

Vk(f) ∈ [αkrk`ω(1− εk/rk`), αkrk`ω(1 + εk/rk`)], (9)

for a given εk. A standard application of a Chernoff bound gives:

P [|Bin(αkN, rk`ω/N)− αkrk`ω| ≥ εkαkω] ≤ 2e−αkrk`ωh(εk/rk`),

where h(·) is a convex increasing function such that h(0) = h′(0) = 0.
Let us generalise and define the following events:

Ek,f = {|Vk(f)− αkrk`ω| < εkαkω},

where εk are chosen such that 0 < εk = inf`,`′:|rk`−rk`′ |6=0
|rk`−rk`′ |

3 . Then by definition, it must be
that on Ek :=

⋂
f Ek,f the following desirable “separability” property holds: for two items f ∈ D` and

f ′ ∈ D`′ , if rk` > rk`′ , then Vk(f) > Vk(f ′). In other words, the votes of users of class Ck preserve the
inherent ranking of items.

Let us bound the probability of the event Ek:

P(Ek) ≥ 1−
∑
`

|D`|2e−αkrk`ωh(εk/rk`).

We impose the following condition on the constant C of (7d):

C ≥ F1({αk}, {rk`}),

where
F1({αk}, {rk`}) = sup

k,`

1

αkrk`h(εk/rk`)
.

Then, since |D`| = Θ(N), it follows that all the events Ek occur with high probability (i.e., with proba-
bility converging to 1 as the number of users N goes to infinity). We have proved the following

Lemma 4. If ω ≥ C logN and C ≥ F1({αk}, {rk`}), then with high probability for any class Ck and
any two items f ∈ D` and f ′ ∈ D`′ such that rk` > rk`′ , we have that Vk(f) > Vk(f ′) + C ′′ω for some
positive constant C ′′.

Denote the total number of votes of user u ∈ Ck by Vu. It is distributed as a sum of binomials:∑
` Bin(|D`|, ωN rk,`). The expected number of votes is thus E(Vu) =

∑
` |D`| ωN rk` = Θ(ω) = mkω,

where mk =
∑
` β`rk`.

By a similar Chernoff bound argument for a given δ > 0 we find

P(Vu ≥ mkω + δω) ≤ e−mkωh(δ
mk+δ)

.

Hence,
P(∃u : Vu ≥ mk(u)ω + δω) ≤

∑
k

|Ck|e−mkωh(δ
mk+δ)

.

Define
F2({mk}) = sup

k

1

mkh(δ
mk+δ)

.

The above probability goes to 0 as N goes to infinity under the additional conditions on the constant
C stated in the following

12

Lemma 5. Denote m̄ = maxkmk. If C ≥ F2({mk}), all users u verify with high probability

Vu ≤ (mk(u) + δ)ω ≤ (m̄+ δ)ω.

Let us now characterise the performance of the distributed voting scheme. By Assumption (7c), the
constant vectors corresponding to the user classes (χk)k are such that ‖χk − χk′‖ = Ω(1), for any
1 ≤ k 6= k′ ≤ K.

By hypothesis we have that ρ0 < 1
6 infk,k′ ‖χk − χk′‖. A user u of class Ck queries other users

having profile vectors within the ball B(
√
Nzu, 2ρ0) about some item f . Thus, for any u such that

‖
√
Nzu − χk‖ ≤ ρ0, all users in B(χk, ρ0) are necessarily queried. Henceforth we only take interest in

such users, as they constitute a fraction of the total number of users that goes to 1 as N goes to infinity.
We denote by Vu(f) the number of votes collected by u for f . Then the difference Wu(f) :=

Vu(f) − Vk(f) is the error that u makes when estimating Vk(f). It can be seen as the difference be-
tween the unwanted votes of users in various classes Ck′ whose profile vectors fall withinB(

√
Nzu, 2ρ0)

(and hence fall outside the ball of radius ρ0 around the constant vector corresponding to their own class
B(χk′ , ρ0)) and the votes of users in Ck who fall outside B(

√
Nzu, 2ρ0) (and implicitly outside of

B(χk, ρ0)).
We can bound

∑
f |Wu(f)| as follows:∑
f

|Wu(f)| ≤
∑

u′∈Ck:√
Nzu′ 6∈B(χk,ρ0)

Vu′ +
∑

u′ 6∈Ck:√
Nzu′ 6∈B(χk(u′),ρ0)

Vu′

≤ Nout · (m̄+ δ)ω,

where Nout = |{u′ :
√
Nzu′ 6∈ B(χk(u′), ρ0)}| = o(N), as shown in Theorem 2.

We call an item f “misclassified” by u if

Vu(f) = Vk(f) +Wu(f) 6∈ [αkω(rk` − εk − εk/2), αkω(rk` + εk + εk/2)].

If this is the case in Ek =
⋂
f Ek,f , then necessarily |Wu| ≥ αkω

εk
2 , and the number of misclassified

items is upper bounded as

|{f misclassified by u}| ≤
∑
f |Wu(f)|
αkω

εk
2

≤ m̄+ δ

αk
εk
2

Nout = o(N).

Thus, a constant sample of items chosen at random are well ranked (i.e., the order of the Vu(f) is
consistent with the order of the rk`) with high probability for all users u (within the same class of items
the ordering is irrelevant).

3.3 Spectral Profiling in Practice
In this section we evaluate the benefits of spectral techniques on a real trace provided by Netflix. The
Netflix data set contains about 108 user ratings for 17, 770 movies by 480, 000 users. The ratings are
given in the form of an integer number of stars, ranging from 1 to 5.

We evaluate taste similarity between users that are assigned close-by profiles in the spectral embed-
ding. We do this as follows: We select a set of 2000 users and a set of 2000 movies from the Netflix
data set, such that the selected users have given roughly the same number of ratings within the selected
movie set. The presence of a rating is viewed in this setting as a sign that the user has viewed that partic-
ular movie, and is therefore considered as a binary form of appreciation (the lack of a rating denoting a
potential lack of interest for that content). Subsequently, for each user we hide the rating of one content

13

0 30 60 90 120 150

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of dimensions

P
ro

b
a

b
ili

ty
 o

f
a

g
re

e
m

e
n

t
(n

e
a

re
s
t

n
e

ig
h

b
o

u
r)

Probability of agreement

Average content popularity

(a) Average frequency of agreement with nearest neighbour

0 10 20 30 40 50 60 70 80 90 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Neighbour rank

P
ro

b
a

b
ili

ty
 o

f
a

g
re

e
m

e
n

t

2 dimensions

30 dimensions

150 dimensions

Average content popularity

(b) Average frequency of agreement with neighbours

Figure 1: Profiling Proximity

at random. Using the remaining observed ratings, we build a sparse observed 0 − 1 rating matrix S,
and we compute the spectral profiles

√
Nz′u of the users. For each user, an ordered list of neighbours is

implicitly defined, from the closest to the farthest one in the profile space. We compute over the set of
users the average frequency of the occurence of the following event: “a user at distance k has rated the
hidden content”. The average is taken over the set of users. This “frequency of agreement” reflects the
taste proximity of users.

In Figure 1 we plot this “frequency of agreement” for different values of the dimensionality L of the
embedding. Content popularity (i.e. the fraction of users having rated it) ranges from 0.45% to 5.3%,
and the average popularity of content is 2.13%. We show this value on our plots for comparison. In
Figure 1(a) we vary the dimension from 2 to 150 and plot the average frequency of agreement with the
nearest neighbour. We notice that there is a peak in this average frequency around roughly 30 dimensions.
Subsequently the plotted frequency decays slowly. In Figure 1(b) we plot the average frequency of
agreement for 2, 30 and 150 dimensions for the 100 closest neighbours in the profile space. We conclude
that an embedding of rank 30 is appropriate to characterise user taste for the selected users in the trace.

It is important to observe that the frequency decays with distance in the profile space. This indicates
that spectral profiling manages to capture user taste proximity.

4 Oja’s Algorithm and Beyond
We now propose a method for extracting the eigenvectors of the adjacency matrix of a graph in a dis-
tributed manner. Eigenvector extraction is the object of Oja’s algorithm [19], the basic version of which
is refined by Borkar and Meyn in [2].

Consider a sequence of symmetric square random matrices (Ak ∈ RN×N)k of common finite mean
A ∈ RN×N . Oja and Karhunen [19] proposed the following stochastic approximation algorithm for
determining the s top eigenvectors of A:

X̃k = Xk−1 +AkXk−1Γk, (10)

Xk = X̃kR
−1
k , (11)

where Xk is an N × L matrix, Γk is a diagonal matrix of gains and R−1
k is a matrix achieving the or-

thonormalisation of the columns of X̃k. They prove almost sure convergence under typical assumptions
on the sequence of gains, assuming unit multiplicity of the top s eigenvalues, probability density uni-

14

formly bounded away from 0 for each of the Ak, and almost sure boundedness and symmetry of the Ak,
as well as statistical independence.

A simpler single-step form of the algorithm was also proposed by Oja and Karhunen; the latter pro-
duces only an orthonormal basis of the subspace spanned by the top s eigenvectors. The convergence of
a slightly modified version thereof when A is positive definite was showed by Borkar and Meyn [2], who
introduced the additional factor 1

1+Tr(XkX′k)
and added the additional i.i.d. N (0, I) noise sequence ξk:

Xk −Xk−1 =
ak

1 + Tr(XkX ′k)
[(I −Xk−1X

′
k−1)Ak−1Xk−1 + ξk].

Here (ak) is an almost typical gain sequence:

∑
k

ak =∞,
∑
k

a2
k <∞, sup

k

∑
n≥k a

2
n

ak
<∞.

None of these approaches are distributed however. Our contribution consists precisely in augmenting
these methods to make them distributed.

4.1 A Method for Distributed Spectral Profiling
In Section 3 we have demonstrated the benefits of spectral profiling. We have seen that, given a set
of N users, it is sufficient that each of them contact on average only Ω(log(N)) other users at random
and determine similarity with them to essentially manage to characterise the profiles of everyone, by
application of the spectral transformation.

In this section we consider a (sparse) graph obtained via such a probing process. We develop message-
passing algorithms that enable all users to individually compute their spectral profile, while allowing
communication only between pairs of neighbours. The algorithms we propose in this section only require
the connectivity property of the graph (and hence no specific bound on neighbourhood sizes). However,
the scenario of a sparse graph is most appealing, as it fits very well with the model we introduced in the
previous section.

Let us thus consider a network described by an undirected graph G = (U , E), where U is the set of
N nodes (also designated interchangeably by “users”), and E is the set of edges connecting these nodes.
We denote by Nu the set of neighbours of u, and also write u ∼ v to indicate that two nodes u, v are
neighbours. Nodes that share a link compute their “similarity” value, i.e., a real number Auv which
reflects pairwise taste similarity (in Section 3 we were only considering binary values). The computed
values define a weighted (undirected) graph with adjacency matrix A.

In this section we show that nodes are able to compute individually via message passing their coor-
dinates in an L-dimensional profile space. These coordinates form a collection of L linearly independent
vectors which span the vector space generated by the L eigenvectors corresponding to the top L largest
magnitude eigenvalues of A. For binary similarity values, if we interpret the aforementioned computed
coordinates as user profiles, Theorem 1 and its corollaries still apply under the same assumptions (2);
thus, for the considered class-based model of user taste, clusters corresponding to the different classes
still emerge. We show this in Appendix E.

Let us now describe the proposed method for distributed user profile computation.
By definition Auu = 0 (and thus Tr(A) = 0), thus the matrix is not positive semidefinite (it has

necessarily negative eigenvalues). We need to alter the matrix A to guarantee positive semidefiniteness,
without changing its eigenvectors. To achieve this, pick for example either one of the two solutions below:

- Compute the value ∆ := maxu
∑
v |Auv| (e.g., via a distributed voting scheme), and subsequently

set the diagonal values of A to a value larger than ∆, e.g., Auu := ∆ + ε for some ε > 0. This

15

procedure simply adds ∆ + ε to the eigenvalues of A, thus rendering them positive (∆ corresponds
to the maximum degree of the graph in the binary case, and it is known that |λ1| < |∆|).

- Use matrix A2, which has the same eigenvectors as A and eigenvalues equal to the square of those
of A. The advantage of this second method is that the ranking of the magnitudes of the eigenvalues
is preserved. However, to avoid direct communication with distance-2 neighbours, local gossiping
should be used (as described in Section 4.2).

In the rest of this section we consider that one of the solutions above is used and thus that matrix A is
rendered positive semidefinite.

Given some fixed number L of target eigenvectors to be extracted, each user u maintains at all time t
three sets of variables:

1. An L-dimensional row vector Xu(t), the sought-for eigenvector coordinates;

2. An L× L matrix Φu(t) and a scalar Ψu(t), both playing an auxiliary role in the calculation.

For ease of presentation, we assume slotted time t = 0, 1, 2, . . ., and synchronous updates at all peers.
Asynchronous versions will be described and tested in the next section.

Our algorithm then takes the following form:

Xu(t+ 1)−Xu(t) =
a(t)

Yu(t)

[∑
v∼u

AvuXv(t)−NXu(t)Φu(t) + ξu(t+ 1)

]
. (12)

In the above, a(t) is a gain parameter to be specified, ξu(t+ 1) is a noise term deliberately introduced by
user u, and the denominator Yu(t) is taken equal to

Yu(t) = max

1, |Ψu(t)|, 1

NL2

L∑
k,`=1

|(Φu(t))k`|

 . (13)

It is readily seen that the update (12) can be computed locally at u, solely relying on variables local to
node u and inputs Xv(t) from u’s neighbours v ∈ Nu. The same is also true for the updates of variables
Φu and Ψu, which take the forms:

Φu(t+ 1) = Φu(t) + b(t)
∑
v∼u

(Φv(t)− Φu(t)) + fu(t+ 1)− fu(t), (14)

where b(t) is a gain parameter, fu(t) is a L× L matrix, specified by

fu(t) = X ′u(t)
∑
v∼u

AuvXv(t), (15)

and
Ψu(t+ 1) = Ψu(t) + b(t)

∑
v∼u

(Ψv(t)−Ψu(t)) + gu(t+ 1)− gu(t), (16)

where gu(t) is a scalar, specified by
gu(t) = Xu(t)X ′u(t). (17)

16

Before stating the main result of this section, we introduce the technical conditions that will be required
from the gain sequences a(t), b(t):

a(t), b(t) ∈ [0, 1], t > 0, (18a)∑
t>0

a(t) =
∑
t>0

b(t) = +∞, (18b)∑
t>0

a(t)2 < +∞,
∑
t>0

b(t)2 < +∞, (18c)

lim
t→∞

a(t)

b(t)
eK

∑t
s=1 a(s) = 0, K > 0 (18d)

Note that these conditions are satisfied for instance upon taking a(t) = 1/(t log(t)), and b(t) = t−2/3.
Indeed, with this choice for a(t), it is readily seen that

t∑
s=1

a(s) ∼ log(log(t)),

and (18b) follows. In addition, the quantity in (18d) then reads

1

t1/3 log(t)
eK(1+o(1)) log(log(t)) ≤ (log(t))2K−1

t1/3
,

where we have used the upper bound of 1 on the term o(1), and property (18d) readily follows.
We are now in a position to state this section’s main result:

Theorem 3. Assume that the gains a(t), b(t) verify the conditions (18). Assume further that the noise
terms ξu(t) are i.i.d, white Gaussian noise. Assume finally that the overlay graph over which peers
communicate is connected, and that matrix A is positive semidefinite (see discussion above). Then the
distributed updating algorithm (12–17) verifies the following property: With probability 1, the columns
of X(t) := (Xu(t))u∈U converge to a collection of L orthonormal vectors spanning the vector space
associated with the L largest eigenvalues of A.

The proof of the theorem is given in Section F. In what follows, we provide some background and
intuition for it.

Consider first the main equation, (12). If we ignore the denominator Yu(t), the noise term ξu(t+ 1),
and replace the termNXu(t)Φu(t) by

∑
vXu(t)fv(t), where f(t) is as given in (15), this equation reads,

written in matrix form:

X(t+ 1)−X(t) = a(t) [AX(t)−X(t)X ′(t)AX(t)] .

This is in fact the celebrated Oja algorithm, proposed by Oja and Karhunen [19] to extract precisely
the eigenvectors of the largest eigenvalues of A. Oja’s algorithm is subject to some stability issues, that
Borkar and Meyn [2] proposed to fix by scaling down the right-hand side of the previous equation by
some factor Z(t) = 1 +

∑
u,kX

2
u,k(t), and by adding an extra noise term ξ(t + 1) in the bracket in the

right-hand side. Thus, the update rule they considered reads:

X(t+ 1)−X(t) =
a(t)

Z(t)
[AX(t)−X(t)X ′(t)AX(t) + ξ(t+ 1)] , (19)

and is proved in ([2]) to converge with probability 1 to the desired eigenvectors, under assumptions (18b),(18c)
on the gains a(t), and similar conditions on the noise ξ(t) as in our theorem.

17

However, algorithm (19) does not lend itself to a distributed implementation, since neither of the two
terms X ′(t)AX(t) or Z(t) can be computed locally by the users.

To solve this issue, we introduce the auxiliary local variables Φu, Ψu. The dynamics (14–16) ac-
cording to which they evolve is best understood by setting to zero the input terms fu(t+ 1)− fu(t) and
gu(t + 1) − gu(t) in the right-hand side. It then becomes apparent that these dynamics perform local
averaging (also known as gossiping in [3]). Thus these eventually converge to a state where all variables
Φu(t) coincide with the average (1/N)

∑
v Φv(0) of the original entries.

We can now provide a heuristic argument for the theorem. On a fast time scale, characterised by the
gain parameters b(t), the gossiping dynamics converge to almost constant vectors, with

Φu(t) ≡ 1
N

∑
v fv(t), u ∈ U ,

Ψu(t) ≡ 1
N

∑
v gv(t) u ∈ U .

Then on a slower time scale dictated by the gain parameters a(t), the variables of interest Xu(t) follow
dynamics very close to (19). Indeed, the auxiliary parameters Φu, Ψu track accurately the desired terms
X ′(t)AX(t) and Z(t) respectively.

A couple of remarks are in order. The stabilisation by the scaling factorZ(t) in (19) seems insufficient
in the presence of the additional dynamics (14,16). This leads us to introduce our alternative stabilisation
via Yu(t) in (13). Also, in problems with dynamics at two time scales a common assumption on the gain
parameters is that a(t)/b(t) → 0. In the present case, a stronger form of time scale separation (namely,
condition (18d)) is needed, to prevent reinforcing instabilities between the two dynamics.

4.2 Evaluation of an Asynchronous Version
In this section we present numerical evaluations on synthetic data. We exhibit convergence of an asyn-
chronous version of the distributed coordinate assignment scheme presented in the previous section on
synthetic data generated according to the model presented in Section 3.1.

In Section 4.1 we showed that the distributed algorithm (12–14) converges almost surely towards L
linearly independent vectors spanning the vector space generated by the eigenvectors corresponding to
the top L magnitude eigenvalues of the adjacency matrix A.

In the following, we evaluate the asynchronous version of the algorithm. In this setting, each node
u keeps track of its own coordinates Xu as well as the gossiped variables Φu and Ψu. However, instead
of explicitly imposing a timescale separation via gains a(t) and b(t) while enforcing a synchronised
evolution of all the quantities, we impose distinct rates at which the updates are performed. Namely,
the coordinate updates (12) are performed independently according to Poisson processes of rate λ, while
gossiping (13-14) is performed independently “pairwise” according to Poisson processes of rate µ � λ.
By pairwise we mean that a pair of nodes (u, v) ∈ E will exchange and update their values for Φ and Ψ
at rate µ similarly to the randomised gossiping technique from [3].

Furthermore, we replace the adjacency matrix by its square A2. We choose to do so, since the latter
is positive semidefinite, has the same eigenvectors as A, and a spectrum composed of the squared eigen-
values of A. Implicitly, the eigenvectors are ordered according to the magnitude of the eigenvalues of A,
instead of their actual values. In turn, this modification alters the function fu from (15), which becomes:

f (2)
u =

(∑
v∼u

AuvXv

)′(∑
v∼u

AuvXv

)
. (20)

The algorithm executed at each node is summarised in Algorithm 1.
Since sparsity is not preserved by taking the square of A, we cannot simply use A2 as a new ad-

jacency matrix. Thus, we need to compute products A2X specifically: For some node u, every other
call to the UPDATE-LOCAL() procedure computes the partial products Πu =

∑
v∼uAuvXv (State 6 in

18

Algorithm 1 Distributed profiling algorithm
NODE(u)::UPDATE-LOCAL() at rate λ
Local Variables: Xu,Πu, wu, X

0
u,Π

0
u,Ψu,Φu

1: if wu = 1 then
2: Retrieve partial product vectors Πv from

v ∈ Nu
3: Xu := Xu + γ

∑
v∼u AuvΠv−NXuΦu

Yu(Ψu,Φu)

4: else
5: Retrieve vectors Xv from v ∈ Nu
6: Πu :=

∑
v∼uAuvXv

7: end if
8: wu := 1− wu

LINK(u, v)::GOSSIP() at rate µ
1: Retrieve local variables at u and v
2: for (H,h) in {(Φ, f (2)), (Ψ, g)} do
3: α := Hu+Hv

2
4: for i in {u, v} do
5: δi := hi(Xi,Πi)− hi(X0

i ,Π
0
i)

6: Hi := α+ δi
7: end for
8: end for
9: X0

u := Xu, Π0
u := Πu, X0

v := Xv , Π0
u :=

Πu

−0.04 −0.035 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

First eigenvector

S
e

c
o

n
d

 e
ig

e
n

v
e

c
to

r

Figure 2: Pure and noisy user profiles

the Algorithm). Subsequently, the neighbours’ partial product vectors Πv are used in the coordinate up-
date procedure (12) at State 3 and for the gossiping of f (2)

u = Π′uΠu. Each node additionally stores its
previous vectors X0

u and Π0
u for use in the GOSSIP() procedure.

The only piece of global information required is the number of users in the system (or an approxi-
mation thereof). In the UPDATE-LOCAL() procedure, we used a fixed gain γ. The noise component ξ is
omitted in the algorithm. Even so, noise is intrinsic to the algorithm as it is introduced by both the gossip
averaging and by the fact that exchanges are asynchronous.

For evaluation of convergence, we used a synthetic data trace generated according to our model from
Section 3.1. This trace considers 2200 users clustered in 4 classes of sizes 200, 500, 600 and 900. The
probability matrix pB characterising the classes is

pB =
1

100


0.5 1.5 2.0 1.0
1.5 0.55 1.0 2.0
2.0 1.0 0.45 4.0
1.0 2.0 4.0 0.5

 .

We consider an adjacency matrixA generated using the aforementioned parameters. This matrix is sparse
(the average node degree is 40). For visualisation ease, we consider the case L = 2 (i.e. the profile space

19

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
m

a
s
s

o
u

ts
id

e
 t

h
e

 e
ig

e
n

s
p

a
c
e

0 50 100 150 200 250 300 350 400 450 500
−50

−40

−30

−20

−10

0

10

Time

S
c
a

la
r

p
ro

d
u

c
t

First coordinate

Second coordinate

Scalar product

Figure 3: Convergence of the asynchronous distributed algorithm

is a 2-dimensional plane). In Figure 2 we plot the first two eigenvectors of the expected adjacency matrix
Ā. They are constant on each of the 4 classes, hence the plot is constituted of 4 points, which are depicted
as the four black squares. They represent the pure user profiles which characterise each of the four
classes. Additionally, we plot the first two eigenvectors of the “noisy” adjacency matrix A, with elements
belonging to a specific class marked with the same symbol. We have the visual confirmation that despite
the sparsity of matrix A, the noisy profiles are grouped around the pure profiles.

We choose a gain γ = 0.001, an update rate λ = 0.2 and a gossip rate µ = 10. We initialise the
algorithm at a random state. In Figure 4.2 we plot the time evolution of the proportion of the mass of
the two coordinate vectors X·1 and X·2 (aggregated across users) that falls on the space orthogonal to
the 2-dimensional eigenspace generated by the first two eigenvectors of matrix A2. Additionally, we plot
the scalar product of the two coordinate vectors. After roughly 400 time units, we observe convergence
towards orthogonal vectors spanning the desired eigenspace.

5 Conclusions
In this paper we addressed the problem of distributed user profiling and recommendation.

We first showed that spectral techniques constitute an appealing approach, and obtained novel results
on their efficiency, thereby improving upon previous literature on the subject of spectral clustering. We
showed that a for a low-rank probabilistic model of user taste, a simple distributed algorithm based on
local votes in the profile space asymptotically achieves accurate prediction of user preference.

We developed techniques for computing eigenvectors in a distributed manner. Our solution combines
ideas from Oja’s algorithm with gossiping algorithms. From a theoretical standpoint, it essentially relies
on a special form of multiple time scale stochastic approximation. The resulting technique may have
other applications besides user profiling.

Finally we evaluated our proposed methods on synthetic and actual data traces. We thereby validated
our analysis in observing convergence to the desired eigenvectors. We could further show, based on the
Netflix prize dataset, that accurate recommendations could be made at limited communication cost based

20

on our spectral embedding.
Several research directions can be envisioned to take this work further. One intriguing problem con-

cerns privacy. While our methods do not rely on direct exchange of sensitive private information, they
may nevertheless lead to private information leakage. A distributed solution avoiding the issue is yet
unavailable.

Other directions concern the fine tuning of the methods. The issue of analytical selection of the
number of eigenvectors has not been addressed here. The recent work of Shi et al. [20] could be an
appealing solution.

References
[1] Xavier Amatriain, Josep Pujol, and Nuria Oliver. I like it... i like it not: Evaluating user ratings

noise in recommender systems. volume 5535 of Lecture Notes in Computer Science, pages 247–
258. Springer Berlin / Heidelberg, 2009. 10.1007/978-3-642-02247-0_24.

[2] V. Borkar and S. P. Meyn. Oja’s algorithm for graph clustering and markov spectral decomposition.
In ValueTools ’08: Proceedings of the 3rd International Conference on Performance Evaluation
Methodologies and Tools, pages 1–7, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering).

[3] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip algorithms.
IEEE/ACM Trans. Netw., 14(SI):2508–2530, 2006.

[4] Kamalika Chaudhuri and Satish Rao. Learning mixtures of product distributions using correlations
and independence. In Rocco A. Servedio and Tong Zhang, editors, COLT, pages 9–20. Omnipress,
2008.

[5] Amin Coja-Oghlan. A spectral heuristic for bisecting random graphs. In Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms, SODA ’05, pages 850–859, Philadelphia,
PA, USA, 2005. Society for Industrial and Applied Mathematics.

[6] Anirban Dasgupta, John Hopcroft, Ravi Kannan, and Pradipta Mitra. Spectral clustering by recur-
sive partitioning. In ESA’06: Proceedings of the 14th conference on Annual European Symposium,
pages 256–267, London, UK, 2006. Springer-Verlag.

[7] Anirban Dasgupta, Ravi Kannan, John Hopcroft, and Pradipta Mitra. Spectral clustering with lim-
ited independence, 2005.

[8] Marie Duflo. Méthodes récursives aléatoires. Techniques stochastiques. Masson, Paris, Milan,
Barcelone, 1990.

[9] Uriel Feige and Eran Ofek. Spectral techniques applied to sparse random graphs. Random Struct.
Algorithms, 27(2):251–275, 2005.

[10] David Kempe and Frank McSherry. A decentralized algorithm for spectral analysis. In STOC, pages
561–568, 2004.

[11] Raghunandan H. Keshavan, Sewoong Oh, and Andrea Montanari. Matrix completion from a few
entries. CoRR, abs/0901.3150, 2009.

[12] Satish Babu Korada, Andrea Montanari, and Sewoong Oh. Gossip pca. In Proceedings of the ACM
SIGMETRICS joint international conference on Measurement and modeling of computer systems,
SIGMETRICS ’11, pages 209–220, New York, NY, USA, 2011. ACM.

21

[13] Yehuda Koren. The bellkor solution to the netflix grand prize, 2009.

[14] Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means algorithm. In
FOCS, pages 299–308. IEEE Computer Society, 2010.

[15] F. McSherry. Spectral partitioning of random graphs. Proceedings FOCS, pages 529–537, 2001.

[16] A. Müller and D. Stoyan. Comparison Methods for Stochastic Models and Risks. J. Wiley and Sons,
2002.

[17] Netflix. Netflix prize. http://www.netflixprize.com.

[18] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems 14, pages 849–856. MIT Press, 2001.

[19] E. Oja and J. Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of the
expectation of a random matrix. Journal of Math. An. and App., 106(1), 1985.

[20] Tao Shi, Mikhail Belkin, and Bin Yu. Data spectroscopy: learning mixture models using eigenspaces
of convolution operators. In ICML, pages 936–943, 2008.

[21] G. W. Stewart. On the early history of the singular value decomposition. SIAM Review, 35(4):551–
566, 1993.

[22] Dan-Cristian Tomozei and Laurent Massoulié. Distributed user profiling via spectral methods. SIG-
METRICS Perform. Eval. Rev., 38:383–384, June 2010.

A Proof of Lemma 1
Consider an eigenvalue λ̄ 6= 0 of Ā and a corresponding normalised eigenvector x̄, ‖x̄‖2 = 1. For
1 ≤ u ≤ N ,

(Āx̄)(u) =
ω

N

N∑
v=1

bk(u)k(v)x̄(v) =
ω

N

K∑
`=1

bk(u)`

∑
v:k(v)=`

x̄(v) = λ̄x̄(u).

For a large enough N , we have that |Ck| > 1, for all k. This is true, since the size of each class grows
linearly with N . Then for all k and for all u, u′ ∈ Ck, with u′ 6= u it follows that x̄(u′) = x̄(u).

Denote the value of x̄(u) by ŷ(k(u)). Then, for all 1 ≤ ` ≤ K,

K∑
`′=1

α`′b``′ ŷ(`′) =
λ̄

ω
ŷ(`).

Thus ŷ is an eigenvector of theK×K matrixM = Bdiag(α) corresponding to its eigenvalue λ̄
ω . Since

M is a constant matrix, its eigenvalues are also constants. Hence it must be that there exists a constant c
such that λ̄ = cω = Θ(ω). By Condition (2b) we conclude that the top L magnitude eigenvalues of Ā
have distinct absolute values.

Finally, since x̄(u) = ŷ(k(u)) we have that

1 = ‖x̄‖2 =
√
N‖ŷ‖α ⇐⇒ ‖ŷ‖α =

1√
N
.

Since y = ŷ
‖ŷ‖α , we must have that x(u) = ŷ(k(u)) = y(k(u))√

N
, which proves (3). �

Note that a consequence of this result is that Ā can have a number of non-zero eigenvalues that is at
least L (by Condition (2a)) and at most K (i.e. the maximum number of eigenvalues of matrix M).

22

http://www.netflixprize.com

B Proof of Lemma 2
We start by establishing a simple result of stochastic dominance.

By definition a random variable X is dominated for the convex ordering by another random variable
Y (written as X ≤cx Y) if for any convex function f : [c, d] → R such that Ef(X) and Ef(Y) exist,
we have Ef(X) ≤ Ef(Y).

It is known that (see for instance [16], Theorem 1.5.20): If X ≤cx Y , then there exist X̂ and Ŷ with
the same distributions as the original variables, but which are such that E(Ŷ |X̂) = X̂ .

Another result found in [16] states that for some closed interval [c, d], if X : Ω→ [c, d] and Y : Ω→
{c, d} are two random variables such that EX = EY , then X ≤cx Y .

In this latter setting, we wish to establish a variant of the former result. Namely, for some closed
interval [c, d], if X : Ω → [c, d], we wish to construct a random variable Ŷ : Ω → {c, d} supported on
the extremities {c, d} of the interval, such that EX = EŶ and E(Ŷ |X) = X . To achieve this, pick a
uniformly distributed random variable U ∼ U [0, 1] independent of X . We define the random variable
Ŷ : Ω→ {c, d} as Ŷ = F (X,U), where

F (x, u) = d− 1{x≤u(d−c)+c}(d− c).

Then
E(Ŷ |X) = E(F (X,U)|X) = d− d−X

d− c
(d− c) = X.

Since Ŷ can possibly take only two values, we can compute the corresponding probabilities:

P(Ŷ = d) =

∫ d

c

PX(dx)

∫ x−c
d−c

0

du =
EX − c
d− c

and P(Ŷ = c) =
d− EX
d− c

, (21)

and hence EX = EŶ .
Let us now proceed with the proof of the Lemma.
Denote by Q := A− EA. Denote further by pmax = maxij pij and by pmin = minij pij . Then the

elements of Q all belong to the interval [−pmax, 1 − pmin]. For a large enough N such that pmax < 1,
there exist α = 1−pmin

1−pmax > 1 and p = pmax, such that [−pmax, 1− pmin] ⊂ α[−p, 1− p].
Consider a symmetric matrix U of independent uniformly distributed random variables {Uij = Uji ∼

U [0, 1]}i<j . Then for each entry Qij of Q, such that i < j, which we regard as a random variable with
values in the interval α[−p, 1 − p], we construct the random variable Zij = F (Qij , Uij) which has the
desired property written in matrix form

E(Z|Q) = Q. (22)

Note that the entries of Z are mutually independent by construction. Furthermore, the random variables
defined as {Yij = α−1Zij + p, Yji = Yij}i<j are mutually independent Bernoulli random variables
of parameter p and hence form the adjacency matrix Y of an Erdos-Renyi graph of parameters (N, p).
Denote Ȳ := EY = p(ee′ − I), where e is the all-ones column vector and e′ denotes transposition.

Let us now prove that the spectral radius of Z = α(Y − Ȳ) is upper bounded by O(
√
ω) with high

probability.
Since ω = Ω(logN), and the {Yij}i<j are mutually independent, we can apply the results from [9].

Let y be any vector of norm 1 and denote u := 1√
N
e. We can decompose y as follows: y = ax + bu,

where a2 + b2 = 1, and x is a vector of norm 1 orthogonal to u, x ⊥ u.

|y′(Y − Ȳ)y| ≤ 2 |abx′(Y − Ȳ)u|︸ ︷︷ ︸
T1

+a2 |x′(Y − Ȳ)x|︸ ︷︷ ︸
T2

+b2 |u′(Y − Ȳ)u|︸ ︷︷ ︸
T3

.

23

Denote by δi the degree of node i and by δ̄ :=
∑
i δi
N the average degree. According to Lemma 2.2

from [9] and taking into account the fact that e is an eigenvector of Ȳ we have

T1 = |x′Y u| ≤ 2
√
δ̄, with probability 1− e−Ω((Nω)1/3).

By Theorem 2.5 and Claim 2.4 from [9], we have that for every constant c1 > 0, there exists another
constant c2 > 0 such that:

|x′Y x| ≤ c2
√
ω, with probability 1−N−c1 . (23)

We will restrict ourselves to constants c1 > 1 for reasons that will become apparent later in the proof.
Thus, we can bound the second term with probability 1−N−c1 :

T2 ≤ |x′Y x|+ |x′Ȳ x|
(23)
≤ O(

√
ω) + |

∑
i

xi
∑
j:i 6=j

pxj |

= O(
√
ω) + | − p

∑
i

x2
i | = O(

√
ω) + Θ(

ω

N
).

Finally, using a Chernoff bound we find

T3 = |δ̄ − ω| = O(
√
ω), with prob. 1− e−Ω(N).

Thus, ρ(Z) = O(
√
ω), with probability 1 − N−c1 . Furthermore, there exists a constant a > 0 such

that ρ(Z) < aN .
Let us now finally characterise the spectral radius of Q.
Using the fact that the spectral radius is a convex function and by Jensen’s inequality, we get

ρ(Q) = ρ(E [Z|Q]) ≤ E [ρ(Z)|Q]

We have a random variable R := ρ(Z) supported on [0, aN], such that P(R > t) ≤ O(N−c1) for
t = O(

√
ω) and we wish to deduce that the conditional expectation S := E(R|Q) is also upper bounded

by O(
√
ω) with high probability.

Since R and S have countable state spaces, it makes sense to consider

β(s) := P(R > t|S = s).

Since R : Ω → [0, aN], and since E(R|S) = S, we have that β(s)(aN) + (1 − β(s))t ≥ s, and thus,
β(s) ≥ (s− t)/(aN − t). Denoting γ := P(S > t+ 1), we have

P(R > t) = E(β(S)) ≥ E(β(S)1{S>t+1}) ≥
t+ 1− t
aN − t

γ =
γ

aN − t
.

Hence
γ = P(S > t+ 1) ≤ (aN − t)P(R > t) = (aN − t)O(N−c1) = o(1),

since we considered c1 > 1. �

C Proof of Lemma 3
We will show the two claims (5) and (6) by induction. Denote (5) by Pk and (6) by Qk.

We will begin by proving P1 and Q1. Since we make extensive use of Lemma 2, it is implied that
all inequalities in this proof hold with high probability in the sense of Lemma 2 (that is with probability

24

1− e−Ω(N)). All vectors are column vectors and we denote by x′ the transpose of vector x. Furthermore,
for two vectors x and y by x ⊥ y we mean that their scalar product x′y equals zero.

Using the variational characterisation of eigenvalues and Lemma 2, we get:∣∣|λ1| − |λ̄1|
∣∣ wlog

= |λ1| − |λ̄1| ≤ |λ1| − |x′1Āx1| ≤ |x′1(A− Ā)x1| ≤ O(
√
ω),

which proves P1.
We denote the first eigenvector of A by x1 = a1x̄1 + b1ȳ1, where a2

1 + b21 = 1, x̄1 is the first
eigenvector of Ā and x̄1 ⊥ ȳ1. Then, by making use of P1, there exist positive constants θ1 and θ2 such
that

|λ̄1| − θ1

√
ω ≤ |λ1| ≤ a2

1|x̄′1Āx̄1|+ b21|ȳ′1Āȳ1|+ θ2

√
ω.

We took into account the symmetry of Ā and the fact that Āx̄1 = λ̄1x̄1. By the Courant-Fischer theorem,
we get the following inequality:

|λ̄1| − θ
√
ω ≤ |λ̄1| − b21(|λ̄1| − |λ̄2|), θ > 0 (24)

and since the topL eigenvalues of Ā are distinct (by Condition (2b)), it holds that 0 < |λ̄1|−|λ̄2| = Θ(ω).
We get that b21 ≤ O(1√

ω
), thus proving Q1.

In order to generalise this result, we make use of the following simple lemma:

Lemma 6. Let x1 and x̄1 be two non-orthogonal vectors of norm 1 such that

1− (x′1x̄1)2 ≤ O(
1√
ω

). (25)

Then for all vectors x2 of norm 1 such that x2 ⊥ x1, (x′2x̄1)2 ≤ O(1√
ω

).

Proof. We have x1 = ax̄1 + bȳ1, where x̄1 ⊥ ȳ1, ‖ȳ1‖ = 1 and a2 + b2 = 1. By hypothesis (25),
b2 ≤ O(1√

ω
). Thus,

x′2x1 = ax′2x̄1 + bx′2ȳ1 = 0,

and thus, since a 6= 0,

|x′2x̄1|2 =
b2

1− b2
|x′2ȳ1|2 ≤ θ

1√
ω

√
ω√

ω − θ
,

where θ > 0 is a constant.

We proceed by complete induction. We showed P1 and Q1. Now assume P` and Q` are true for all
1 ≤ ` < k. We wish to show Pk and Qk.

Let us write xk = αx̄k + βȳ + γz̄, where ȳ ∈ Span{x̄k+1, x̄k+2, . . .} and z̄ ∈ Span{x̄1, . . . , x̄k−1}
and α2 + β2 + γ2 = 1. Lemma 6 and the induction hypothesis show that γ2 ≤ O(1√

ω
). Since

|x′kĀxk| ≤ (1− γ2)|λ̄k|+ γ2|λ̄1| ≤ |λ̄k|+O(
√
ω),

we can conclude that∣∣|λk| − |λ̄k|∣∣ wlog
= |λk| − |λ̄k| ≤ |λk| − |x′kĀxk|+O(

√
ω) ≤ O(

√
ω),

thus proving Pk.
We have that,

|λk| ≤ |x′kĀxk|+ |x′k(A− Ā)xk| ≤ α2|λ̄k|+ β2|λ̄k+1|+ γ2|λ̄1|+O(
√
ω)

≤ |λ̄k|+
a√
ω

(|λ̄1| − |λ̄k|)− β2(|λ̄k| − |λ̄k+1|) + θ
√
ω,

25

where a and θ are positive constants. Without loss of generality we now assume that
∣∣|λk| − |λ̄k|∣∣ =

|λ̄k| − |λk| and using Pk we get

β2 ≤
ϕ
√
ω + a√

ω
(|λ̄1| − |λ̄k|)

|λ̄k| − |λ̄k+1|
≤ O(

1√
ω

), ϕ > 0

thus proving Qk. �

D Technical Lemmas for Proving Theorem 2
We make the following notation:

S̄ := (prk(u)k′(i))u,i = ES.

The following Lemmas characterise the structure of the singular decomposition of S̄ and S. They show
that the two matrices have the same spectral structure.

Lemma 7. For L ≤ K ′, the top L largest singular values of S̄ are distinct and of order Θ(ω). The
normalised left-singular vectors (x̄`)

L
`=1 corresponding to these singular values are constant on indices

corresponding to each user class. Specifically, using the g` defined in (7c), we can write

x̄`(u) =
g`(k(u))√

N
, ∀u ∈ U , 1 ≤ ` ≤ L. (26)

Proof. Consider a non-zero singular value of S̄, σ > 0 and corresponding left and normalised right
singular vectors x̄ and ȳ. Then we can write:

(S̄′x̄)(i) =

N∑
u=1

S̄uix̄(u) = σȳ(i)
not.
= σh(k′(i)), (S̄ȳ)(i) =

F∑
i=1

S̄uiȳ(i) = σx̄(u)
not.
= σĝ(k(u)),

since S̄ui = prk(u)k′(i) depends only on the class of u, k(u), and the class of i, k′(i). Since ȳ is a right-
singular vector of S̄, it is also an eigenvector of S̄′S̄ corresponding to eigenvalue σ2, and thus after some
simplification we have that

σ2

γω2
ĝ = Rdiag(β)R′diag(α)ĝ,

that is the K-dimensional vector ĝ is an eigenvector of the constant matrix Rdiag(β)R′diag(α) corre-
sponding to the eigenvalue σ2

γω2 . Since the eigenvalues of a constant matrix are constant, it follows that
there exists a constant λ such that σ = λω = Θ(ω). By Condition (7b) it follows that the largest L singu-
lar values of S̄ are distinct. Moreover, matrix Rdiag(β)R′diag(α) can have at most K distinct non-zero
eigenvalues and hence the same holds for the singular values of S̄.

Finally, we have that
1 = ‖x̄‖2 =

√
N‖ĝ‖α.

Thus, if we consider a vector g = ĝ
‖ĝ‖α normalised under the α-norm, Equation (3) holds.

We denote the singular values of S̄ and S by

σ̄1 > σ̄2 > ... > σ̄L > 0
σ1 ≥ σ2 ≥ ... ≥ σL > 0.

(27)

and the corresponding left and right normalised singular vectors by x̄k, ȳk′ , xk, and yk′ .

26

Lemma 8. For all 1 ≤ k ≤ K

|σk − σ̄k| ≤ O(
√
ω) whp, (28)

sin(x̂k, x̄k) ≤ O(ω−1/4) whp. (29)

Proof. For Ā = τ S̄ we denote by ζ̄+
k the normalised eigenvector corresponding to the eigenvalue σ̄k and

by ζ̄−k the normalised eigenvector corresponding to the eigenvalue −σ̄k. We introduce similar notation
for the eigenvectors of A = τS, namely ζ+

k and ζ−k . Then it holds that

ζ̄+
k =

1√
2

[
x̄k
ȳk

]
, ζ̄−k =

1√
2

[
x̄k
−ȳk

]
, ζ+

k =
1√
2

[
xk
yk

]
, ζ−k =

1√
2

[
xk
−yk

]
.

By Condition (7b), we can apply a slightly modified Lemma 3 to matrix A. The only modification
we need to make is to change the considered ordering of the eigenvalues – instead ordering them by
largest magnitude, we order them decreasingly by value. Since we can apply Lemma 2 to A − Ā, it is
straightforward to see that the proof also holds in this setting.

We have thus that (28) holds and that with high probability

sin(ζ̂+
k , ζ̄

+
k) ≤ O(ω−1/4).

To see that (29) holds as well, we write

1−
〈
ζ+
k , ζ̄

+
k

〉2
= 1− 1

4
(〈xk, x̄k〉+ 〈yk, ȳk〉)2 ≤ O(ω−1/2),

−
〈
ζ+
k , ζ̄

−
k

〉2
= −1

4
(〈xk, x̄k〉 − 〈yk, ȳk〉)2 ≤ 0.

By summing the two expressions we get that: 1
2 (1− 〈xk, x̄k〉2) + 1

2 (1− 〈yk, ȳk〉2) ≤ O(ω−1/2).

E Applicability of Theorem 1 in the setting of Section 4

In Section 3.1 we had defined the profile of user u as
√
Nz′u, a scaled row vector containing the u-th

coordinate of each of the top L eigenvectors of matrix A (i.e., the user profiles are scaled rows of the
N × L matrix X = (x1, . . . , xL) of the top L normalised eigenvectors of A). The algorithms we
investigate in Section 4 produce slightly different coordinates for the users: these coordinates form a
collection of L linearly independent vectors which span the vector space generated by the L eigenvectors
corresponding to the top L largest magnitude eigenvalues of A.

Specifically, for some unknown full rank L × L matrix W = (w1, . . . , wL) of linear coefficients,
we redefine the profile of user u as a scaled row vector

√
Nẑ′u containing the u-th coordinates of an

orthonormal basis of the space spanned by the top L eigenvectors (i.e., the rows of the matrix XW):
ẑu = ((Xw1)(u), . . . , (XwL)(u)). Even in this setting, Theorem 1 and its corrolaries still apply under
the same assumptions (2). Hence, for a large number of users, clusters will emerge, and there is no need
to know the matrix of linear coefficients W .

To give an intuition as to why this result still holds, recall Lemma 1 which shows that the top L
largest eigenvectors X̄ of the block matrix Ā are constant on indices within the same user class. Hence,
a linear combination thereof has the same property. Thus, the redefined user profiles concentrate around
constant vectors (t̂′k)k corresponding to the user classes: t̂′k := ((Y w1)(k), . . . , (Y wL)(k)), where Y =
(y1, . . . , yL) is the matrix of eigenvectors ofM = Bdiag(α) normalised under the α-norm. As previously
stated, the following condition needs to hold in order to distinguish users of separate classes:

The normalized eigenvectors Y under the α-norm are such that t̂′k 6= t̂′`, k 6= `. (2c′).

27

Due to the fact that matrix W is full rank, one can show that condition (2c′) is equivalent to (2c). More-
over, the averaging argument in the proof of the theorem yields:

1

N

∣∣∣{u : ‖ẑ′u − t̂′k(u)‖ ≥ a
}∣∣∣ ≤ 1

N

N∑
u=1

‖
√
Nẑ′u − t̂′k(u)‖

2

a2
= a−2

N∑
u=1

L∑
`=1

[
L∑
i=1

w`(i)[xi(u)− x̄i(u)]

]2

Cauchy-Schwartz
≤ ‖W‖2F

L∑
`=1

‖x` − x̄`‖2

a2
= O(a−2ω−1/2),

since the Frobenius norm ‖W‖F of matrix W is constant (all of its elements are subunitary).

F Proof of Theorem 3
The main ingredient in the proof is the following

Lemma 9. The update equation (12) is such that for all t > 0,

‖X(t+ 1)‖ ≤ eK
∑t
s=1 a(s) (‖X(1)‖+M) (30)

for some positive constant K (i.e., that does not depend on t) and some almost surely finite random
variable M .

Proof. Rewrite Equation (12) in matrix form as

X(t+ 1)−X(t) = a(t)
[
F ((X,Φ,Ψ)(t)) +D−1(t)ξ(t+ 1)

]
for some suitable function F , and where D(t) denotes the N ×N diagonal matrix with diagonal entries
Yu(t). By the specific form of the terms Yu(t), and their role in the function F , it is readily seen that the
latter verifies

‖F (X,Φ,Ψ)‖ ≤ K1‖X‖
for some suitable constant K1. This readily implies that

‖X(t+ 1)‖ ≤ (1 +K1a(t))‖X(t)‖+ a(t)η(t),

where the η(t) = ‖ξ(t+ 1)‖ are iid. By induction, one then establishes that

‖X(t+ 1)‖ ≤
t∏

s=1

(1 +K1a(s))

[
‖X(1)‖+

t∑
s=1

a(s)η(s)

]
.

Denote now η̄ the expectation of η(s), and let M(t) :=
∑t
s=1 a(s)[η(s) − η̄]. It is readily seen that

M(t) is a uniformly integrable martingale, and hence the supremum sups>0M(s) is almost surely finite;
denote it by M̂ . It then follows from the above equation that

‖X(t+ 1)‖ ≤
t∏

s=1

(1 +K1a(s))

[
‖X(1)‖+

t∑
s=1

η̄a(s) + M̂

]
.

Using the elementary inequality 1 + x ≤ ex, one deduces:

‖X(t+ 1)‖ ≤ e
∑t
s=1K1a(s)

[
‖X(1)‖+ e

∑t
s=1 η̄a(s) + M̂

]
.

The result (30) then follows by setting K = K1 + η̄, and M = 1 + max(0, M̂).

28

An additional result that is used is the following

Lemma 10. For a given sequence ε(t) with limt→∞ ε(t) = 0, the sequence z(t) defined as

z(t+ 1) = (1− λb(t))z(t) + b(t)ε(t+ 1)

converges to 0 as t goes to∞.

Proof. By induction, one can deduce from the previous expression the identity

z(t+ 1) = z(1)

t∏
s=1

(1− λb(s)) +

t∑
s=1

ε(s)b(s)

t∏
σ=s+1

(1− λb(σ)).

Elementary analysis can then be used to deduce from this last display, assumptions (18b),(18c) on gains
b(t), and convergence of ε(t) to 0 that z(t) also converges to 0.

Indeed, take any fixed ε > 0. Since ε(t)→ 0, there exists some t0 such that ε(t) < ελ
3 , for all t ≥ t0.

Then, we can write:

z(t+ 1) ≤ z(1)

t∏
s=1

(1− λb(s)) (31)

+

t0∑
s=1

ε(s)b(s)

t∏
σ=s+1

(1− λb(σ)) (32)

+
ελ

3

t∑
s=1

b(s)

t∏
σ=s+1

(1− λb(σ)). (33)

Term (31) develops as

z(1)

t∏
s=1

(1− λb(s)) = z(1)e
∑t
s=1 log(1−λb(s)) ≤ z(1)e−λ

∑t
s=1 b(s) → 0,

by assumption (18c). Term (32) consists of t0 terms (a finite number), each of which converges to 0 by
the same argument as above. Hence, there exists t1 such that for all t ≥ t1, we have

z(1)

t∏
s=1

(1− λb(s)) +

t0∑
s=1

ε(s)b(s)

t∏
σ=s+1

(1− λb(σ)) ≤ 2ε

3
.

It can be shown that term (33) can be written as:

ελ

3

t∑
s=1

b(s)

t∏
σ=s+1

(1− λb(σ)) =
ελ

3

1

λ

(
1−

t∏
s=1

(1− λb(s))

)
≤ ε

3
.

We have shown that for all ε > 0, there exists some t2 = t0 ∨ t1 such that for all t > t2, we have
z(t+ 1) ≤ ε.

The previous lemmas are now used to establish the following result:

Lemma 11. The auxiliary variables Φu(t), Ψu(t) verify

limt→∞ |NΦu(t)−
∑
v fv(t)| = 0,

limt→∞ |NΨu(t)−
∑
v gv(t)| = 0,

(34)

i.e. asymptotically, these quantities do track accurately their intended targets.

29

Proof. We shall only consider the case of Ψu(t), the other one being entirely similar. Rewrite the update
rule (14) in matrix form as

Ψ(t+ 1) = (I − b(t)Λ)Ψ(t) + g(t+ 1)− g(t), (35)

where Λ is the so-called Laplacian matrix of the overlay graph: Λuu = |Nu|, Λuv = −1u∼v for u 6= v.
Recall that the Laplacian Λ is positive semi-definite, with eigenvector e = (1, . . . , 1)′ associated to the
eigenvalue 0. Also, when the overlay graph is connected, all other eigenvectors are associated with strictly
positive eigenvalues λ > 0.

We have by definition of g:

g(t+ 1)− g(t) = {Xu(t+ 1)Xu(t+ 1)′ −Xu(t)Xu(t)′}u
= {Xu(t+ 1)(Xu(t+ 1)′ −Xu(t)′)}u + {(Xu(t+ 1)−Xu(t))Xu(t)′)}u
= a(t){Xu(t+ 1)[Fu((X,Φ,Ψ)(t))′]}u + {[Fu((X,Φ,Ψ)(t))]Xu(t)′)}u

+ a(t){Xu(t+ 1)
ξu(t+ 1)′

Yu(t)
+
ξu(t+ 1)

Yu(t)
Xu(t)′}u.

We can rewrite this as g(t+ 1)− g(t) = a(t)(r(t+ 1) + s(t+ 1) + w(t+ 1)), where

r(t+ 1) = {(Xu(t+ 1) +Xu(t))[Fu((X,Φ,Ψ)(t))′]}u,

s(t+ 1) = {[2Xu(t) + a(t)Fu((X,Φ,Ψ)(t))]
ξu(t+ 1)′

Yu(t)
}u,

w(t+ 1) = a(t){‖ξu(t+ 1)‖2

Y 2
u (t)

}u

By Lemma 9 and the bound on function F therein we have that

‖r(t+ 1)‖ ≤ K ′e2K
∑t
s=1 a(s).

Additionally,
E[s(t+ 1)|Ft] = 0.

Consider z an eigenvector of Λ corresponding to a non-zero eigenvalue λ > 0 and define

ε(t+ 1) :=
a(t)

b(t)
z′[r(t+ 1) + w(t+ 1)],

ε′(t+ 1) :=
a(t)

b(t)
z′s(t+ 1).

Then limt→∞ ε(t) = 0 almost surely. For the term a(t)
b(t) z

′r(t + 1) the convergence follows from condi-

tion (18d), while for a(t)
b(t) z

′w(t + 1) it follows from the fact that the ‖ξu‖ have finite variance and from
condition (18c).

Denote ẑ(t) the scalar product z′Ψ(t). One then deduces from (35) the equation

ẑ(t+ 1) = (1− λb(t))ẑ(t) + b(t)(ε(t+ 1) + ε′(t+ 1)).

We wish to show that ẑ(t) converges to 0. We know that the sequence z(t) defined in Lemma 10 converges
to 0. Consider ∆(t) := ẑ(t)− z(t). It verifies

∆(t+ 1) = (1− λb(t))∆(t) + b(t)ε′(t+ 1),

30

with ε′ such that E[ε′(t+ 1)|Ft] = 0.
If we manage to show that ∆(t) converges to 0, then the same follows for ẑ(t). The convergence of

∆(t) follows from Theorem 1.IV.26. (Robbins-Monro) of [8]. We need to check that the hypothesis of
the latter are verified. We only give details for the following condition

∑
t b(t)

2E[‖ε′(t + 1)‖2] ≤ +∞,
as the others are immediately verified.

A sufficient condition is:

∑
t

b(t)2E

(a(t)2

b(t)2
e2K

∑t
s=1 a(s)

)
︸ ︷︷ ︸

→0

(K ′′(1 + M̂))2‖ξ(t+ 1)‖2

 <∞,
where M̂ is the supremum of the martingale M(t) =

∑t
s=0 a(s)(η(s)− η̄) from Lemma 9, with η(s) =

‖ξ(t+ 1)‖, and η̄ = Eη(t+ 1).
We need that E(M̂2‖ξ(t+ 1)‖2) <∞ and that

∑
t b(t)

2 <∞ to conclude.

E(M̂2‖ξ(t+ 1)‖2) ≤ 1

2
[EM̂4 + E‖ξ(t+ 1)‖4︸ ︷︷ ︸

<∞

].

By Doob’s inequality

P(sup
s≤t

M(s) ≥ x) ≤ EM(t)

x
.

Then

P(sup
s≤t

M(s) ≥ x) = P(sup
s≤t

eθM(s) ≥ eθx) ≤ e−θxE[eθM(t)] = e−θxe
∑t
s=0 ϕ(θa(s)),

where ϕ(y) := logEey(η−η̄) (by independence). Moreover, ϕ(y) ≈ Cy2, for a small enough y and some
constant C > 0. Thus, there exists a large enough s∗ such that ϕ(θa(s)) ≤ C(θa(s))2 for all s ≥ s∗

P(sup
s≥0

M(s) ≥ x) ≤ e−θxe
∑s∗
s=0 ϕ(θa(s))+

∑
s>s∗ C(θa(s))2 = C ′e−θx,

since
∑
s a(s)2 <∞. Hence,

EM̂4 = E(sup
s≥0

M(s)4) =

∫ ∞
0

P(M̂4 > t) dt ≤ A
∫ ∞

0

e−θt
1/4

=
24A

θ4
<∞,

for some constant A ≥ 0.
We thus obtain that when decomposing vector Ψ(t) according to the eigenbasis of matrix Λ, one finds

vanishing coordinates except along eigenvector e. Since the scalar product e′Ψ(t) is always equal to∑
u gu(t), by (35) the announced result follows.

To conclude the proof of the theorem, note now that, by the previous lemma, and our specific choice
of gain parameters Yu(t) in (13), for large enough t, Equation (12) reads in vector form

X(t+ 1)−X(t) =
a(t)

max(1,
∑
k,vX

2
vk(t) + o(1))

[AX(t)−X(t)X ′(t)AX(t)

+ o(‖X(t)‖) + ξ(t+ 1)]. (36)

As is readily seen, this coincides with the update rule (19), except for the o(·) terms. The analysis of
[2] for establishing convergence of (19) also applies in fact to its perturbed version (36), and Theorem 3
follows. �

31

	1 Introduction
	2 Related Work
	3 Spectral Recovery of Probabilistic Taste
	3.1 Similarity-based Profiling
	3.1.1 Statistical Model
	3.1.2 Scaling Assumptions
	3.1.3 Hidden Structure Recovery

	3.2 Application: Extension to Content Recommendation
	3.2.1 Statistical Model
	3.2.2 Scaling Assumptions
	3.2.3 Content Recommendation
	3.2.4 Characterising Performance of a Simple Voting Algorithm

	3.3 Spectral Profiling in Practice

	4 Oja's Algorithm and Beyond
	4.1 A Method for Distributed Spectral Profiling
	4.2 Evaluation of an Asynchronous Version

	5 Conclusions
	A Proof of Lemma ??
	B Proof of Lemma ??
	C Proof of Lemma ??
	D Technical Lemmas for Proving Theorem ??
	E Applicability of Theorem ?? in the setting of Section ??
	F Proof of Theorem ??

