
Evaluating Automatic Parallelization for
Efficient Execution on Shared-Memory Multiprocessors

Kathryn S. McKinley
Department of Computer Science, University of Massachusetts, Amherst, MA 01003-4610

mckinley@cs.umass.edu

Abstract
We present a parallel code generation algorithm for complete appli-
cations and a new experimental methodology that tests the efficacy
of our approach. The algorithm optimizes for data locality and par-
allelism, reducing or eliminating false sharing. It also uses interpro-
cedural analysis and transformations to improve the granularity of
parallelism. Although the individual components of the algorithm
have been published previously, their coordination is unique to this
paper. For experimental validation, we do not attempt to parallelize
‘dusty deck’ programs where many have tried and failed. Instead,
we collect programs where the users tried to achieve excellent paral-
lel performance. We apply our optimizations to sequential versions
of these programs, i.e., the compiler was required to use its analysis
and algorithms to parallelize the program and could not rely on user
assertions that for example, a loop is parallel. With this metric, our
algorithm improves or matches hand-coded parallel programs on
shared-memory, bus-based parallel machines for eight of the nine
programs in our test suite.

1 Introduction
A lesson to be learned from vectorization is that users rewrote pro-
grams based on feedback from vectorizing compilers. The rewrit-
ten programs were independent of any particular vector hardware,
but were written in a style amenable to vectorization. Compilers
were then able to generate machine-dependent vector code with
excellent results. We believe that just as vectorization was not
successful for dusty deck programs, that when programmers have
never considered medium to large grain parallelism, automatic par-
allelization is doomed to failure. Indeed, finding medium to large
grain parallelism is more difficult than single statement parallelism
and compilers have had few successes on dusty deck programs
[8, 15, 20, 21].

Since it is unknown how much parallelism a dusty deck program
contains, measuring the success of a compiler on one is at best tenu-
ous. The programs may actually be completely sequential, parallel,
or somewhere in between. However, only linear speed-up can be
declared a success and linear speed-up is rare, even for parallel ap-
plications. In practice, parallel programs often require algorithms
and data structures that differ from equivalent sequential and vec-
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tor programs. The intellectual and programming costs required for
good parallel performance need to be paid. Our hope is that by
providing sophisticated compilers which map parallel programs to
modestly and massively parallel machines that the programming
cost will only have to be paid once. Users will concentrate on par-
allel algorithms at a high level and the compiler will be responsible
for machine dependent details such as exploiting the memory hierar-
chy. In this paper, we test this thesis for Fortran on shared-memory,
bus-based parallel machines with local caches.

We first develop an advanced parallelizing algorithm for complete
applications that exploits and balances data locality, parallelism,
and the granularity of parallelism. These optimization techniques
minimize false sharing between processors. Since we have found
that large and medium grain parallelism often requires crossing
procedure boundaries, it also uses interprocedural analysis and op-
timization. The algorithms are described in Section 3. Using this
optimizer, we designed an experimental study which took as input
parallel programs. These programs were written for a variety of
parallel machines. We applied the optimizer to sequential versions
of the programs. Our algorithm was therefore required to use its
analysis and optimizations to exploit and introduce parallelism. It
could not rely on user assertions, e.g., a loop is parallel or a variable
privatizable.

Most of the programs in our test suite are published versions of
state of the art parallel algorithms[18]. It is therefore unlikely that
large amounts of additional parallelism are available without more
algorithm restructuring. Nor are these programs obviously parallel.
Many require interprocedural and symbolic analysis to find paral-
lel loops. Using the original parallelization as a standard gives us
a measure of success for the abilities our optimizer, unlike dusty
deck studies where the goal in terms of the amount of parallelism is
unknown. By examining programming styles in light of the com-
piler’s successes and failures, we also explore whether a machine-
independent parallel programming style exists. We found that for
the most part, these parallel programmers use a clean, modular style
that is amenable to compiler analysis and optimization, allowing the
more machine-dependent optimizations to be left to the compiler. In
cases where data locality and parallelism intertwined, our compiler
improved hand-coded performance by eliminating false sharing.

We present a brief technical background and then describe our
compilation strategy. We spend the remainder of the paper detailing
and interpreting our experiments.

2 Technical Background

Data Dependence. We assume the reader is familiar with data de-
pendence. Throughout the paper, ~� = f�1 : : : �kg represents a
hybrid direction/distance vector for a data dependence between two
array references, corresponding from left to right to the outermost
loop to innermost loop enclosing the references. Data dependences
are loop-independent if the references to the same memory loca-



tion occur in the same loop iteration and loop-carried if they occur
on different iterations. Parallel loops have no loop-carried depen-
dences and sequential loops have at least one.

Sources of Data Reuse. The two sources of data reuse are tem-
poral reuse, multiple accesses to the same memory location, and
spatial reuse, accesses to nearby memory locations that share a
cache line or a block of memory at some level of the memory hi-
erarchy. (Spatial reuse is sometimes referred to as stride 1 or unit
stride access.) Spatial reuse may result from self-reuse, consecu-
tive accesses by the same array reference to the same cache line,
or from group-reuse, multiple array references accessing the same
cache line. Similarly, temporal reuse may arise from multiple ac-
cesses to the same memory location by a single array reference or
by multiple array references. Without loss of generally, we assume
Fortran’s column-major storage.

3 Automatic Parallel Code Generation
This section contains a new algorithm for parallel code generation
of complete applications. The algorithm is unique in its ability to
exploit both data locality and parallelism, to increase the granularity
of parallelism, and to optimize across procedure boundaries. For
convenience, we name the components as follows.

Optimize - uses loop permutation and tiling to exploit data locality
and parallelism, minimizing or eliminating false sharing [11,
5].

Fuser - performs loop fusion and distribution to enable Optimize
and increase the granularity of parallelism [12, 13]. The com-
bination is an effective kernel (intraprocedural) parallelization
algorithm.

Enabler - uses interprocedural analysis and transformations to
enable the kernel algorithm to be applied across procedure
calls. In particular, loops containing calls can be parallelized
and nests spanning calls optimized. The interprocedural trans-
formations, loop embedding, loop extraction, and procedure
cloning are used only when they enable loop transformations
[9, 18].

These components appeared previously in the literature and for
the algorithmic details the reader should refer to the appropriate
articles [9, 11, 12, 18]. Section 3.4 however extends and integrates
them for the first time into a single code generation algorithm. To
illuminate the algorithm and experimental results, we summarize
its components below.

3.1 Optimize: Data Locality and Parallelism

The most effective and essential component of our parallel code
generation algorithm uses a simple memory model to drive opti-
mizations for data locality and parallelism [5, 11]. We employ loop
permutation and tiling to introduce and exploit data locality and
parallelism. Using a memory model and loop transformations, our
algorithm places the loops with the most reuse innermost and par-
allel loops outermost, where each is most effective. It also balances
tradeoffs between the two, eliminating false sharing. The algorithm
performs the following five steps.

1. It builds reference groups for array references that exhibit
group-temporal and group-spatial locality.

2. It determines the cost of loop nest organizations in terms of
the number of cache lines accessed.

3. It determines memory order, the permutation of the loops in
the nest that yields the best data locality (i.e.,the fewest cache
lines accessed).

4. It achieves memory order or a nearby loop order through loop
permutation.

5. It introduces outer loop parallelism by tiling the nest to elim-
inate false sharing (i.e., strip-mining and permuting the nest).

Because we take advantage of the following observation about
reuse, our analysis is greatly simplified.

If a loop l causes more reuse than loop l0 at the innermost loop
position, l will also cause more reuse than l0 at any outer loop
position.

The first four steps of the algorithm therefore determine the amount
of reuse for the nest considering each loop as if it were innermost.
Based on this measure, the algorithm then permutes the nest to
achieve the lowest possible cost over the entire nest while preserving
correctness.

3.1.1 Reference Groups

This step builds a set of reference groups for each loop in a nest
based on data dependences. For every loop l in the nest, it considersl at the innermost position. For l, the algorithm places two array
references in the same group if there is a dependence ~� between
them that indicates group-reuse as follows:

1. 9 Ref1 ~� Ref2 , and

2. a) ~� is a loop-independent dependence, or
b) �l is a small constant d and all other entries are zero, the l
loop will thus carry the dependence, or
c) �f , the distance in the first subscript dimension is a small
constant d and all other entries are zero.

Conditions a) and b) detect group-temporal reuse. Condition c)
detects many forms of group-spatial reuse.

3.1.2 Loop Costs

To determine the cost in cache lines of a reference group, we select a
representative array reference from each group. For each candidate
inner loop l, an array reference is classified and assigned a cost as
follows:

Loop-invariant - if the subscripts of the reference do not vary
with l, then it requires only 1 cache line for all iterations of l
(these references should end up in registers).

Consecutive - if only the first subscript dimension (the column)
varies with l, then it requires a new cache line every cls it-
erations, resulting in trip=cls cache line accesses, where l
performs trip iterations and cls is the cache line size in array
elements. Adjustments are made for nonunit strides less than
the cache line size [5].

Non-consecutive – if the subscripts vary with l in any other man-
ner, then the array reference is assumed to require a different
cache line every iteration, yielding a total of trip cache line
accesses.

To determine the reference cost over the entire nest when loop l
is innermost, we multiply the above cost by the trip counts of the
remaining loops. These loops would enclose l if l is innermost.
The loop cost is simply the sum over all the reference groups for a
candidate inner loop l.



Figure 1: Subroutine dmxpy from Linpackd

do j = 1, n2
do i = 1, n1

y(i) = y(i) + x(j) * m(i,j)

Cost in Cache Lines, cls = 4

reference candidate inner loop
group loop i loop j

y(i) 1/4 n1 � n2 1 � n1
x(j) 1 � n2 1/4 n2 � n1

m(i,j) 1/4 n1 � n2 n1 � n2

loop cost 1/2 n1 � n2 + n2 5/4 n1 � n2 + n1

Example. Consider the subroutine dmxpy from Linpackd in Fig-
ure 1. In this example, the reference groups are the same for the i
and j loops. Since there is only one reference to the arrays x andm, we place each in a reference group by itself. Since the two ref-
erences to y are connected by a loop-independent dependence, they
make a single group. As illustrated in the table, the reference y(i)
is consecutive in the i loop and invariant in the j loop, the referencex(j) is consecutive in the j loop and invariant in the i loop, and the
reference m(i; j) is consecutive in the i loop and non-consecutive
in the j loop. The cost of array m dominates since it accesses the
largest amount of data.

3.1.3 Memory Order

To determine the loop permutation which accesses the fewest cache
lines, we rely on our observation; if a loop l causes more reuse
than loop l0 at the innermost loop position, l will also cause more
reuse than l0 at any outer loop position. Therefore, we simply rank
the loops using their loop cost, ordering the loops from outermost
to innermost fl1 : : : lng such that the loop cost of li is less than
or equal to li�1. We call this ordering memory order. Consider
dmxpy again. Assuming n1; n2 > 1, loop i accesses fewer cache
lines than j and should therefore be placed innermost, so memory
order is flj ; lig.

3.1.4 Achieving Memory Order

Memory order specifies the permutation of the nest with the least
cost. To determine if the order is a legal one, we permute the
corresponding entries in the distance/direction vector. If the result
is lexicographically positive (the majority of the time it is [5]), the
permutation is legal and we transform the nest. If not, we use an
algorithm called NearbyPermutation [11].

Without violating the dependence constraints and based on the
loops’ relative amounts of reuse, NearbyPermutation will place the
loops carrying the most reuse as innermost as possible; i.e., it is
guaranteed to find a legal permutation that positions the innermost
loop correctly if one exists, and if the desired inner loop cannot
be obtained, it places the next most desirable inner loop in the
innermost position if possible, and so on. This characteristic is
important because most data reuse occurs on the innermost loop(s),
so positioning it correctly yields the best data locality.

3.1.5 Tiling for Parallelism

This step introduces a single level of outer loop parallelism, which is
all the outer loop parallelism that typical bus-based shared memory
parallel processors can effectively exploit. If additional levels of
parallelism are desirable, this step may be applied repeatedly.

At this point in the algorithm, the nest is structured such that it
accesses the fewest cache lines and accesses to the same cache line

occur close together in time. In addition, if a loop carries invariant
or consecutive reuse, it has been identified. The two goals during
the introduction of parallelism are:

1. to place a parallel loop in the outermost legal position, maxi-
mizing the granularity of parallelism, and

2. if the parallel loop carries reuse, to tile it such that no false-
sharing of cache lines between processors results. Reuse will
thus fall locally on a processor, minimizing communication.

The algorithm therefore selects a loop for parallelization which is
either already parallelizable in the outermost position or if not, can
be legally permuted and parallelized into an outermost position. If
this loop carries either temporal or spatial reuse, the algorithm strip-
mines it by tile size. Strip-mining is always safe and in this case
produces two loops, a parallel outer iterator and an inner contiguous
strip. If the loop carries only spatial reuse and the array layout in
memory is known, we base the tile size on the cache line size and
the alignment of the array. Otherwise, tile size is based on the size
of the cache, the cache line size, and the run-time scheduler. In the
experiments reported in Section 4, the optimizer makes the strips
as large as possible by matching the number of tiles to the number
of processors. When necessary, the optimizer permutes the iterator
to an outermost position.

Example. Consider dmxpy again. Note that only the i loop is par-
allel. It can be safely interchanged and parallelized in the outermost
position. Since it carries invariant and cache line reuse, we tile the
nest, i.e., the optimizer strip-mines the i loop by the number of
processors, permutes the iterating loop to the outermost position,
and parallelizes it. Figure 2 illustrates the result. Because this loop
structure maximizes data locality, it minimizes communication of
data between iterations and therefore between processors. In ex-
periments on the Sequent, this structure results in speed-ups of up
to 16.4 on 19 processors. The algorithm obtains linear speed-ups
for kernels such as matrix multiply [11].

Figure 2: Parallelizing dmxpy

do j = 1, n2
do i = 1, n1

y(i) = y(i) + x(j) * m(i,j)+
parallel do ii = 1, n1, tile

do j = 1, n2
do i = ii, min(ii + tile - 1,n1)

y(i) = y(i) + x(j) * m(i,j)

Discussion. In our experiments, memory order is usually a legal
permutation of the nest [5]. The complexity of the entire algorithm
in this case is dominated by the time to sort the loops in the nest
and the corresponding dependence vectors. The algorithm is thusO(n log(n)) in time to sort and linear in space, where n is the depth
of the nest. In the worst case, when the desired outermost loop must
be innermost, NearbyPermutation’s complexity dominates, O(n2)
time. The parallelization step of the algorithm is linear. These
algorithms have proven effective in practice for uniprocessors and
shared-memory multiprocessors [5, 11]. We define the subroutine
Optimize to perform the above algorithms on an arbitrary loop nest.

3.2 Fuser: Improving the Granularity of Parallelism

Loop fusion and distribution have several purposes in our parallel
code generation algorithm [5, 12]. The foremost is fusing parallel



Figure 3: Loop Distribution and Parallelization

parallel do i = 1, n
do i = 1, n =) b(i) = a(i)

a(i � 1) = : : : distribution end parallel do
b(i) = a(i)

enddo (= parallel do i = 1, n
fusion a(i �1) = : : :

end parallel do

loops together to increase the granularity of parallelism and mini-
mize communication of shared data. In addition, loop distribution
functions as an enabling transformation for effective parallelization
by Optimize. This section describes a simple approach to incorpo-
rating fusion and distribution into the Optimize algorithm.

3.2.1 Loop Distribution

If a loop nest cannot be parallelized effectively using Optimize, then
dividing the statements in the nest using distribution may enable
parallelization of some subset of the statements. For example in
the left loop nest in Figure 3, there is a loop carried dependence
between the two assignment statements that prevents the nest from
being performed correctly in parallel. However, after distribution
the two loops on the right result and both may execute correctly in
parallel.

Distribution algorithm. Beginning with the innermost loop ln in
a nest fl1; : : : ; lng, the algorithm Distribute divides the statements
into strongly connected regions scrs based on the dependences.
Each scr is then placed in a loop by itself which divides the state-
ments up into the finest granularity possible. In the style of Allen
et al. [1], the process is repeated for ln�1 until some loop cannot
be distributed over the statements (this loop may of course be ln).
If new nests are created as in Figure 3, these become candidates
for parallelization by Optimize. This algorithm is not optimal be-
cause combining distribution with loop permutation may result in a
deeper distribution that in turn may be more effectively parallelized
[1, 18]. This flexibility was not required in our experiments, so for
simplicity it is not explored further here.

After distribution and parallelization, there may be a sequence
of parallel and sequential nests, some of which may be fused back
together. Fusion is desirable between parallel loops because it may
reduce communication of shared data and it reduces the amount of
barrier synchronization between processors which is typically non-
trivial on parallel bus-based hardware. We showed that the problem
of fusing a set loops is the same, regardless if they resulted from
distribution or were written that way [12].

3.2.2 Loop Fusion

Loop fusion merges multiple loops with conformable headers into
a single loop. It eliminates unnecessary barrier synchronization and
reduces communication of shared data between loops. Two loop
headers are conformable if they have the same number of iterations
and are both either sequential or parallel loops [13]. Loop fusion
is safe if it does not reverse any dependences between candidate
loops. We only perform safe fusions [13]. Our goal is to maximize
parallelism. Subject to this constraint, we then minimize the number
of parallel loops. Fusion does not combine two parallel loops when
the result must be executed sequentially, as illustrated in Figure 3.

Fusion algorithm. Given a collection of loop nests that are candi-
dates for fusion and do not all have conformable headers, we divide
them into k sets based on their type. Two or more loop nests with
conformable headers have the same type. Typed fusion seeks to

find the minimal number of loops resulting from a fusion in which
nodes of a different type cannot be fused. We proved this general
form of fusion is NP-hard [13]. When there are only two types
which are differentiated by their parallel and sequential status andn candidate nests, we have an O(n2) time and space algorithm that
minimizes the number of parallel loops [12]. This restricted case
arises frequently in practice. In particular, it occurs when the fusion
candidates result from distribution. Programmers also write these
types of adjacent and fusible nests and several occur in programs in
our test suite.

3.3 Kernel Parallelization

Our kernel parallelization algorithm appears in Figure 4. It com-
bines fusion and distribution with Optimize to introduce effective
parallelism and to improve the granularity of parallelism achieved.
It takes as input a set of adjacent loop nests in a procedure and pro-
duces an optimized version of the nests. For each nest, it begins by
applying Optimize. If this step is not successful, enabling transfor-
mations are attempted. It first tries fusing all inner loops, which may
enable permutation and tiling, and then tries Optimize again. If it is
still unsuccessful, the algorithm distributes to the finest granularity.
If distribution is able to form new loop nests, they may be at some
inner level or the outermost level, i.e., the outermost loop(s) are not
necessarily included in the nests lni resulting from the distribution
in the else of Figure 4. Optimize is applied to each lni. These
resultant nests are candidates for fusion. Similarly, after each outer
loop lj has been optimized, the algorithm fuses the resultant nests
when safe and profitable.

3.4 Enabler: Interprocedural Analysis and Transformation

Striving for a large granularity of parallelism has a natural con-
sequence: the compiler must look for parallelism in regions of
the program that span multiple procedures. Our approach to inter-
procedural optimization is fundamentally different from previous
research that uses inlining. Inlining is typically performed instead
of interprocedural analysis and without knowing if it will yield any
optimization opportunities. Instead, we restrict the application of
interprocedural transformations to cases where it enables other op-
timizations and therefore is expected to be profitable. This strategy,
called goal-directed interprocedural optimization, uses interproce-
dural analysis to determine an optimization strategy and the in-

Figure 4: Kernel Parallelization Algorithm

INPUT: L = fl1; : : : ; lng, lj adjacent nests in a procedure

OUTPUT: an optimized version of L
ALGORITHM:

for j = 1, n
if Optimize(lj ) succeeds
elseif Fuse all inner loops of lj and

Optimize the result succeeds
elsefln1; ln2; : : : ; lnmg = Distribute(lj )

if m = 1 continue
for i = 1, m

Optimize (lni)
endfor
Fuse (ln1; ln2; : : : ; lnm)

endif
endfor
Fuse(l1; : : : ; ln)



Figure 5: Interprocedural Parallel Code Generation

subroutine P(a) subroutine P(a) subroutine P(a)
real a(n,n) real a(n,n) real a(n,n)
integer i integer i,j integer i,j

do i = 1, 7
do i = 1, 7 do j = 1, 100 parallel do j = 1, 100

call Q(a,i) SRWa : a[i,1:100] call Q(a,i,j) do i = 1, 7
call Q(a,i+1) SRWa : a[i+1,1:100] enddo call Q(a,i,j)

enddo do j = 1, 100 call Q(a,i+1,j)
call Q(a,i+1,j) enddo

enddo end parallel do
enddo

subroutine Q(f,i) subroutine Q(f,i,j) subroutine Q(f,i,j)
real f(n,n) real f(n,n) real f(n,n)
integer i,j integer i,j integer i,j
do j = 1,100

f(i,j) = f(i,j) + : : : f(i,j) = f(i,j) + : : : f(i,j) = f(i,j) + : : :
enddo

(a) before optimization (b) loop extraction (c) fusion, interchange, & parallelization

terprocedural optimizations, loop embedding, loop extraction, and
procedure cloning, to effect it.

3.4.1 Interprocedural Analysis

We use section analysis to analyze interprocedural side effects to ar-
rays [3, 9, 10]. Our sections [18] are slightly more precise than data
access descriptors [3]. Sections represent a restricted set of the most
commonly occurring array access patterns; single elements, rows,
columns, grids, and their higher dimensional analogs. The various
approaches to interprocedural array side-effect analysis must make
tradeoffs between precision and efficiency [3, 4, 10, 16, 23]. Sec-
tion analysis loses precision because it only represents a selection
of array structures and it merges sections for all references to a vari-
able in a procedure into a single section. However, these properties
make it efficient; in practice, it often works as well as more precise
techniques [10, 16].

Sections reduce the dependence problem on loops containing
procedure calls to the problem on ordinary statements [10]. To in-
crease the precision of our representation, we include access order
and the precision of sections [18]. We also create an augmented
call graph [9]. It represents procedure calls and the loop nest-
ing structure. These extensions enable the profitability and safety
of intraprocedural transformations (e.g., fusion, permutation, and
parallelization) to be determined when the nests span procedure
boundaries [18]. In addition, these determinations need only in-
spect the results in the calling procedure.

3.4.2 Loop Embedding and Loop Extraction

Loop embedding pushes a loop header into a procedure called within
the loop, and loop extraction extracts an outermost loop from a pro-
cedure body into the calling procedure. They expose the loop
structure to optimization without incurring all the costs of inlining.
Just as inlining is always safe, these transformations are always
safe. They require an outer loop which encompasses all the other
statements in the called procedure. Using extended section analysis,
the kernel optimizer and thus Optimize can test for permutation, fu-
sion, distribution, tiling, and parallelization for loop nests that span
procedures [18]. If an optimization is applicable across procedure
boundaries, then we use embedding or extraction to enable it. The
same analysis could decide when to perform inlining.

Example. Consider Figure 5(a) where the calls to Q are annotated
by Sa, the sections of array a. In this example, the same section

of a is both modified and read at each call. Using the sections,
dependence testing in P reveals the dependence between the two
calls, ~� = f1; 0g, carried by the i loop. Notice we have the distance
for the j loop, even though it results from code in subroutine Q.
We call the kernel algorithm on the nest rooted at loop i whose
scope includes subroutine Q. Optimize tries to interchange thei and j loops to put the unit stride access on the inner loop and
the parallel j loop at the outermost position. It fails because the
loop structure, as revealed by the augmented call graph, prevents
interchange. The algorithm next determines that fusion of the inner
loops is safe and that fusion enables interchange and parallelization
by Optimize. To perform the optimizations, the loops are placed in
the same procedure via loop extraction. See Figure 5(b) and (c).

Embedding versus Extraction. The choice between embedding
and extraction is made based on the desired optimizing transforma-
tion. All things being equal, embedding loop nests into the called
procedure is preferable because it reduces procedure call overhead
by the number of iterations in the nest. However, if loop nests
originating from more than one call site are needed to perform an
optimization, extraction is required, as illustrated in Figure 5(b).

3.4.3 Procedure Cloning

Procedure cloning generates multiple copies of a procedure each
tailored to its calling environment [7]. Even without embedding
or extraction, cloning is necessary for interprocedural parallel code
generation because multiple versions of a procedure are required if
a procedure is called in two or more settings that require different
parallelizing optimizations. For instance, there are two calls to Q
in Figure 6(a); one is surrounded by a loop and one is not. Both thei and j loops are parallel, but we only want to introduce one level
of parallelism. We therefore produce a version tailored to each call
site, as illustrated in Figure 6(b).

3.5 Whole Program Parallelization

The judicious application of interprocedural optimizations does not
change the basic structure of the kernel parallelization algorithm.
However, testing the safety and profitability of each of the trans-
formations is complicated somewhat. Our strategy separates le-
gality and profitability tests from the mechanics of the transforma-
tions [18]. The safety tests depend on the precision of the depen-
dence information and the sections analysis. For permutation, the
dependences must be precise enough in the caller to determine if



Table 1:

Program Test Suite

Name Description lines authors affiliation
Seismic 1-D Seismic Inversion 606 Michael Lewis Rice
BTN BTN Unconstrained Optimization 1506 Stephen Nash & Ariela Sofer George Mason
Erlebacher ADI Integration 615 Thomas Eidson ICASE
Interior Interior Point Method 3555 Guangye Li & Irv Lustig Cray Research, Princeton
Control Optimal Control 1878 Stephen Wright Argonne
Direct Direct Search Methods 344 Virginia Torczon Rice
ODE Two-Point Boundary Problems 3614 Stephen Wright Argonne
Multi Multidirectional Search Methods 1025 Virginia Torczon Rice
Banded Banded Linear Systems 1281 Stephen Wright Argonne
Linpackd Linpackd benchmark 772 Jack Dongarra Tennessee

Figure 6: Cloning for Correct Parallel Code Generation

procedure C procedure C
call Q call Qclone
do i = 1, n parallel do i = 1, n

call Q call Q
enddo end parallel do

procedure Q procedure Q
do j = 1, n do j = 1, n: : : : : :
enddo enddo

procedure Qclone
parallel do j = 1, n: : :
end parallel do

(a) original (b) parallelized with cloning

they would be reversed after permutation. Since fusion requires ad-
ditional dependence testing, the sections must be precise. If they are
not precise, the algorithms conservatively assume transformation is
unsafe. Testing distribution of a loop into a call is more difficult
since the dependence information in the caller is not of fine enough
granularity. Additional dependence testing in the call would need
to be performed to determine its safety. Therefore, we only use
fusion, permutation, and tiling in combination with interprocedural
transformations.

4 Experiment

For our experimental validation, we do not apply our parallel code
generation algorithm to ‘dusty deck’ programs whose authors never
considered parallel execution. Although, it will be successful in
some instances. Instead, we measure the ability of our optimiza-
tions to detect and exploit parallelism that is known to exist, i.e.,
the compiler’s ability to match or exceed performance of parallel
programs written by programmers who thought and cared about
their parallel performance. Based on our successes and failures, we
also determine a parallel programming style from which compilers
are more likely to achieve or improve hand-tuned performance for
shared-memory, bus-based parallel machines.

We designed the following experiment to measure the efficacy
of our automatic parallel code generator. We assembled programs
written for a variety parallel machines. We applied our algorithm to

sequential versions of these programs. The compiler was required
to use its analysis and algorithms to parallelize the program and
could not rely on user assertions that for example, a loop is parallel.
We executed and compared the original hand-parallelized version,
the sequential version, and the automatically parallelized version
on a 20 processor Sequent Symmetry S81. Our results are very en-
couraging. Our algorithm exceeds or matches hand-coded parallel
programs for eight of the nine programs in our suite.

5 Methodology
5.1 The Programs

We solicited programs from scientists at Argonne National Labo-
ratory and from users of the Sequent and Intel iPSC/860 at Rice.
No screening process was performed; we used all the programs that
were submitted. The 9 applications programs that were volunteered
had been written to run on the following parallel machines: the Se-
quent Symmetry S81 with 20 processors, the Alliant FX/8 with 8 and
16 processors, and the Intel iPSC/860 with 32 processors. Table 1
enumerates the programs, their total number of non-comment lines,
their authors and affiliations. There are 9 programs on which we
will focus, plus we added Linpackd since it is well known to contain
parallelism. 8 programs out of 9 are dense matrix codes. Interior is
a sparse matrix code. The authors are all numerical scientists and 6
of the 9 programs are state of the art parallel versions. Papers have
been published about them and a lot of attention was paid to their
performance. They are described in more detail elsewhere [18].

By collecting programs rather than writing them ourselves we
avoided the pitfall of writing a test suite to match the abilities of
our techniques and architecture. However, many of the problems
inherent to any program test suite also arise here. Of interest here is
that it may be only well structured codes were volunteered. Maybe
the authors of poorly structured ones did not want to expose their
codes to a critical eye. Fortunately, this furthers our arguments
for a modular machine-independent programming style, rather than
thwarting the experiment.

5.2 Creating Program Versions

For each of the programs that were originally written for the Se-
quent, this version is the original parallel version. For the programs
written for other architectures, we modified any parallelization di-
rectives to reflect the equivalent Sequent directives. In Erlebacher,
the parallelism is not explicit. Here, we performed a naive paral-
lelization of outer loops to create the parallel version.

We created the sequential version of each program simply by ig-



noring all the parallel directives. Directives included parallel loops,
variable privatization, and critical sections. On the sequential ver-
sion, we then used the advanced analysis and transformations avail-
able in our interactive parallel programming tool, the ParaScope
Editor (PED) [6, 14], to perform our parallel code generation al-
gorithm. Although the individual transformations were automated,
the code generation algorithm was not.

5.3 Automatic Parallel Code Generation

Analysis. To overcome gaps in the current implementation of pro-
gram analysis in PED, we imported dependence information from
PFC. PFC is the Rice system for automatic vectorization [2]. PFC’s
analysis is more mature and includes important features which were
not yet implemented in PED. It performs advanced symbolic de-
pendence tests. It also computes interprocedural constants, inter-
procedural symbolics and interprocedural MOD and REF information
for simple array sections [10]. PFC produces a file of dependence
information that is converted into PED’s internal representations.

Transformation. Our implementation was not complete when
these experiments were performed. We used the augmented call
graph, program analysis, and the transformations available in PED,
to apply our parallel code generation algorithm. In PED, transfor-
mations have two phases, i.e., the mechanics of a transformation
are separated from its test for correctness. Users select a transfor-
mation and in response, PED determines the safety and profitability
of the transformation. If it safe, the user decides to apply it or
not. If a transformation is applied, PED carries out the mechanics of
changing the program and incrementally updating the dependence
information to reflect the new source. Except for the interproce-
dural transformations, the individual transformations used by our
parallel code generation algorithm are implemented in PED, but the
driver was not. Using PED, we attempted the transformations as
specified by the algorithm and applied them only when PED assured
their correctness. We kept optimization diaries for each program.

5.4 Execution Environment

We ran and compared all three versions on a Sequent Symmetry S81
with 20 processors. The Sequent has a simple parallel architecture
which does not include vector hardware, allowing our experiments
to focus solely upon medium and large grain parallelism. Each
processor has its own 64Kbyte two-way set-associative cache and
is connected to the bus. The cache line size is 4 words. The Sequent
has a flexible compiler that allows the program to completely specify
parallelism, [19].

To introduce parallelism into the programs, we used the par-
allel loop compiler directives. We compiled with version 2.1 of
Sequent’s Fortran ATS compiler using the compiler options that
specify multiprocessing, the Weitek 1167 floating-point accelera-
tor, and optimization at its highest level (O3). In a few programs,
Sequent compiler bugs prevented the highest level of optimization
and use of the Weitek chip at the same time. In these programs, the
Weitek 1167 floating-point accelerator was used and optimization
was suppressed.

6 Results

We measured execution times for:
seq: the sequential version of the program,
hand: the hand-coded, user parallelized program, and
auto: the version obtained using our optimization algorithm.

We also measured subparts of a program if there were differences
between the automatically parallelized version and the user paral-

lelized version. For example, if the automatic version parallelized a
nest and the hand-coded version did not, the execution time for that
nest is measured in all versions. These measurements reveal the
magnitude of the particular success and failures of our algorithm.
They are labeled in the tables as follows.

The Entire Application: execution time of the application.

Improvements: execution times in regions of the program where
our optimization algorithm generated a different parallelization
strategy than the hand-coded version.

Degradations: execution times in regions where the automati-
cally generated version could not detect parallelism specified
by the hand-coded version.

The elapsed times for the entire applications were measured in sec-
onds using the system call secnds. Execution times for program
subparts that differed were measured using the microsecond clock,
getusclk. From these times we computed speed-ups for the paral-
lel programs. Some of the differences between program versions
occurred on at inner loops. In these cases, we measured the per-
formance of the outermost enclosing loop in order to disrupt the
execution as little as possible. The speed-ups of these optimized
versions are under reported. Table 2 contains the speed-ups over
the sequential version of the parallel versions. The execution times
in seconds of all the program and program subpart versions appear
in Table 3.

In Table 2 and 3, a blank entry means that no program or pro-
gram subpart fell in that category. For example, the automatically
parallelized version and the user parallelized version did not differ
for Control, Direct, and ODE and therefore we did not measure any
subparts.

6.1 Interpretation and Analysis of Results

As can be seen in the percent change column (�) in Table 2,
except for Multi, the automatically generated programs either per-
formed as well or better than the hand-coded parallel versions.
These programs are complete applications that contain I/O and
computation. The speed-ups were therefore not linear and ranged
from 2.4 to 14.2 on 19 processors. Consider the improvements
category. Every time our algorithms chose an optimization strategy
different from the user’s, it was an improvement. The improvement
was at least a factor of 1.9 and at best a factor of 4.9.

In three programs, Interior, BTN and Multi, users found more
parallelism than our automatic techniques. For Interior, these degra-
dations did not have much effect on overall execution time. If we

Table 2:
Speed-ups over the sequential version on a 19 Processor Sequent

Improvements Degradations Entire Application
Name hand auto hand auto hand auto �
Seismic 3.0 7.9 9.1 12.3 35%
BTN 2.0 3.9 -6.1 1.0 3.2 4.1 28%
Erlebacher 13.8 15.0 13.2 14.2 7%
Interior 6.9 10.4 6.9 5.2 6.9 6.9 0%
Controly 3.8 3.8 0%
Direct 2.4 2.4 0%
ODE 3.4 3.4 0%
Multi 15.1 1.0 5.3 1.0 -530%
Bandedy ? 1.0 ?
Linpackd 16.5 9.2 NA? : result not obtainable; y : 8 processors



Table 3:
Execution Times in seconds

Improvements Degradations Entire Application
seq hand auto seq hand auto seq hand auto

Seismic 21.14 7.14 2.69 155.97 17.05 12.59
BTN 13.97 7.045 3.57 0.14 0.85 0.14 44.01 13.93 10.73
Erlebacher 87.83 6.36 5.86 88.22 6.67 6.20
Interior 19.50 2.00 1.87 24.12 3.47 4.64 1044.16 151.16 151.53
Controly 17.44 4.61 4.61
Direct 151.28 63.65 63.65
ODE 41.96 12.22 12.22
Multi 75.45 4.98 75.45 87.60 16.32 87.60
Bandedy ? ? ?
Linpackd 517.87 31.43 547.59 59.43? : result not obtainable; y : 8 processors

look at the corresponding execution times in Table 3, it is apparent
that both the degradations and improvements only affect the overall
execution time by 3% or less. Each of BTN and Multi contain
parallel loops with critical sections that update shared variables.
Analysis techniques exist that can properly identify the parallelism
[22], but since it was not part of our algorithm, we did not use them.
In BTN, the benefit of parallelism was actually overwhelmed by
the overhead of the critical section, resulting in better performance
when the loop executed sequentially. In Multi, it was the only outer
parallel loop and accounted for 86% of the sequential running time
and 30% of the parallel running time.

Our automatic techniques could not discover any of the paral-
lelism in Banded. This program was written for an Alliant FX/8
and converting three parallel loops to the equivalent Sequent par-
allel loop directives resulted in a runtime error. The parallel loops
contained procedure calls that explicitly divided a linearized array
on to 8 processors. The program used offsets into a logical row of
a linearized array at a call site and then subscripted it with negative
indices. This practice is not legal Fortran and will thwart even
advanced dependence analysis. It is most likely responsible for the
runtime error on the Sequent. The inability to analyze or parallelize
this program was due to two poor programming styles, linearization
of logical arrays and using a fixed number of processors to divide
the work. These practices illustrate a programming style that is
not portable to a different machine or even to different numbers of
processors.

6.1.1 Program Analysis

Out of approximately 650 loops which made up 341 nests, de-
pendence analysis detected approximately 400 parallel loops at all
levels of nesting out of the 650 loops (62%) and 220 out of 340
(65%) parallel loops in the outermost position of a nest1. Com-
pared with the programmers, dependence analysis failed to detect
user parallelism in about 3% of the loops and found parallelism
users had missed in about 2% of the loops. When users introduced
parallelism, the compiler was generally able to find it. Compilers
are however more thorough and meticulous than the average user.
As illustrated in Tables 2 and 3, the loops with differences turned
out not to impact performance significantly one way or the other.
Instead, as we discuss in Section 6.1.2, the improvements experi-
enced by the automatically parallelized versions were due to our1The statistics in this section do not include ODE or Banded.

optimization strategy.

Interprocedural Sections. The analysis of interprocedural sec-
tions proved to be a very important feature of the current system.
All but one of the 9 programs contained one or more parallel loops
with a call. Out of a total of 277 procedure calls made by these 9
programs, 123 (44%) of these calls were nested inside loops and
52 (19%) of these loops were parallel. Given our execution results,
section analysis detected parallel loops with calls as well as pro-
grammers. However, flow-sensitive section analysis was needed
to parallelize BTN, ODE, and Banded. In ODE and BTN, we de-
termined the array kill by hand since it is a very simple case that
a reasonable implementation would catch. These results indicate
parallel programmers use procedures calls to manage complexity.
In addition, both flow-sensitive and flow-insensitive interprocedu-
ral section analysis are needed to effectively analyze and optimize
this modular parallel programming style.

Index Arrays. Five of the programs in this test suite used index
arrays that were permutations of the index set. Several of these
were monotonic non-decreasing with a regular, well defined pattern.
In three programs, automatic parallelization would not have been
possible without using user assertions and the testing techniques
developed in our earlier research [17]. The other two programs
used them in a way that did not affect parallelization.

Linearized Arrays. The programs ODE and Banded contained lin-
earized arrays and used symbolics to index them in order to simulate
multiply dimensioned arrays. A symbolic test is needed when the
symbolic term is unknown, but loop invariant. This feature would
enable precise dependence analysis of many symbolic references
into linearized arrays. However, a better solution is to reward well
structured multidimensional array references with excellent perfor-
mance. Programmers will then have an incentive to use multiply
dimensioned arrays when appropriate. If array linearization im-
proves performance, as on the Cray YMP, then the compiler should
perform it.

6.1.2 Program Optimization

Three programs, Seismic, BTN, and Erlebacher, experience signif-
icant improvements due to our optimization strategy. In Seismic,
the majority of the improvement comes from fusing 4 loops. In the
original program, part of which appears in Figure 7(a), each of the
subroutines setvz, ftau, and fzeta contains an outer, enclosing paral-



Figure 7: Cloning for Correct Parallel Code Generation

subroutine setvel subroutine setvel
call setvz(..) parallel do i = 1, np
call ftau(..) call setvzExt(..)
parallel do i = 1, np call ftauExt(..)

call chgvar(..) call chgvar(..)
end parallel do call fzetaExt(..)
call fzeta(..) end parallel do

(a) original (b) parallelization,
extraction & fusion

lel loop with np iterations. Our parallelization algorithm, using the
augmented call graph, detects that these parallel loops are candi-
dates for fusion. The fusion is safe, so it extracts them and performs
the fusion in the subroutine setvel, see Figure 7(b). The optimized
version actually has more procedure call overhead, but the benefits
of reduced synchronization and communication far out weigh this
cost. None of the other optimized programs use interprocedural
transformations.

BTN’s improvements are due to improved parallelization of 3
important nests that accounted for 50% of the hand-coded parallel
execution time. The Optimize portion of our algorithm improves
the locality of the nests with permutation and then tiles to introduce
outer loop parallelism. In this case, tiling uses permutation to move
the parallel loop out and leaves a strip in place to exploit locality.
This optimization cuts the execution time of the 3 nests in half and
improves overall performance by 28%. These nests need to balance
locality and parallelism. This tradeoff is difficult for programmers
to make; the user successfully parallelized 24 outer loops in which
the two do not conflict, but failed on the 3 where they did.

Similarly, some of the improvement to Erlebacher results from
the use of permutation and tiling by Optimize to balance locality
and parallelism. Erlebacher also benefits from the application of
fusion to 8 groups of nests. The number of nests fused in a group
varied from 2 to 5 nests, with an average of 3 nests fused. Interior
also benefits from fusion2 .

Except for distribution and embedding, all of the transformations
in our optimizing and parallelizing algorithm were exercised. Every
time our algorithms chose an optimization strategy that differed
from the users, it was an improvement.

7 Related Work

Our core technique, Optimize, bears the most similarity to Wolf &
Lam’s research [24, 25]. Their algorithm is potentially more precise
and uses skewing and reversal, but in their experiments on data lo-
cality, skewing was never useful [24]. Our algorithm is simpler, can
take advantage of known loop bounds, and is more efficient. When
a nest of depth n is fully permutable our algorithm experiences it’s
best case O(n log(n)) time complexity while Wolf & Lam’s algo-
rithm experiences exponential behavior. Their work includes very
few experimental results for the parallelization algorithm, and they
do not perform fusion, distribution, or any interprocedural analysis
and transformations.

Not many studies of parallelizing optimizers have been published.
Commercially available parallelizing compilers typically do not
reveal their optimization strategies, much less publish them. The
studies of which we are aware are from Illinois and Stanford [8, 15,2Fusion of sequential loops in Control also improves its performance, but scalar
improvements are beyond the scope of this work.

20, 21].
The Illinois studies are traditional [8, 15]; they extend Kap, an au-

tomatic parallelizer, and then use it to parallelize the Perfect Bench-
marks, dusty deck programs. Their target architecture is Cedar, a
shared-memory parallel machine with cluster memory and vector
processors. The algorithms Kap uses are unpublished, which limits
what can be learned from these papers. The resulting programs
were then further improved manually by ‘automatable’ transforma-
tions. It is not clear that even if each individual transformation they
propose is automatable, that a practical decision procedure exists
that could correctly apply them. In contrast, our study uses a cleanly
defined and efficient algorithm. Both studies however would bene-
fit greatly from complete implementations. The Illinois papers also
lack statistics about the effectiveness and applicability of optimiza-
tions and analysis. Their interprocedural analysis results de facto
from inlining or is performed by hand.

Singh & Hennessy used the Alliant FX/8, the Encore Multimax
and their Fortran compilers [20, 21]. The compiler algorithms are
again unpublished. The FX/8 has cluster memory instead of lo-
cal caches, so their parallelization problem was easier than the one
considered here. On the Encore, the slow processors minimized
the impact of its small local caches. Singh & Hennessy consid-
ered dusty deck programs and by inspection found interprocedural
analysis, user assertions, and symbolic analysis to be useful. Our
results offer a significant step towards providing these analyses,
as well as going a step further to optimize for a more complex
architecture. The main result in these papers is that successful par-
allelization requires many programs to be rewritten. We start with
this premise. However, the success of our techniques reveals that
even after users perform algorithm restructuring for parallelism,
there is performance to be gained.

8 Conclusions
This paper presents a new parallelization algorithm that balances
parallelism and communication, i.e., data locality. It uses a simple,
yet effective strategy to introduce locality, exploit parallelism, and
maximize the granularity of parallelism. Of particular importance
to its effectiveness is interprocedural section analysis. We evalu-
ated the algorithm using hand-parallelized programs and a compiler
generated parallel version. We compare the two parallel versions.
Our results are promising. The algorithm improves performance
whenever it applied optimizations, significantly improving perfor-
mance in 3 of the 9 programs. It matches or improves parallel
performance for programs written in Fortran 77 with a clean, mod-
ular parallel programming style. The successes and failures indicate
that the programming style many parallel programmers are using
can be portable and can be analyzed and optimized by an advanced
compiler. Further experimentation however is needed and we are
in the process of completing our implementation.
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