
Compiler and Runtime Support for Out-of-Core HPF Programs

Abstract

Rajeev Thakur Rajesh Bordawekar Alok Choudhary

Dept. of Electrical and Computer Eng. and

Northeast Parallel Architectures Center

Syracuse University, Syracuse, NY 13244, USA

thakur, rajesh, choudhar @npac.syr.edu

This paper describes the design of a compiler which can

translate ont-of-core programs written in a data parallel lan-
guage like HPF. Such a compiler is required for compiIing
large scale scientific applications, such as the Grand Chal-

ienge applications, which deal with enormous quantities of
data. We propose a framework by which a compiler together
with appropriate runtime support can translate an out-of-
core HPF program to a message passing node program with
explicit parallel 1/0. We describe the basic model of the
compiler and the various transformations made by the com-

piler. We also discuss the runtime routines used by the com-
rriler for I/0 and communication. In order to minimize I/0.

~he runtirne support system can reuse data already fetched
into memory. The working of the compiler is illustrated us-

ing two out-of-core applications, namely a Laplace equation
solver and LU Decomposition, together with performance

results on the Intel Touchstone Delta.

1 Introduction

Massively parallel computers (MPPs) with a peak perfor-

mance as high as 100 GF1OPS have made their advent into

the supercomputing arena. As a result, MPPs are increas-

ingly being used to solve large scale computational problems

in physics, chemistry, biology, engineering, medicine and

other sciences. These applications, which are also referred
to as Grand Chal/enge Applications [14], are extremely com-

plex and require several Teraflops of computing power to be
solved in a reasonable amount of time. In addition to requir-
ing a great deal of computational power, these applications
usually deal with large quantities of data. At present, a typ
ical Grand Challenge Application could require lGbyte to
4Tbytes of dat a per run [12]. These figures are expected to
increase by orders of magnitude as teraflop machines make
their appearance.

Although supercomputers have very large main mem-
ories, the memory is not large enough to hold this much

amount of data. Hence, data needs to be stored on disk
and the performance of the program depends on how fast

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

the processors can access data from disks. A poor 1/0 ca-

pability can severely degrade the performance of the entire

program. The need for high performance 1/0 is so signif-
icant that almost all the present generation parallel com-
puters such as the Paragon, iPSC/860, Touchstone Delta,

CM-5, SP-1, nCUBE2 etc. provide some kind of hardware
and software support for parallel 1/0 [10, 17, 4, 11]. A good
overview of the various issues in high performance 1/0 is
given in [12]

In this paper, we consider the 1/0 problem from a lan-
guage and compiler point of view. Data parallel languages

like HPF [15] and PC++ [2] have recently been developed
to provide support for high performance programming on
paralIel machines. These languages provide a framework

for writing portable parallel programs independent of the

underlying architecture and other idiosyncrasies of the ma-
chine. In order that these languages can be used for pro-

gramming Grand Challenge Applications, it is essential that

the compiler can automatically translate out-of-core data

parallel programs. Language support for out-of-core pro-
grams has been proposed in [3, 8, 20]. We propose a frame-
work by which a compiler together with appropriate run-
time support can translate an out-of-core HPF program to

a message passing node program with explicit parallel 1/0,

Although we use HPF as the source language, the transla-

tion technique is applicable to any other data parallel lan-

guage. There has been considerable research on compiling

in-core data parallel programs for distributed memory ma-
chines [6, 22, 21]. This work, to our knowledge, is one of the

first attempts at a methodology for compiling out-of-core
data parallel programs.

The rest of the paper is organized as follows. The model
for out-of-core compilation is explained in Section 2. Sec-
tion 3 describes the compiler design including the transfor-
mations made by the compiler. The runtime support system

is described in Section 4. We use two out-of-core examples
to demonstrate the working of the compiler, namely the so-

lution of Laplace’s equation and LU Decomposition. We
discuss some performance results on the Intel Touchstone
Delta in Section 5, followed by Conclusions in Section 6. In
this paper, the term in-core compiler refers to a compiler for

in-core programs and the term out- of- core compiler refers to
a compiler for out-of-core programs.

2 Model for Out-of-Core Compilation

High Performance Fortran (HPF) is an extension to For-
tran 90 with features to specify data distribution, align-

ment, data parallel execution etc. In distributed memory

ICS 94-7194 Manchester, U. K.
63 1994 ACM 0-89791 -665-4/94/0007..$3.50

382

http://crossmark.crossref.org/dialog/?doi=10.1145%2F181181.181571&domain=pdf&date_stamp=1994-07-16

Globsl Array

—

ICLA

Disks Disks

Local array

Files

Figure 1: Model for out-of-core compilation

computers, arrays have to be distributed among the pro
cessors in some manner. HPF provides directives (ALIGN
and DISTRIBUTE) which describe how arrays should be
partitioned. Arrays are first aligned to a template or index

space using the ALIGN directive. The DISTRIBUTE direc-
tive specifies how the template is to be distributed among

the processors. In HPF, an array can be distributed as ei-
ther BLOCK(m) or CYCLIC(m). In a BLOCK(m) distribu-
tion, contiguous blocks of size m of the array are distributed
among the processors. In a CYCLIC(m) distribution, blocks

of size m are distributed cyclically.

The DISTRIBUTE directive in HPF specifies which ele-

ments of the array are mapped to each processor. This re-
sults in each processor having a local array associated with
it. In an in-core program, the local array resides in the local
memory of the processor. Our group at Syracuse Univer-

sity has developed a compiler for in-core HPF programs [6].

For large data sets, however, local arrays cannot entirely fit

in main memory. Hence, these programs are referred to as

out-of-core programs. In such cases, parts of the local array

have to be stored on disk. We refer to such a local array
as the Out-of-core Local Array (OCLA). Parts of the
OCLA have to be swapped between main memory and disk
during the course of the computation. If the operating sys-
tem supports virtual memory on each processor, the OCLA
can be swapped in and out of the disk automatically by the
operating system. In that case, the HPF compiler for in-core
programs could also be used for out-of-core programs.

A major consideration in the design of an HPF compiler
is performance, Studies of the performance of virtual mem-
or y provided by the OSF/ 1 operating system on the Intel

Paragon have shown that the paging in and paging out of

data from the nodes drastically degrades the performance of

[

..

..

..

..

..

..

..

..

..

—

Local array

Files

the user code [19]. Also, most of the other massively paral-
lel systems at present, such as the CM-5, iPSC/860, Touch-
stone Delta, nCUBE-2 etc, do not support virtual memory
on the nodes. Hence, the H PF compiler must translate into
a code which explicitly performs 1/0. Even if node virtual
memory is supported, paging mechanisms are not known to

handle different access patterns efficiently. This is true even
in the case of sequential computers where, in order to get
good performance, the programmer must explicitly do 1/0
instead of leaving it to the operating system.

The basic model on which the out-of-core compilation is
based is shown in Figure 1. Since the local arrays are out-

of-core, they have to be stored in files on disk. The local
array of each processor is stored in a separate file called the
Local Array File (LAF) of that processor. The node
program explicitly reads from and writes into the file when

required. If the 1/0 architecture of the system is such that
each processor has its own disk, the LAF of each processor

will be stored on the disk attached to that processor. If

there is a common set of disks for all processors, the LAF

will be distributed across one or more of these disks. In

other words, we assume that each processor has its own
logical disk with the LAF stored on that disk. The mapping
of the logical disk to the physical disks is system dependent.

At any time, only a portion of the local array is fetched and
stored in main memory. The size of this portion is specified
at compile time and it usually depends on the amount of
memory available. The portion of the local array which is in
main memory is called the In-Core Local Array (ICLA).
All computations are performed on the data in the ICLA.
Thus, during the course of the program, parts of the LAF

are fetched into the ICLA, the new values are computed

and the ICLA is stored back into appropriate locations in

383

the LAF.

3 Compiler Design

This section describes the design of the compiler for out-of-
core HPF programs. We mainly focus on the compilation

of array expressions and FORALL statements for out-of-

core arrays. The compilation basically involves the following
stages: Data Partitioning, Communication Detection, 1/0
Detection and finally Code Generation with calls to runtime
libraries. We first describe how the compilation is done for
in-core programs and then extend the methodology to out-
of-core programs. We explain both cases with the help of the

HPF program fragment given in Figure 2. In this example,
arrays A and B are distributed in (block, block) fashion on

16 processors arranged as a two-dimensional grid of 4 x 4.

3.1 In-core Compilation

This section describes the in-core compilation methodology

used in the HPF compiler developed by our group at Syra-
cuse University [6]. Consider the array assignment state-

ment from Figure 2. The compiler translates this statement

using the following steps:-

1.

2<

3.

4.

5.

6.

Analyze the distribution pattern of each array used in
the array expression.

Depending on the distribution, detect the type of com-
munication required.

Perform data partitioning and calculate lower and np
per bounds for each participating processor.

Use temporary arrays if the same array is used in both
LHS and RHS of the array expression.

Generate the corresponding sequential F77 code.

Add calls to runtime libraries to perform collective
communication.

The local arrays corresponding to arrays A and B lie

in the local memory of each processor. Since array B is

distributed in block-block fashion over 16 processors, the

above assignment requires fetching data from neighboring

processors. The compiler analyzes the statement and inserts

a call to the appropriate collective communication routine.

The assignment statement is translated into corresponding

DO loops with a call to a routine which performs overlap
shift type communication [6], as shown in Figure 3.

3.2 Out-of-core Compilation

For compiling out-of-core programs, in addition to handling
all the issues involved in compiling in-core programs, the
compiler must also schedule explicit 1/0 accesses to fetch/store
appropriate data from/to disks. The compiler has to take
into account the data distribution on disks, the number
of disks used for storing data and the prefetching/caching

strategies used.

As explained earlier, the local array of each processor is
stored in a separate local array file (LAF) and the portion of
the local array currently required for computation is fetched
from disk into the in-core local array (ICLA). The size of

the ICLA is specified at compile time and usually depends
on the amount of memory available. The larger the ICLA

parameter (n=1024)
real A(n, n), B(n, n)

!HpF$ processors p(4,4)

!HpF$ TEMpLATE T(n,rl)

!HPF$ DISTRIBUTE T(BLOCK, BLOCK) ONTO P
!HpF$ ALIGN with T :: A, B

...........
FORALL (i=l:n, j=l:n)

A(i,j) = (B(i,j-1) + B(i,j+l) + B(i+l,j)
+ B(i-l,j))/4

B=A

Figure 2: HPF Program Fragment

Call communication routine to perform otrerlap shifl.
do j = lower. bound, upper-bound

doi= lower-bound, upper-bound

A(i,j) = (B(i,j-1) + B(i,j+l) + B(i-lJ +
B(i+lj))/4

end do
end do

Figure 3: Translation of the Array Assignment Statement.

the better, as it reduces the number of disk accesses. Each
processor performs computation on the data in the ICLA.

Some of the issues in out-of-core compilation are similar
to optimizations carried out in in-core compilers to take ad-
vantage of caches or pipelines. This optimization, commonly
known as strip mining [23, 24], partitions the loop iterations

so that data of fixed size (equal to cache size or pipeline
stages) can be operated on in each iteration. In the case of
out-of-core programs, the computation involving the entire
local array is performed in stages where each stage operates
on a different part of the array called a .da b. The size of each

slab is equal to the size of the ICLA. As a result, the iter-

ation space of the locrd array assignment/forall statement

is partitioned (strip mined) so that each iteration operates

on the data that can fit in the processor’s memory (ie. the

size of ICLA). In other words, there are two levels of data

partitioning. Data is first partitioned among processors and
then data within a processor is partitioned into slabs which

fit in the processor’s local memory.

3.2.1 Language Support for Out-of-Core Compilation

In order to stripmine the array assignment statements, the
compiler needs information about which arrays are out-of-
core and also the amount of memory available to store the
ICLA. We propose two directives, OUT.OF.CORE and
MEMORY, using which the user can specify this infor-
mation to the compiler. The HPF program can be an-

parameter (n=64000)
!HpF$ oUT-OF_CORE :: D, C
!HpF$ MEMORY M(n)

Figure 4: Proposed Out-of-Core Directives for HPF

384

1. 2. 3. 4.
-O-=

(c)
OUT-OF-CORE (D) IN-CORE

COMMUNICATION COMMUNICATION

Figure5: Compilation of Out-of-core Programs

notated with these directives, as shown in Figure 4. The
OUT_OF_CORE directive specifies which arrays are out-

of-core (e.g D, C). The MEMORY directive specifies the
amount of memory available for the ICLA. In the future,
we plan to incorporate some optimization in the compiler

by which the compiler will be able to automatically cal-

culate the memory available for the ICLA on the basis of
the amount of memory provided on each processor and the
memory used by the program.

3.2.2 Communication Models for Out-of-Core Compila-
tion

Let us now examine the compilation of array assignment

statements involving out-of-core arrays. We consider the

array assignment statement from the HPF program shown

in Figure 2.

A(i,j) = (B(i-l,j) + B(i+l,j) + B(i,j-1) + B(i,j+l))/4

Array B is distributed over 16 processors in (block, block)

manner as shown in Figure 5(A). Consider the out-of-core

local array (OCLA) and corresponding local array file (LAF)

for processor 5, shown in Figure 5(B). The OCLA is divided
into slabs, each of which is equal to the size of the in-core lo-
cal array (ICLA). The slabs are shown using columns with
different shades. The same figure shows the overlap area

(also called ghost cells) for array Bfor the above array as-
signment statement. The overlap area is used to store the
data received from other processors.

Each point (i, j)ofthe array iscomputed using theva.1-
ues at its four neighboring points. Hence each processor,
except those at the boundaries, needs to get one row or one
column from each of its four neighboring processors. There
are two ways in which this communication can be done,
which we call the Out-of-core Communication Method and

the In-core Communication Method. Figure 6 describes how
the compilation is done for each of these methods.

c Out-of-core Communication Method: In this method,

the compiler determines what off-processor data is re-

quired for the entire out-of-core local array. The shaded

region in Figure 5(C) shows the amount of data to
be received by processor 5 (comm-data). In the out-

of-core communication method, the entire comm-data

is communicated in one step and stored at appropri-
ate locations in the local array file. The computation
is stripmined using the memory size provided by the

user. During the computation, each slab along with its
comm-data, is read from and written to the local array
file. No communication is required during the compu-
tation on each slab, since the necessary comm-data is

fetched from the local array file. After the computa-
tion, the slab is written back to disk.

The out-of-core communication method requires extra
data storage during program execution. Also, the com-

munication stage requires accessing data from other

processors (inter-processor communication) and stor-

ing data to the local array file (disk access). However,
this method allows the compiler to identify and op-

timize collective communication patterns because the

communication pattern depends on the logical shape

of arrays and the access patterns for the entire array.
For example, there are four shift type communications

required in this example. This communication pattern
is preserved except that communication also requires

disk accesses in addition to data movement. Also,

since communication is separated from computation,
the compiler can easily perform other code optimiza-
tion such as loop fusion.

In-core Communication Method: In this method,
the compiler analyzes each slab instead of the entire
out-of-core local array. The assignment statement is
first stripmined according to the memory size. Then
each data slab is analyzed for communication. If the
slab requires off-processor data, appropriate communi-
cation primitives are used to fetch the necessary data.
This is illustrated in Figure 5(D). In this example, the
local array file is divided into four data slabs. The

shaded region in Figure 5(C) shows the total amount

of data to be communicated for the entire OCLA. Fig-

ure 5(D) shows the data to be fetched for each in-

385

Out-of-core Communication In-core Communication

1. Stripmirre code based on memory size. 1. Stripmine code based on memory size.

2. Schedule communication for entire out-of-core data. 2. Repeat k times (k k the stripmine factor).

3. Repeat k times (k k the stripmine factor). 2.1 Read data from disk to ICLA.
3.1 Read data from disk to ICLA. 2.2 Schedule communication for in-core data.
3.2 Do the computation on the data in ICLA. 2.3 Do the computation on the data in ICLA.
3.3 Write data from ICLA back to disk. 2.4 Write data from ICLA back to disk.

Figure 6: Compiling for out-of-core and in-core communication

dividual slab (comm-data). Each shade represents a
different slab. Consider the last two slabs. The last

slab needs data from three other processors whereas
the slab before it needs data from two other proces-

sors. Thus, the communication patterns for the slabs
wit hin the same local array are different.

Since the comm-data is stored in the ICLA, this method
does not require disk accesses to store the comm-data.

After the necessary comm-data is fetched, the com-

putation on each slab is done. Since the communica-
tion pattern for each slab may be different, the com-

piler needs to analyze each slab separately and insert

appropriate communication calls to get the necessary
data. Optimizing such communication patterns can be
difficult. It requires extensive pre-processing and the
translated code looks unreadable.

3.3 Compiling Out-of-core Array Assignment Statements

Array assignments involving distributed arrays often result
in different communication patterns [9, 13]. The compiler
must recognize the type of communication in order to gen-

erate appropriate runtime calls (communication as well as
1/0). It is relatively easier to detect and optimize the com-

munication in the out-of-core communication method than
in the in-core communication method. Also, since commu-

nication is performed with respect to the entire out-of-core
array and for each assignment statement there is a single

call to a communication routine, the overall communication

overhead is independent of the number of slabs and the size

of the ICLA. Hence, we prefer to use the out-of-core com-

munication method.

Detecting the type of communication required in an ar-
ray assignment statement involves analyzing the relation-
ships among the subscripts of the arrays in the statement [6,
16, 13]. 1/0 pattern detection involves analyzing 1/0 char-

acteristics of array expressions. There are many factors that
influence the 1/0 access patterns. Important among these

are :-

How the array is distributed among the processors.

What is the communication pattern in the array ex-
pression.

How the array is stored in the local array file (eg. col-
umn major/row major).

How the file system atores the local array file (number

of disks, data striping etc).

How many processors read the files.

After detecting the type of communication and 1/0, the
compiler performs basic code optimizations. These opti-
mization rearrange the code so that the overhead of com-
munication and 1/0 can be reduced. The compiler then

inserts calls to appropriate runtime routines depending on
the 1/0 access pattern and communication.

4 Runtime Support

As discussed earlier, each processor has an out-of-core Iocrd

array (OCLA) stored in a local array file (LAF) and there
is an in-core local array (ICLA) which is used to store the

portion of the OCLA currently being used for computation.

During program execution, it is necessary to fetch data from
the LAF into the ICLA and store the newly computed val-

ues from the ICLA back into appropriate locations in the

LAF. Since the global array is distributed, a processor may
need data from the local array of another processor. This
requires data to be communicated between processors. Thus
the node program needs to perform 1/0 as well as commu-
nication, both of which are not explicit in the source HPF
program.

The compiler does basic code transformations such as

partitioning of data and computation, and inserts calls to
runtime library routines for disk accesses and communica-

tion. The runtime support system for the compiler consists
of a set of high level specialized routines for parallel 1/0 and
collective communication. These routines are built using the
native communication and 1/0 primitives of the system and

provide a high level abstraction which avoids the inconve-
nience of working directly with the lower layers. For exam-

ple, the routines hide details such as buffering, mapping of

files on disks, location of data in files, synchronization, opti-

mum message size for communication, best communication

algorithms, communication scheduling, 1/0 scheduling etc.

Runtime support has been used previously as an aide
to the compiler. Runtime primitives for the initial read-

ing of data from a file for an in-core program are discussed
in [5]. The in-core HP F compiler developed by our group

at Syracuse University uses runtime support [7, 1]. Pon-
nusamy et al [18] describe how runtime support can be inte-

grated with a compiler to solve unstructured problems with
irregular communication patterns. These projects only deal
with compilation of in-core programs, so the runtime sup-
port is mainly limited to communication libraries. The run.

time support for our out-of-core compiler is different in the
sense that in addition to having routines which perform only

1/0, even the communication routines need to do 1/0.

4.1 Issues in Runtime Support

Consider the HPF program fragment given in Figure 2. This

has the array assignment statement

A(i,j) = (B(i,j-1) + B(i,j+l) + B(i+l,j) + B(i-l,j))/4

Suppose the arrays A and B are distributed as (block, block)
on a 4 x 4 grid of processors as shown in Figure 7. As an

386

Overl p Area

a o
Array distributed on out-of-core Local hr core Local

16 processors Array on I% Array on P5 I
Overlap Arra

Actual Data

(A) (B) (c) Local Array File

on P5

(D)

Figure 7: Example of OCLA, ICLA and LAF

example, consider the out-of-core local array on processor
P5, shown in Figure 7(B). The value of each element (i, j)
of A is calculated using the values of its corresponding four
neighbors in B, namely (i - l,j), (i + l,j), (i)j – 1) and

(i, j+ 1). Thus to calculate the values at the four boundaries
of the local array, P5 needs the last row of the 10CS.Iarray of
PI, the l~t column of the local array of P4, the first row of
the local array of P9 and the first column of of the local array

of P6. Before each iteration of the program, P5 gets these
rows and columns from its neighboring processors. If the
local array was in-core, these rows and columns would have
been placed in the overlap areas shown in the Figure 7(B).

This is done so as to obtain better performance by retaining

the DO loop even at the boundary. Since the local array

is out-of-core, these overlap areas are provided in the local

array file. The local array file bssically consists of the local

array stored in either row-major or column major order.

In either case, the local array file will consist of the local

array elements interspersed with overlap area as shown in
Figure 7(D). Data from the file is read into the in-core local
array and new values are computed. The in-core local array
also needs overlap area for the same reason as for the out-of-

core local array. The example shown in the figure assumes
that the local array is stored in the file in column major

order. Hence, for local computation, columns have to be

fetched from disks and then written back to disks.
At the end of each iteration, processors need to exchange

boundary data with neighboring processors. In the in-core

case, this would be done using a shift type collective commu-
nication routine to directly communicate data from the local

memory of the processors. In the out-of-core case, there are
two options:-

●

●

Direct File Access: Since disks are a shared resource,
any processor can access any disk. In the direct file
access met hod, a processor directly reads data from

the local array file of some other processor as required
by the communication pattern. This requires explicit

synchronization at the end of each iteration.

Explicit Communication Each processor accesses

only lts own local array file. Data is read into mem-

ranaous Accesses

To Disk

Disks Disks

Figure 8: Direct File Access Method

ory and sent to other processors. Similarly, data is
received from other processors into main memory and
then saved on disk. This is similar to what would be
done in in-core compilation methods.

Consider a situation in which each rrrocessor needs to.
communicate with every other processor (all-to-all commu-

nication). In the direct file access method, this will result in
several processors trying to simultaneously access the same

disk as shown in Figure 8, resulting in contention for the
disk. A minimum of one block of data, the size of which

is system dependent, is transferred during each disk access.
Even if a processor actually needs a small amount of data,
one whole block will be transferred for each access from
every processor. So the direct file access method has the
drawback of greater disk contention and higher granularity

of data transfer. Also, in some communication patterns (eg.
broadcast), the same piece of data may be fetched repeat-
edly by several processors. In the explicit communication

method, each processor accesses only its own local file and
reads the data to be sent to other processors into its local

387

Incore lb
Incore ub

Incore lbo
Incore ubo

Global S2

OCLA size
Procs

00C storage

Distribution
Block SZ

Dimension

1234567

Figure9: Out-of-Core Array Descriptor (OCAD)

memory. This data is communicated to other processors.

Thus, there is no contention for a disk and since the data to
be sent to all other processors has to be read from disk, the

high granularity of data access from disk is less of a problem.

In addition, thetime to communicate data between proces-
sors is at least an order of magnitude less than the time to

fetch data from disk. However, this requires acommunica-

tion phase in addition to 1/0. The relative performance of
these two methods on the Touchstone Delta is discussed in
Section 5.

4.2 Out-of-Core Array Descriptor (OCAD)

The runtime routines require information about the array
such as its size, distribution among the nodes of the dis-

tributed memorv machine. storaee Dattern etc. All this in-

formation is st&ed in a data st~u~ture called the Out-of-

Core Array Descriptor (OCAD) and passed as a parameter
to the runtime routines. Before any of the runtime routines
are called, the compiler makes a call to a subroutine which
fills in the OCAD on the basis of some parameters. The
structure of the OCAD is given in Figure 9. Rows 1 and
2 contain the lower and upper bounds of the in-core local
arrav (excludimr overlaD area) in each dimension. The lower. . .,
and upper bounds of the in-core local array in each dimen-
sion including overlap area are stored in rows 3 and 4. The

size of the global array in each dimension is given in row 5.

Row 6 contains the size of the out-of-core local array. Row

7 specifies the number of processors assigned to each dimen-

sion of the global array. The format in which the out-of-core
local array is stored in the local array file is given in Row 8.
The array is stored in the order in which array elements are
accessed in the program, so as to reduce the 1/0 cost. The
entry for the dimension which is stored first is set to 1, the

entry for the dimension which is stored second is set to 2
and so on. For example, for a two-dimensional array, x,y =

1,2 means that the array is stored on disk in column major
order and x, y = 2,1 means that the array is stored in row

major order. This enables the runtime system to determine
the location of any array element (i,j) on the disk. Row

9 contains information about the distribution of the global
array. Since the array can be distributed as BLOCK(m) or
CYCLIC(m), where m is the block-size, the value of m is

stored in Row 10 of the OCAD.

4.3 Runtime Library

We are developing a library of runtime routines using which
we can compile any general out-of-core HPF program. The

routines are divided into two categories — Array Manage-
ment Routines and Communication Routines. The Array
Management Routines handle the movement of data be-
tween the in-core local array and the local array file. The

Communication Routines perform collective communication
of data in the out-of-core local array. Some of the basic rou-

tines are described below.

4.3.1 Array Management Routines

1. read-vec(iile, A, OCAD, i, j, start_vec, end.vet,

stride)

This routine reads vectors from the local array file to
the in-core local array A. The vectors are assumed
to be rows if the array is distributed along rows and
columns if the array is distributed along columns. The
vectors are read starting from number ‘start-vet’ in

the out-of-core local array till vector number ‘end-vet’,
with the specified stride. The vectors are placed in the

in-core local array starting from the location (i,j).

2. write-vec(flle, A, OCAD, i, j, start_vec, end_vec,
stride)

This r&tine writes vectors starting from location (ijj)

in the in-core local array A to the local array file.
The location in the file is specified by ‘start-vet’ and

‘end-vet’, which are the starting and ending vector
numbers in the out-of-core local array, together with a

stride.

3. write-vec_with~ euse(flle, A, OCAD, i, j, start.vet,

end_vec, stride, left shift, rightshift)
This routine writes vectors from the in-core local ar-

ray to the local array file as in write-vet. In addition it

reuses data from the current ICLA slab for the com-
putation involving the next ICLA slab. This is done
by moving some vectors from the end of the in-core
local array to the front of the in-core local array, in
addition to writing all the vectors to the file. This
can be explained with the help of Figure 10 and the
Laplace equation solver discussed earlier.

Suppose the array is distributed along columns. Then
the computation of each column requires one column

from the left and one column from the right. The com-

putation of the last column requires one column from

the overlap area and the computation of the column

in the overlap area cannot be performed without read-

ing the next column from the disk. Hence, instead of
writing the column in the overlap area back to disk

and reading it again with the next set of columns, it
can be reused by moving it to the first column of the
array and the last column can be moved to the over-
lap area before the first column. If this move is not

done, it would be required to read the two columns
again from the disk along with data for the next slab,
The reuse thus eliminates the readimz and writirw of. -Q

.-

two columns in this example. The number of columns

to be moved is specified by ‘left-shift’ and ‘right_shift’.
‘left_shift’ refers to the number of columns from the
left that are needed for the computation of any column
and ‘right-shift’ refers to the number of columns from
the right. In general, the amount of dat a reuse would
depend on the intersection of the sets of data needed
for computations involving two consecutive slabs.

388

Move columns

Overlap Areas

Figure 10: Data Reuse

4.3.2 Communication Routines

1. out.of.core-shift (file, OCAD, nvec, direction)

This is a collective communication routine which does

a shift type communication for out-of-core local arrays.

It shifts a specified number of vectors to the processor

in the specified direction. For example, if the array

is distributed along columns and n. vectors have to be

shifted to the right, each processor (except the last)

reads the last n columns iu its local array from the

local array file and sends them to the processor on

the right. Each processor (except the first) receives

n columns from the processor on the left and places

them in the overlap area at the beginning of the local

array file. Data in the local array file is not moved.

2. out.of.coremulticast (file, OCAD, i, j, nelements,

vet, source, proclist)

This routine does an out-of-core multicast operation.

‘source” specifies the source processor and “proclist”

is the list of destination processors. A broadcast oper-

ation in which data has to be sent to all other proces-

sors can be specified by setting proclist (1) to –1. The

source processor reads “nelements” from its local array

file starting from the element at location (i, j) in the

out-of-core local array. These elements are broadcast

(or multicast) to the processors specified by proclist.

At the destination, the data is stored in the in-core

vector “vet”.

We have described only a subset of the runtime library in

this paper because of space limitations.

5 Examples: Laplace Equation Solver and LU Decompct-

sition

We illustrate the working of the compiler using two out-of-

core applications — the first is a Laplace equation solver

by Jacobi iteration method and the second is LU decompo-

sition. The Laplace solver program is discussed previously

in Sections 3 and 4 (see Figure 2). For simplicity, we con-

sider the case in which the arrays are distributed only in

one dimension, ‘along columns. The translated Fortran 77

code using the Explicit Communication Method is given in

Figure 11. In the JacoV, iteration method, the new values

in each iteration are computed using the values from the

previous iteration. Thk requires the newly computed array

to be copied into the old array for the next iteration. In the

out-of-core case, this would require copying the local array

do k=l to no-of-iterations

call oc-shift(unitl, OCAD,l,right) !right shij%

call oc-shift(unitl, OCAD,l,left) !left sh;ft

do 1=1, no-of-slabs
call read-vec(unitl, B, OCAD, i, j, start-vet,

end-vet, stride)
do j=jl, j2

do i=il, i2

A(i,j) = (B(i,j-1) + B(i,j+l) .+

B(i+l,j) + B(i-l,j))/4
end do

end do
call write_vec(unit2, A, OCAD, i, j, start-vet,

end-vet, stride)

end do

c exchange jile unit numbers instead of explicitl~
c copying files (optimization)

unitl * unit2
end do

Figure 11: Translated code for the Laplace Equation Solver

parameter(n=1024, m=16)

real A(n,n), mult(n), maxNum, row(n)
!HPF$ PROCESSORS p(m)

!HPF$ TEMPLATE D(n)

!HPF$ DISTRIBUTE D(CYCLIC) ONTO P

!HPF$ ALIGN (*,:) with D :: A
!HPF$ oUT-OF-CORE :: A

!HPF$ MEMORY(4096)

do k=l, n
maxNum = A(k,k)
mult(k+l:n) = A(k+l:n, k)/maxNum
A(k+l:n,k) = mult(k+l:n)

forall ~i=k+l:n, j=k+l:n)
a(i,j) = a(i,j) - mutt(i) x a(k,j)

end do

Figure 12: LU Decomposition without pivoting

file. We do an optimization in which instead of explicitly

copying the file, the file unit numbers are exchanged after

each iteration. This is equivalent to dynamically changing

the virtusl addresses associated with arrays. Hence the pro-

gram uses the correct file in the next iteration.

The performance of the Laplace equation solver on the

Intel Touchstone Delta is given in Table 1. VVe compare the

performance of the three methods — direct file access, ex-

plicit communication and explicit communication with data

reuse. The array is distributed in one dimension along columns.

We observe that the direct file access method performs the

worst because of contention for disks. The best performance

is obtained for the explicit communication method with data

reuse as it reduces the amount of 1/0 by reusing data al-

ready fetched into memory. If the array is distributed in

both dimensions, the performance of the direct file access

method is expected to be worse because in this case each

processor, except at the boundary, has four neighbors. SO,

there will be four processors contending for a disk when they

try to read the b&ndary values.

We also consider an out-of-core LU decomposition pro-

389

Table 1: Performance of Laplace Equation Solver (time in sec. for 10 iterations)

Array Size: 2K x 2K Array Size: 4K x 4K

32 Procs 64 Procs 32 Procs 64 Procs

Direct File Access 73,45 79.12 265.2 280.8

Explicit Communication 68.84 75.12 259.2 274.7

Explicit Communication 62.11 71.71 253.1 269.1

with data reuse

Table 2: Performance of LU Decomposition (1K x lK array)

Krocessors II 16 32 I 64

ime (sec. j 1256.5 I 1113.9 I 1054.5

gram without pivoting. The HPF code for this is given in

Figure 12 and the pseudo-code for the translated program is

given in Figure 13. The array is distributed cyclically along

columns for load balancing purposes. In the translated pro-

gram, for each column, every processor has to reduce some

of the rows in its out-of-core local array. This requires the

local array to be fetched from the disk. Hence, it is necessary

to perform 1/0 as many times as the number of columns.

The performance of the translated code on the Touchstone

Delta for an array of size lK x lK is given in Table 2. Since

the problem size is small, the 1/0 costs dominate. We were

not able to study the performance for larger arrays because

of system constraints.

6 Conclusions

We have described the design of a compiler and associated

runtime support to translate out-of-core programs written

in a data-parallel language like HPF into node programs for

distributed memory machines with explicit communication

and parallel 1/0. Such a compiler is necessary for compiling

large scientific armlications written in a data Darallel lan-. . .
guage. These applications typically handle large quantities

of data which results in the program being out-of-core.

We have discussed the basic model of out-of-core compi-

lation and the various transformations which the compiler

makes. We have also described the runtime support used

by the compiler for communication and 1/0. The work-

ing of the compiler was illustrated using two applications,

namely a Laplace Equation solver and LU decomposition.

For fetching off-processor data, the Explicit Communica-

tion method is found to perform better than the Direct File

Access method as it reduces contention for disks. An im-

provement in performance is also obtained by reusing data

already fetched in memory, which reduces the amount of

1/0.

All the runtime routines described in this paper have

already been implemented. A subset of the compiler has

been implemented and a full implementation is in progress.

We believe that thw paper provides an important first step

in techniques for automatically translating out-of-core data

parallel programs,

do k=l, n
if (column k lies in mynode) then

c get the slab containing column k from LAF

call read-vec(unit, A,-OCAD, il, jl, start-col,
end-col, stride)

do i=k+l, n
A(i,pivotzol) = A(i ,pivotxol)/A(k, pivotxol)

mutt(i) = A(i,pivotxol)

end do

Broadcast the multipliers to other processors
do j=pivot-col+l, end-incore-col

do i=k+l, n

A(i,j) = A(i,j) - A(k,j)xA(i,pivot_col)

end do

end do
call write-vec(unit, A, OCAD, i2, j2, start-col,

end-cot, stride)
c get remaining slabs from LAF and reduce the rows

do slab= slab_no+l, no.of-slabs
call read-vec(unit, A, OCAD, i3, j3, start-coi,

end-col, stride)
do j=l, end-i ncore-col

do i=k+l, n
A(i,j) = A(i,j) - A(k,j)xmult(i)

end do
end do

call write-vec(unit, A, OCAD, i3, j3, start-col,
end-cot, stride)

end do
else

Read the column of multipliers broadcast by the

owner of column k
fetch the columns after k from LAF and reduce

: appropriate rows
do slab= slab_no+l, no-of-slabs

call read-vec(unit, A, OCAD, i4, j4, start-col,
end-col, stride)

do j=l, end-incore-col
do i=k+l, n

A(ij) = A(i,j) - A(k,j)xmult(i)
end do

end do

call write-vec(unit, A, OCAD, i4, j4, start-col,
end-cot, stride)

end do
end if

end do

Figure 13: Translated code for LU Decomposition

390

Acknowledgments

Wewould like to thank Geoffrey Fox, Ken Kennedy, Chuck

Koelbel, Ravi Ponnusamy and Joel %ltz for many enlighten-

ing discussions. We also thank our compiler group at Syra-

cuse University for their help with the basic infrastructure of

the HPF compiler. Thk work was sponsored in part by NSF

Young Investigator Award CCR-9357840 with a matching

grant from Intel SSD, and also by ARPA under contract no.

DABT63-91-C-O028. The content of the information does

not necessarily reflect the position or policy of the Govern-

ment and no official endorsement should be inferred. Thk

research was performed in part using the Intel Touchstone

Delta System operated by Caltech on behalf of the Con-

current Supercomputing Consortium. Access to this facility

was provided by CRPC.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

AHMAD, I., BORDAWEKAR, R., BOZKUS, Z., CHOUD-

HARY, A., Fox, G., PARASURAM, K., PONNUSAMY,

R., RANKA, S., AND THAKUR, R. Fortran 90D Intrin-

sic Functions on Distributed Memory Machines: Im-

plementation and Scalability. In Proceedings of 26’h
Hawaii International Conference on System Sciences

(January 1993).

BODIN, F., BECKMAN, P., GANNON, D., NARAYANA,

S., AND YANG, S. Distributed pC++: Basic Ideas

for an Object Parallel Language. In Proceedings of
the First Annual Object- Oriented Numerics Conference

(April 1993), pp. 1-24.

BORDAWEKAR, R., AND CHOUDHARY, A. Language

and Compiler Support for Parallel 1/0. In IFIP
Working Conference on Programming Environments

for Massively Parallel Distributed Sygtems (Apr. 1994).

BORDAWEKAR, R., CHOUDHARY, A., AND DEL

ROSARIO, J. An Experimental Performance Evalua-

tion of Touchstone Delta Concurrent File System. In

Proceedings of International Conference on Supercom-

puting, Tokyo, Japan (July 1993).

BORDAWEKAR, R., DEL ROSARIO, J., AND CHOUD-

HARY, A. Design and Evacuation of Primitives for

Parallel 1/0. In Proceedings oj Supercomputing ’93

(November 1993), pp. 452-461.

BOZKUS, Z., CHOUOHARY, A., Fox, G., HAUPT, T.,

AND RANKA, S. Fortran 90 D/HPF Compiler for Dis-

t ributed Memory MIMD Computers: Design, Imple-

mentation, and Performance Results. In Proceedings of
Supercomputing ’93 (November 1993), pp. 351-360.

BOZKUS, Z., CHOUDHARY, A., Fox, G., HAUPT, T.,

RANKA, S., THAKUR, R., AND WANG, J. Scalable Li-

braries for High Performance Fortran. In Proceedings of
Sca/abJe Parallel Libraries Conference (October 1993),

Mississippi State University.

BREZANY, P., GERNDT, M., MEHROTRA, P., AND

ZmrA, H. Concurrent File Operations in a High Perfor-

mance Fortran. In Proceedings of Supercomputing ’92
(November 1992), pp. 230-238.

CHEN, M., AND CowrE, J. Prototyping Fortran-90

Compilers for Massively Parallel Machines. In Proceed-

ings of the Conference on Programming Language De-

sign and Implementation (1992), pp. 94-105.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

CORBETT, P., FEITELSON, D., PROST, J., AND BAY-

LOR, S. Parallel Access to Files in the Vesta File Sys-

tem. In Proceedings of .Supercomputing ’99 (November

1993), pp. 472-481.

DEBENEDICTIS, E., AND DEL ROSARIO, J. nCUBE

Parallel 1/0 Software. In Proceedings oj 1 l’h Interna-

tional Phoenix Conference on Computer$ and Commu-

nications (April 1992), pp. 117–124.

DEL ROSARIO, J., AND CHOUDHARY, A. High Per-

formance 1/0 for Parallel Computers: Problems and

Prospects. IEEE Computer (March 1994), 59-68,

GUPTA, M. Automatic Data Partitioning on Dis-

tributed Memory Mdticomputers. Phil thesis, Dept.

of Computer Science, University of Illinois at Urbana-

Champaign, September 1992.

HIGH PERFORMANCE COMPUTING AND COMMUNICA-

TIONS: GRAND CHALLENGES 1993 REPORT. A Re-

port by the Committee on Physical, Mathematical and

Engineering Sciences, Federal Coordinating Council for

Science, Engineering and Technology.

HIGH PERFOWANCE FORTRAN FORUM. High Perfor-
mance Fortran Language Specification. Version 1.0,

May 1993.

J. LI AND M. CHEN. Compiling Communication-

Efficient Programs for Massively Parallel Machines,

IEEE Transactions on Parallel and Distributed Systems

(July 1991), 361-376.

PIERCE, P. A Concurrent File System for a Highly

Parallel Mass Storage Subsystem. In Proceedings of 4*h
Conference on Hypercubes, Concurrent Computers and
Applications (March 1989), pp. 155-160.

PONNUSAMY, R., SALTZ, J., AND CHOUDHARY, A.

Runtime-Compilation Techniques for Data Partitioning

and Communication Schedule Reuse. In Proceedings of

Supercomputing ’93 (November 1993), pp. 361-370.

SAINI, S., AND SIMON, H. Enhancing Applications Per-

formance on Intel Paragon through Dynamic Memory

Allocation. In Proceedings of the Scalable Parallel Li-

braries Conference, Mississippi State University (Octo-

ber 1993).

SNrR, M. Proposal for IO. Posted to HPFF 1/0 Forum

by Marc Snir, July 1992.

Su, E., PALERMO, D., AND BANERJEE, P. Auto-

matic Parallelization of Regular Computations For Dis-

tributed Memory Multicomputers in the PARADIGM

Compiler. In Proceedings of International Conference
on Parallel Processing (August 1993), pp. 11-30—11–38.

TSENG, C. An Optimizing Fortr-an D Compiler for
MIMD Distributed Memory Machines. PhD thesis,

Dept. of Computer Science, Rice University, January

1993.

WOLFE, M. Optimizing Supercompilers for Supercom-
puters. The MIT Press, Cambridge, MA, 1989.

ZIMA, H., AND CHAPMAN, B. SupercompiJers for Par-

allel and Vector Computers. ACM Press, New York,

NY, 1991.

391

