
Towards multiobjective procedural map generation

Julian Togelius
IT University of Copenhagen

Rued Langgaards Vej 7
Copenhagen, Denmark
julian@togelius.com

Mike Preuss
TU Dortmund

Otto-Hahn-Str. 14
Dortmund, Germany

mike.preuss@cs.uni-
dortmund.de

Georgios N. Yannakakis
IT University of Copenhagen

Rued Langgaards Vej 7
Copenhagen, Denmark
yannakakis@itu.dk

ABSTRACT
A search-based procedural content generation (SBPCG) al-
gorithm for strategy game maps is proposed. Two repre-
sentations for strategy game maps are devised, along with a
number of objectives relating to predicted player experience.
A multiobjective evolutionary algorithm is used for search-
ing the space of maps for candidates that satisfy pairs of
these objectives. As the objectives are inherently partially
conflicting, the algorithm generates Pareto fronts showing
how these objectives can be balanced. Such fronts are ar-
gued to be a valuable tool for designers looking to balance
various design needs. Choosing appropriate points (man-
ually or automatically) on the Pareto fronts, maps can be
found that exhibit good map design according to specified
criteria, and could either be used directly in e.g. an RTS
game or form the basis for further human design.

1. INTRODUCTION
This paper presents a search-based approach to generating

maps, both terrain height and base and resource placement,
for strategy games. Search-based procedural content gener-
ation has a number of important differences to other types
of procedural content generation (PCG) in games; in partic-
ular it offers the possibility of directly optimizing content for
particular types of players and experiences. As it is hard to
devise a single and unambiguous measure of quality or fit-
ness for strategy game maps, but reasonably easy to come up
with measures of particular aspects of map quality, we cast
the problem of generating such maps as involving multiple
objectives and use a multiobjective evolutionary algorithm
at the core of our approach.

Thus, the contributions of this paper are twofold: we show
how complete maps (as opposed to just height maps) can be
generated in a search-based paradigm, and show how mul-
tiobjective optimization can be applied to procedural con-
tent generation. In both cases, we believe that this is the
first time such an approach is published in the academic
literature. Before diving into the particulars of map repre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PCGames 2010, June 18, Monterey, CA, USA
Copyright 2010 ACM 978-1-4503-0023-0/10/06 ...$10.00.

sentation and fitness function design, we will provide some
background on procedural generation of maps and terrains,
on search-based procedural content generation and on mul-
tiobjective evolution.

1.1 Procedural map and terrain generation
Maps are central to many computer games, including many

First-Person Shooters (FPS) and Role-Playing Games (RPG),
where the player experiences the world from a first-person
perspective as he navigates a typically hostile environment.
But they are perhaps most important for strategy games,
both of the turn-based variety and Real-Time Strategy (RTS)
games. In these games, the player views the playing area
from a third-person perspective (usually from above) while
directing one or several units as they traverse an area and
perform missions, usually involving battle. For the remain-
der of this paper, we will be concerned with such games.

Most strategy games come with a set of hand-crafted maps,
used both in single-player“campaign”mode and multi-player
modes. However, there are numerous reasons for wanting to
automatically generate maps. Perhaps the most obvious rea-
son is that by generating a fresh map each time the game is
played, you extend the life-span of the game by permitting
the player to explore a fresh map and the specific challenges
it entails each time the game is played. This also means that
any advantages a player has accrued in multi-player matches
by learning a map by heart are nullified.

A slightly less obvious reason is that maps could be tai-
lored to suit specific players or groups of players, and/or to
generate particular gameplay experiences. For example, a
player that has proven adept at a particular form of strat-
egy might be presented with a freshly generated map that
challenges her to develop other aspects of her strategic think-
ing; or, if she has been determined by the game to be less
motivated by challenge and more by easy progress, the new
map could play to the strengths of her particular playing
style while being seemingly dissimilar to previous maps she
has played. In a multi-player game, maps might be gen-
erated that balance out the strengths of playing styles of
different players with differing levels of proficiency, without
resorting to explicit handicapping in terms of game rules or
units supplied. Such content generation places particular
demands on models of player behaviour and preferences, as
well as on what ways the map creation algorithm can be
controlled.

But one might also want to use procedural map generation
algorithms as authoring and design support tools, to com-
plement human creativity. In this case the PCG tools would
be used off-line, before a game is shipped or before new high-

quality maps are made available for download. The role of
the algorithm would be to suggest new map designs accord-
ing to optional parameters or constrains, which could then
be modified and refined by human map designers.

While most strategy games stick with prefabricated maps
(possibly complemented with an end-user map editor), a sig-
nificant minority are based on random map generation. An
influential example is the Civilization series of epic turn-
based strategy games, in which the default game mode sees
the player playing on a new randomly generated world map.
No details have to the authors’ best knowledge been released
about Civilization’s map generation algorithm, but the very
short time to generate a map suggests a relatively uncom-
plicated algorithm. The parameters available to the user for
map generation are relatively few, the most important one
relating to size and connectedness of the islands forming the
world’s landmass.

The simplest way of generating maps similar to those used
by Civilization is probably to seed the ocean with embryonal
islands, and have them grown out in a random direction a
predefined number of steps [1]. Certain features on land,
such as forest areas, can be created in the same way, and
simple constraints can easily be added such as not connect-
ing certain land areas (so as not to fill in canals).

Slightly more advanced approaches involve using fractals,
such as the diamond-square algorithm [12]. The diamond-
square algorithm works by iteratively subdividing areas of
space and offsetting the midpoint by random amounts. Such
algorithms are most commonly used for height maps, where
they can, for example, generate believable mountains. An
advantage of this family of algorithms is that they are so
fast that they can often be used for realtime terrain gener-
ation [13].

Recently, Doran and Parberry suggested the use of soft-
ware agents for generating terrain [8]. In their approach,
a large number of agents are let loose on an initially fea-
tureless piece of terrain and collectively shape it. Each type
of agent has a particular task, and the workings of some
of them resemble forces of nature; so for example the river
agents travel from mountains to coast following the steepest
descent gradient. The agents are applied in phases, with
coastline agents followed by smoothing agents, etc. This ap-
proach is claimed to be more controllable than fractal-based
terrain generation algorithms.

The roguelike genre of games (the original Rogue game as
well as countless successors, such as Nethack, Moria and Dia-
blo) is unique in being based completely on random map gen-
eration. What is generated here is not terrain but dungeon
layouts, including walls and placements of monsters, traps
and treasure. Each time you play one of these games you
are presented with a new randomly generated map, and this
is usually part of the premise of the game. These often work
either similarly to the fractal terrain generation approaches
(generate a straight line from start to exit, iteratively de-
form the path a number of times, and then grow randomly
branching paths from the main path until the room is filled),
or by gluing together a number of prefabricated segments [1].

1.2 Search-based procedural content genera-
tion

All of the above examples represent what can be called
constructive PCG. This means that the generation algorithm
only makes one attempt: it proceeds from start to finish

with none or only insignificant backtracking. In contrast
to this generate-and-test algorithms make several attempts,
and only keep those candidate maps (or other types of gen-
erated content) that pass some sort of test. One example
is Tarn Adams’ ambitious game Dwarf Fortress, in which
initial fractal map generation is usually repeated a couple
of times, and the user is shown screenshots of “failed” maps
along with explanations of which playability tests the maps
failed to meet.

Search-based procedural content generation (SBPCG) is a
particular type of generate-and-test PCG, where the gener-
ated candidate content is not simply rejected or accepted by
the test but graded on one or several numeric dimensions,
and some sort of search or optimization algorithm is used
to find better content based on the evaluations of already
generated content.

Usually, some sort of evolutionary computation (e.g. a
genetic algorithm or an evolution strategy) is used as the
core algorithm for SBPCG. In these cases, a population of
candidates (e.g. maps) is created randomly at the beginning
of a run of the algorithm, and each generation the best can-
didates are selected (according to some fitness function) and
the worst candidates are replaced with new candidates gen-
erated through mutation (random perturbation) and/or re-
combination from the best candidates. Core concerns when
devising an SBPCG solution to some content generation task
is how to represent the content and how to devise the fitness
function. A recent overview of SBPCG can be found in [19].

One of the main arguments for SBPCG is that it allows the
designer to formulate the desired properties of the content
more explicitly than with other content generation methods.
Another argument is that it allows the use of content repre-
sentations that sometimes yield infeasible solutions (e.g. un-
usable maps), as such candidates can be discarded but still
form the basis for later, better candidates. The main argu-
ment against SBPCG is that it can be very time-consuming,
making it less suitable for realtime PCG – but this depends
on the fitness function and the search space, and choosing
these carefully can allow content to be generated in a frac-
tion of a second.

There have been a few previous attempts to use evolution-
ary algorithms to generate height maps for terrains before.
Frade et al. used genetic programming to evolve terrains,
with the evolved expression tree mapping coordinates on a
grid to desired elevation at that point. The fitness func-
tion was based on “accessibility” meaning that all flat areas
should be connected while no individual flat area grows too
big. Only the height map was evolved, no other features of
the map [9].

Sorenson and Pasquier evolve simple dungeon layouts for
e.g. roguelike games, using a map representation where
rooms and hallways of different sizes are placed on a two-
dimensional surface which is by default intraversible. The
fitness function is simply the length from start to finish, and
the only constraint that the path should be connected [16].
Similarly, Ashlock et al. evolved path-planning problems in
which the objective was to maximize distance from start to
finish by placing walls at various positions and angles [3].

In the above examples, only parts of game environments
(e.g. height maps and walls) are evolved – not complete,
playable levels with e.g. items, monsters, resources. This
is probably why the fitness functions are only tangentially
related to actual game playability and entertainment; path

length and accessibility do not alone make for a well-designed
level.

In contrast, some recent SBPCG papers have explicitly
been based on notions of player entertainment. For example
Togelius et al. evolved racing game tracks based on objec-
tives inspired by Malone’s entertainment dimensions [17];
Pedersen et al. evolved levels for Super Mario Bros based
on a data-driven model of player affect [14]; Hastings et al.
evolved weapons for a shooter game based player activity in
the game [10]; and Browne evolved board game levels based
on measures derived from studies of commercially successful
board games [6]. However, none of these studies concerned
maps or terrains.

1.3 Multiobjective evolution
In standard evolutionary computation, a single fitness func-

tion is used, meaning that candidate solutions are evaluated
to a single numerical dimension. However, for many prob-
lems it is hard to devise a single objective measure; for exam-
ple we want a car to be cheap, fast and safe, meaning that we
need to optimize in three fitness dimensions. Furthermore,
often these objectives are partially conflicting, meaning that
in general, a faster car is less cheap.

The intuitive solution to the conundrum is to simply add
the fitness measures together (using some weighting of each
measure), and optimize for the resulting composite measure.
This method has several drawbacks. One is that you don’t
know the appropriate weighting of the fitness dimensions un-
til you have investigated the distribution of solutions among
each dimension. A related drawback is that optimization
along a single dimension does not allow for exploration of
the often complicated ways in which the various fitness di-
mensions interact (e.g. above a certain price threshold faster
cars might not be less cheap).

Multiobjective evolutionary algorithms (MOEA) were in-
vented to solve this problem, and are now a major research
direction within evolutionary computation as well as com-
mon in industrial application. A MOEA presumes at least
two fitness functions that are partially conflicting, and pro-
ceeds to search not for an optimal solution, but a Pareto
front of nondominated solutions. A nondominated solution
is any solution for which there is no other solution that is
equal or better in all dimensions. In other words, a nondom-
inated solution is either best according to some objective, or
at least as good as other nondominated solutions in a unique
combination of dimensions.

When using two or three objectives1, the Pareto front can
be conveniently plotted in a graph, allowing visual explo-
ration of the tradeoffs existing for some problem. Visual
or automated inspection of Pareto fronts can detect situ-
ations where a small improvement in one objective would
lead to a huge loss in another, something which is usually
undesired. The possibility to visualize the tradeoffs inherent
in a design problem makes multiobjective optimization via
MOEAs a great but underused tool for design and authoring
support.

1More than three objectives are usually hard to handle for
any MOEA, as the number of incomparable solutions—
better in one objective, but worse in another—grows ex-
ponentially with the number of objectives and the Pareto
front coverage gets very sparse. The Pareto front is always
a set that consists of one dimension less than the number of
objectives, e.g. a four-dimensional set for five objectives.

Optimizing some aspect of a game for playability is inher-
ently a multiobjective problem, as it is very hard to formu-
late a single-dimensional automatic measure of how enter-
taining a game is; it is indeed not trivial to formulate par-
tial measures of game enjoyability. When designing game
content, it would seem invaluable for a designer to be able
to conveniently visualize the tradeoffs inherent in a design
problem; when automatically generating game content tai-
lored to particular players, it would also seem ideal to first
generate a selection of candidate content from which appro-
priate game content for the particular player could then be
chosen, based on her previous playing style and experience
model. Despite this seemingly perfect fit, we have not seen
any examples of MOEAs used for PCG; the closest we can
find are examples of multiobjective evolution of NPC be-
haviour [2].

1.4 Motivations for this paper
This paper intends to fill in the gaps highlighted by the

above literature analysis in the following ways;

1. We generate complete maps (not just height maps or
wall configurations) that could form complete levels for
a simple strategy game; apart from terrain elevation,
we also generate placement for bases and two types of
resources.

2. We represent these maps in a way which is suitable
for both strategy game engines and global optimizers
such as evolutionary algorithms. Each map feature has
its own real-valued parameter set, meaning that local
changes in the genome has local effects in the generated
maps.

3. We devise objectives that are directly motivated by
optimizing the entertainment to be had from playing
on these maps.

4. We use multiobjective evolutionary algorithms for ex-
ploring the tradeoffs between these partially conflicting
objectives.

2. MAP REPRESENTATION
In these experiments we will evolve maps for an imagi-

nary strategy game, containing some of the most common
elements for RTS game maps. We take this to be locations
for bases and for two types of resources (cf. minerals and
vespene gas in Starcraft). Of course, the maps also include
elevation differences.

We use two different representations of the map — an in-
direct representation used for searching (the genotype), and
a direct representation for fitness testing and visualization
(the phenotype). Each time fitnesses are calculated, a phe-
notype is created from each genotype.

The genotype (indirect) representation is a fixed-length
array of real values between 0 and 1. The length of the array
is decided by the number and types of map elements. Four
types of elements are possible, with parameters as follows:

• Base: x and y coordinates of each base

• Resource1: x and y coordinates of each resource type
1.

• Resource2: x and y coordinates of each resource type
2.

• Mountain: For each mountain we consider the two
standard deviations (σx and σy) of a three-dimensional
Gaussian distribution with a mean [x, y] (representing
the coordinates of the Gaussian mountain peak); and
a weighting parameter, h, that adjusts the height of
the Gaussian surface.

For our experiments, we generated maps with three bases,
four resources of each type and ten mountains, leading to
genomes of length 3 ∗ 2 + 4 ∗ 2 + 4 ∗ 2 + 10 ∗ 5 = 72.

This map representation has the advantage that it can be
efficiently searched by many common global optimization
algorithms, such as evolution strategies and particle swarm
optimization. In particular, many of these algorithms as-
sume a real-valued representation, and that local changes in
the genotype have local effects in the phenotype. For exam-
ple, when changing the x coordinate of the base, the posi-
tions of nearby resources are not changed, and neither are
the mountains; it is easy to imagine representations where
this would not be the case, such as many fractal represen-
tations. Additionally, this representation is size invariant, a
map of any discrete size can be created out of it, as fits the
preferences of the level designer.

The phenotype (direct) representation is similar to how
the map would be represented in an actual game, and is de-
signed to be easy to base fitness calculations on. This repre-
sentation consists of a heightmap in the form of a 100 ∗ 100
grid where each cell can take on a discrete number between
0 and 99 representing elevation at that point, and three lists
of x and y coordinates of bases, resource type 1 and resource
type 2 respectively. The lists of resource sites are populated
from the corresponding lists in the genotype representation
by simply multiplying each x and y coordinate by 100.

The coordinate for a base can be generated using one of
two different methods. The Cartesian method is the same
as for resource placement – the two parameters are simply
treated as x and y values and multiplied and discretized.
Alternatively, in the Constrained Polar method, the coordi-
nates are treated as angle and length of an axis extending
from the center of the map, at the end of which the base
is placed. Additionally, the representation is constrained so
that each base is forced to be within its own arc of the circle,
meaning that for three bases each base is placed within its
own 120 degree arc; the length of the axis is constrained to
between 1/2 and 1 of the radius of the map, meaning that
bases cannot be place too close to the center of the map.

All cells of the heightmap are initially set to elevation
zero. As already mentioned, the mountains are then drawn
as Gaussian curves in two dimensions. The peak (x and y
values for the mountain in the genome multiplied by 100)
is elevated to the height set for that mountain (multiplied
by the height parameter, h — h is 99 in this paper). The
standard deviation values along the x and y axes (σx and
σy) are calculated by multiplying the corresponding value in
the genome by 10. For cells that are affected by more than
one Gaussian 3D bell, the highest value from any of them is
used in the phenotype (final map).

3. FITNESS FUNCTIONS
In SBPCG, there is a distinction among three types of fit-

ness functions: interactive, simulation-based and direct [19].

Interactive fitness functions rely on human game players and
provide direct or indirect feedback about the quality of the
game content. While in a sense the ultimate type of fit-
ness function, interactive fitness functions may require mas-
sive amounts of player input and might be only possible
in game genres which provide sufficient game-player inter-
action, such as ongoing massively multiplayer games [10].
Simulation-based fitness functions assess content automati-
cally through algorithmically playing the game or some as-
pect of the game using the candidate content. Such evalu-
ations can potentially be accurate predictors of player en-
joyment, but require both artificial intelligence capable of
playing the game competently in a human-like manner and
often substantial computation time [17, 18]. Direct fitness
functions base their fitness calculations directly on the phe-
notype representation of the content. Such fitness functions
are obviously much easier to implement and faster to com-
pute than simulation-based functions, but it is hard to devise
direct fitness functions that accurately predict key aspects of
player experience (except when basing them on data-driven
player models built from extensive user studies [14]).

In this paper, we do not have access to testing our maps on
a complete RTS game, and we certainly do not have the lux-
ury of having human players sit through countless hours to
test the tens of thousands of candidate maps the evolution-
ary algorithm generates. However, we can simulate one key
aspect of RTS gameplay: moving between two points along
the fastest possible path. Our fitness functions are therefore
a combination of direct fitness functions, measuring vari-
ous properties of the height map and site distributions, with
somewhat simulation-based measures of the weighted dis-
tance between sites. Weighted distance is calculated using
the A∗ pathfinding algorithm, where the transition between
any two cells has a cost of 5 plus the difference in elevation
between the two cells.

As discussed above, devising a single non-interactive fit-
ness function that accurately captures the game entertain-
ment notion of all players is a rather hard and complicated
task; that complication drives our motivation for using mul-
tiobjective evolution. In this paper, we investigate the in-
terplay of the following five fitness functions. Please note
that any particular evolutionary run will only use two of
these functions, for reasons discussed above. All functions
are approximately normalized to the [0, 1] range.

• f0: Base distance. The f0 function is calculated as the
average weighted distance between bases.
Motivation: Fairness and interestingness. For multi-
player games, all players should have bases at approxi-
mately the same effective distance from each other (ei-
ther this means they are separated by long expanses
of plains, or by mountain peaks). Bases should not be
be too easily reachable from each other, to avoid too
short games.

• f1: Base on ground. The f1 function promotes low
elevation for bases and is expressed as: f1 = 1 −∑

i {h
B
i /NB}, where hB

i is the elevation of base i and
NB is the number of bases considered.
Motivation: Playability and fairness. Bases should
be placed on flat areas to allow placement of adja-
cent buildings and spatial allocation of newly produced
units. Bases should all be placed on the same elevation
to avoid unfair advantages (cf. Masada).

• f2: Asymmetry. The f2 function corresponds to the
average elevation difference between strategically cho-
sen cells and their counterparts on the opposite half of
the grid in both x and y axes.
Motivation: Aesthetic considerations and interest-
ingness. Symmetric maps might look artificial and
boring, and if symmetry is common among produced
maps (if the generating algorithm displays a prefer-
ence for this) players might come to rely on the same
feature (base, mountain or resource) being available on
the opposite side of the grid and adjust their strategies
accordingly.

• f3: Resource distance. The f3 function is expressed as
f3 = 1− (max{DR}−min{DR}, where max{DR} and
min{DR} are, respectively, the maximum and mini-
mum distances from any base to their nearest resource
of any type.
Motivation: Fairness. All bases should have the same
access to resources.

• f4: Resource clustering. Function f4 expresses the spa-
tial diversity of resources within a map (within a num-
ber of meta-cells) and it is calculated via Shannon’s
entropy formula: f4 = −(1/logC)

∑
i(ri/R)log(ri/R),

where c is the number of meta-cells the map is divided
upon; ri is the number of resources on meta-cell i and
R is the total number or resources available. The num-
ber of meta-cells c considered in this study is 9.
Motivation: Interestingness. Maps where resources
are clustered together (f4 ≈ 1) motivates some players
to explore more, and gives them more surprises.

In the experiments presented in this paper, only two ob-
jectives will be tested together in any single run of the algo-
rithm. We will explore how these various objectives partially
conflict and how these conflicts can be used for map design.

Note, for example, that a map where fitness function f4
reached its maximum value would probably be rather boring
to play. But this is the power of the multiobjective approach:
as this objective is almost certain to conflict with objective
f3 (at least in maps where not all bases are clustered to-
gether) it will be easy to avoid such maps, and pick maps
where a reasonable level of clustering can be balanced with
fairness.

Despite the naive implementation of A∗ we use, calculat-
ing all five objectives for a given map takes a small fraction
of a second on a modern laptop computer.

4. MULTIOBJECTIVE EVOLUTIONARY
ALGORITHM

The most popular multiobjective evolutionary algorithm
is undoubtedly NSGA-II [7], which has shown to be compe-
tent in many benchmark and real-world applications. How-
ever, the last years have seen several newly developed al-
gorithms, usually obtaining well received performance im-
provements. Of these, we employ the SMS-EMOA [4] (where
SMS stands for S-metric selection) which is known as a quite
greedy and fast descendant of the NSGA-II.

However, the general working scheme of most of these al-
gorithms is relatively similar. A population of search points
(called individuals with reference to the evolutionary roots)
is generated randomly at first, and then adapted to the prob-
lem in order to move towards the Pareto front by a repeated

cycle of variation and selection. Variation creates new search
points by mixing information about existing points (recom-
bination) and performing undirected steps with a defined
expected length (mutation). Selection chooses the best of
the old and new individuals to survive and deletes the oth-
ers. This working principle is common to many evolutionary
algorithms as well as some other algorithms. It has its ad-
vantages in the minimal knowledge of the optimized problem
necessary (black box, no algebraic form or gradients needed)
and is on the other hand somewhat slower than classical op-
timization algorithms on convex/very simple problems.

The SMS-EMOA is greedy as it generates only one new
individual per cycle and removes the individual with the
smallest hypervolume contribution, that is the individual
that dominates the least space in the Pareto plot (objective 1
over objective 2 for 2 objectives). It has been recently found
that the greediness is well in place as it is highly unlikely
that the SMS-EMOA is diverted from the real Pareto front
[5], that is, the Pareto front is reachable for the algorithm
in almost all cases.

To acknowledge the need for setting one or several con-
straints, we employ a modified selection scheme here. In-
dividuals outside the allowed region get a penalty equalling
their distance to it. When considering which individual to
remove, the one with the largest penalty always gets prece-
dence. Thus, valid individuals are never removed in the
presence of invalid ones.

We employ standard recombination/mutation operators
SBX and PM, and set the run lengths after some testing to
30,000 evaluations. This is largely sufficient for the prob-
lems treated here as found by experiment. Improvements
are getting very rare after doing so many cycles. In all ex-
periments, we use populations of 50 individuals. According
to our parameter tests, the population size has little effect
on convergence speed, thus it only limits the number of in-
dividuals on the final Pareto front approximation.

Note that while the obtained points shall be near the real
Pareto front, they do not necessarily have to be unique. De-
pending on the problem, any or many points on the front
can have several pre-images, meaning that there are sev-
eral ways to implement solutions with the same objective
function values. Although this would be interesting to a
game/level designer, we omit investigating this here due to
space limitations. However, approaches to retrieve the dif-
ferent pre-images are available [15].

5. EXPERIMENTAL INVESTIGATION
The first experiments were concerned with finding which

pairs of objectives exhibit partial conflicts. Therefore evolu-
tionary runs were done with 12 pairs of the 5 objectives, and
the resulting Pareto fronts exhibited. The standard carte-
sian mapping was used for base placement.

It was found that all of the runs that involve objective f0
(base distance) generated nontrivial Pareto fronts of 5-20
individuals, whereas all other runs (that did not involve f0)
generated Pareto fronts consisting of only one individual. A
front resulting from a run involving f0 and f2 is depicted in
figure 1.

We interpret this result as meaning that f0 partially con-
flicts with all other objectives, whereas those other objec-
tives probably do not conflict with each other (an alterna-
tive explanation would be that the evolutionary algorithm
has not been successful in finding the region of search space

Figure 1: Pareto front for the objective pair f0-f2.

where conflicts occur).
This result surprised us, as we had assumed that f1 (base

on ground) and f2 (asymmetry) would conflict, as would f3
(resource distance) and f4 (resource clustering). Upon closer
inspection of the maps involving these two pairs of objec-
tives, however, we found that in both cases the algorithm
had avoided the conflict through placing all three bases very
close to each other. This way, resource clustering could be
maximized while keeping the same distance from all bases
to nearest resource, and a very asymmetric map could be
generated while keeping all the bases on the ground.

However, having all the bases very close to each other
is clearly not good level design, as it would make for very
short games with little use of most parts of the map. One
alternative would be to optimize for three objectives simul-
taneously, and include f0 along any other pair of objectives.
As increasing the number of objectives generally greatly in-
creases the computation time required for exploring regions
that may not be of interest, we chose to go for another op-
tion: we changed genotype to phenotype mapping for base
placement from the previous cartesian to constrained polar
form. This representation prevents bases from being placed
too close to each other. Additionally, a mechanism was im-
plemented in the MOEA which removed any candidates with
f0 lower than 2.

Under these new conditions, partial conflicts (as indicated
by substantial Pareto fronts) were found between objective
pairs (f1 and f2), (f1 and f3), (f2 and f3) and (f3 and f4).
The resulting Pareto front for objective pair f3 and f4 is
shown in Figure 2. Four maps taken from that front are
shown in Figure 3.

It is apparent from these pictures that the algorithm finds
playable, varied and seemingly well-designed maps, which
are interestingly different from one end of the Pareto front
to the next.

6. CONCLUSIONS
In this paper, we have demonstrated a search-based ap-

proach to procedural generation of strategy games, using a
multiobjective evolutionary algorithm. We defined five suit-
able objectives for the algorithm motivated by player expe-
rience considerations. The results of our experiments show

Figure 2: Pareto front for the objective pair f3-f4.

that there exist a number of partial conflicts between these
objectives, which makes the algorithm useful as a design
support tool: designers can visualize the necessary tradeoffs
as a Pareto front and choose maps and make an informed
aesthetic judgement. But the fronts can also form the ba-
sis for completely automatic generation of content. Impor-
tantly, the generated maps (when selected from the middle
of Pareto fronts) look like plausible and playable RTS maps.

However, the research here is meant as a first step towards
multiobjective search-based PCG capable of realiably gen-
erating quality maps for real strategy games. A number of
issues remain to explore.

6.1 Future work
While the phenotype representation used in this paper is

intentionally made similar to typical representations used in
strategy games, it is probably not identical to the represen-
tation in any particular existing game. An important next
step for us is to adapt the representation (possibly including
the types of elements on the maps, and the fitness function)
to fit some existing commercial-quality RTS game, and in-
terface our algorithm to that game.

Another important next step is to investigate the use of
more than two objectives at once. Can three-dimensional
Pareto fronts be efficiently generated in this context, and can
they be effectively used for design support, or for automated
content selection?

Alternative fitness functions and more objectives need to
be considered in future studies. For instance, one could in-
vestigate the impact of Malone’s [11] factors for the design
of engaging gameplay (challenge, curiosity and fantasy) on
map generation. The three factors can already be quanti-
fied via the fitness functions available (e.g. curiosity could
be represented by the resource unpredictability function f4).
However, new quantitative measures of those qualitative fac-
tors will be required, encapsulating Malone’s principles bet-
ter, and feed the MOEA algorithm with more meaningful
objectives.

After these investigations are completed our intention is
to cross-validate our conclusions regarding map generation
against actual players. It would be investigated whether
maps designed to lead to short, aggressive games actually did

(a) (b)

(c) (d)

Figure 3: The four generated maps taken from the Pareto front of the objective pair f3-f4. Bases are
illustrated as yellow spheres; resources are depicted as either red (type 1) or blue (type 2) cones.

that, and whether maps generated to balance the differing
abilities of different players actually did that.

Eventually, a complete game could be based around this
type of procedural map generation, where new maps are con-
tinually generated based on the previous performance and
expressed preferences of the players.

7. ACKNOWLEDGMENTS
This research was supported in part by the Danish Re-

search Agency, Ministry of Science, Technology and Innova-
tion; project name: Adaptive Game Content Creation using
Computational Intelligence (AGameComIn); project num-
ber: 274-09-0083.

8. REFERENCES
[1] T. Adams. Re: Optimization-based versus

“constructive” pcg (post to the “procedural content
generation” google group).

[2] A. Agapitos, J. Togelius, S. M. Lucas,
J. Schmidhuber, and A. Konstantinides. Generating

diverse opponents with multiobjective evolution. In
Proceedings of the IEEE Symposium on
Computational Intelligence and Games, 2008.

[3] D. Ashlock, T. Manikas, and K. Ashenayi. Evolving a
diverse collection of robot path planning problems. In
Proceedings of the Congress On Evolutionary
Computation, pages 6728–6735, 2006.

[4] N. Beume, B. Naujoks, and M. Emmerich.
SMS-EMOA: Multiobjective selection based on
dominated hypervolume. European Journal of
Operational Research, 181(3):1653–1669, 2007.

[5] N. Beume, B. Naujoks, M. Preuss, G. Rudolph, and
T. Wagner. Effects of 1-greedy-metric-selection on
innumerably large pareto fronts. In M. E. et al.,
editor, Evolutionary Multi-Criterion Optimization, 5th
International Conference, EMO 2009, Nantes, France,
April 7-10, 2009. Proceedings, volume 5467 of Lecture
Notes in Computer Science, pages 21–35. Springer,
2009.

[6] C. Browne. Automatic generation and evaluation of

recombination games. PhD thesis, Queensland
University of Technology, 2008.

[7] K. Deb, A. Pratap, and S. Agarwal. A fast and elitist
multi-objective genetic algorithm: NSGA-II. IEEE
Trans. on Evolutionary Computation, 6(8), 2002.

[8] J. Doran and I. Parberry. Controllable procedural
terrain generation using software agents. IEEE
Transactions on Computational Intelligence and AI in
Games, 2010.

[9] M. Frade, F. F. de Vega, and C. Cotta. Evolution of
artificial terrains for video games based on
accessibility. In Proceedings of the European
Conference on Applications of Evolutionary
Computation (EvoApplications), volume 6024, pages
90–99. Springer LNCS, 2010.

[10] E. Hastings, R. Guha, and K. O. Stanley. Evolving
content in the galactic arms race video game. In
Proceedings of the IEEE Symposium on
Computational Intelligence and Games, 2009.

[11] T. W. Malone. What makes computer games fun?
Byte, 6:258–277, 1981.

[12] G. S. P. Miller. The definition and rendering of terrain
maps. In Proceedings of SIGGRAPH, volume 20, 1986.

[13] J. Olsen. Realtime procedural terrain generation. 2004.

[14] C. Pedersen, J. Togelius, and G. N. Yannakakis.
Modeling player experience in super mario bros. In
Proceedings of the IEEE Symposium on
Computational Intelligence and Games, 2009.

[15] G. Rudolph and M. Preuss. A multiobjective approach
for finding equivalent inverse images of pareto-optimal
objective vectors. In C. Coello Coello, P. Bonissone,
and Y. Jin, editors, 2009 IEEE Symposium on
Computational Intelligence in Multicriteria
Decision-Making (IEEE MCDM 2009), pages 74–79,
Piscataway (NJ), 2009. IEEE Press.

[16] N. Sorenson and P. Pasquier. Towards a generic
framework for automated video game level creation. In
Proceedings of the European Conference on
Applications of Evolutionary Computation
(EvoApplications), volume 6024, pages 130–139.
Springer LNCS, 2010.

[17] J. Togelius, R. De Nardi, and S. M. Lucas. Towards
automatic personalised content creation in racing
games. In Proceedings of the IEEE Symposium on
Computational Intelligence and Games, 2007.

[18] J. Togelius and J. Schmidhuber. An experiment in
automatic game design. In Proceedings of the IEEE
Symposium on Computational Intelligence and Games,
2008.

[19] J. Togelius, G. N. Yannakakis, K. O. Stanley, and
C. Browne. Search-based procedural content
generation. In Proceedings of the European Conference
on Applications of Evolutionary Computation
(EvoApplications), volume 6024. Springer LNCS, 2010.

