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ABSTRACT 
This paper proposes a simplified ordering algorithm for the fixed-
complexity sphere decoder (FSD). The new algorithm is 
developed from the analysis of the ordering for FSD from a 
geometrical point of view. Computer simulation is used to assess 
the improvements in bit-error rate (BER) performances of MIMO 
systems using the FSD with the original and the simplified 
ordering. Simulation results show that the new ordering method 
can achieve nearly the same BER as the original ordering method 
but with much less complexity. 

Categories and Subject Descriptors 
C.2 [Computer-Communication Networks]: Wireless 
Communication. 

General Terms 
Algorithms, Design. 

Keywords 
geometrical analysis, fixed-complexity sphere decoder, ordering, 
MIMO. 

 

1. INTRODUCTION 
Multiple-input-multiple-output (MIMO) system has attracted 
more and more attention in wireless communications due to its 
potentially high data rate and low bit-error rate (BER). However, 
detection has been a big issue that makes MIMO systems difficult 
to implement in practice. It is well known that maximum-
likelihood (ML) detection achieves the best block-error rate 
(BLER) performance, but its complexity is too high because it has 
to search the solution in the whole signal space of the transmitted 
signals. Linear detection algorithms such as zero-forcing (ZF) and 
minimum mean-square-error (MMSE) are much simpler, but the 
BER performance is not satisfactory because they do not fully 
explore the diversity advantages of the MIMO channel. Sphere 
decoding (SD) [1]-[3] can achieve the BER performance of ML 
detection with much less complexity by searching within only a 
subset of the whole signal space. Geometric decoding algorithms 
[4]-[6] have also been proposed to reduce the search signal space 
to a small subset. However, these algorithms share a common 
disadvantage that the detection complexity varies with the signal-
to-noise ratio (SNR), making these algorithms difficult for 
hardware implementation. 

 

Recently, a fixed-complexity sphere decoder (FSD) has been 
proposed to solve the variable complexity problem of SD [7]. The 
algorithm used an ordering process to determine the order of 
symbols to be detected and then enumerated different numbers of 
candidates for each symbol. Then it calculated the Euclidean 
distances between the received signal and all the vector 
combinations of these candidates and chose the vector with the 
smallest Euclidean distance as the detected symbol. Since the FSD 
searches for the candidates in a processive way rather than a 
recursive way as in SD, the detection complexity is fixed for all 
SNRs.  

The error performance of FSD was analyzed in [8] algebraically. 
In this paper, we look at FSD from a geometrical point of view. 
We show how the ordering criterion in FSD works in the lattice of 
the receive signal space. Then we adopt a simplified ordering 
criterion to approximate the original ordering criterion for FSD. 
Simulation results show that, in a 4×4 MIMO system used for 
study, the simplified ordering achieves nearly the same BER 
performance as the original ordering for FSD with much less 
complexity. 

The rest of this paper is organized as follows: Section II describes 
the system model and the FSD algorithm in [7]. Section III 
explains the geometrical analysis of the ordering used in FSD. 
Section IV presents the simplified ordering algorithm based on the 
analysis in Section III. Simulation results are presented in Section 
V. Section VI concludes the paper. 

 

2. SYSTEM MODEL AND FIXED-
COMPLEXITY SPHERE DECODER 

2.1 System Model 
The system model used for the study is an Nt×Nr MIMO system 
with Nt transmit antennas and Nr receive antennas, over a fast 
Rayleigh fading channel which changes at each transmitted 
symbol vector. The received signal vector r with length Nr is 
given by: 

 = +r Hs w  (1) 

where the entries of r tN N×∈H C  represent the channel 
coefficients which are assumed to be perfectly known at the 
receiver but not at the transmitter,  is the transmitted 
uncoded signal vector, and  represents the complex 
additive white Gaussian noise (AWGN) matrix with elements 
being independently and identically distributed (iid) and following 
the normal distribution N

tN∈s C
rN∈w C

C(0,N0).  
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The detection process aims to find the signal vector with the 
smallest Euclidean distance from the received vector: 

 
2ˆ arg min

∈
=

s
s r -

S
Hs

)H

 (2) 

where  is the signal space containing all the possible 
combinations of transmitted symbols. 

S

2.2 FSD algorithm 
In [7], the FSD algorithm tried to solve (2) in two steps. First, an 
ordering was used to determine the order of symbols to be 
detected. For the first p symbols, all or some of the possible 
values were enumerated (called full or partial expansion). An SD-
like detection algorithm based on the Cholesky decomposition of 
the channel matrix was then used to detect the rest of the symbols. 
Finally, the Euclidean distances between all the enumerated 
symbol vectors and the received signal r were calculated and 
compared. The symbol vector with the smallest Euclidean 
distance from r was taken as the detected vector. These two steps 
can be described in details as follows. 

a. Ordering 

The channel matrix ordering of [7] can be described as follows. 

In the (i+1)th iteration, for i=0,…,Nt-1:  

1) The matrix Q H  is calculated, where 1(
t t

H
i N i N i

−
− −=

tN i−H  

is the channel matrix with the i columns selected in the previous 
iterations removed and  denotes the conjugate transposition 

of .  
t

H
N i−H

tN i−H

2) The kth column of  is selected according to 
tN i−H

  (3) 
arg max[ ] ,

arg min[ ] ,

i jjj

i jjj

k
⎧⎪= ⎨
⎪⎩

Q

Q

where [  is the j]i jjQ th-diagonal element of Q . In [8], [  
was interpreted as the post-processing noise amplification of the 
j

i ]i jjQ

th symbol in the (i+1)th iteration. In the next section, we show 
what [  is in the geometrical expression of FSD detection. ]i jjQ

b. Detection 

After ordering, expansions and detections are used. As an example, 
consider a system transmitting four 16QAM symbols (i.e. Nt=4) at 
a time. To detect the first symbol (e.g. s2 after ordering), full 
expansion is used (i.e. p=1). For each of the 16 possible values of 
s2, the contribution of s2 is removed from the received signal r and 
hard decision is applied to detect the next symbol by minimizing 
the partial Euclidean distance (PED) [9]. Interference in the 
detected symbol is then removed from r and similarly, the PED of 
the next level is minimized to detect the next symbol. The 
detection process goes like this until all the 16 symbol-vector 
candidates are obtained for each value of s2. The Euclidean 
distances of these 16 candidates to the received signal r are 
compared. The candidate with the smallest Euclidean distance is 
taken as the detected vector. 

 

3. GEOMETRICAL ANALYSIS OF FSD 
ORDERING 
In this section, we illustrate the ordering for FSD from a 
geometrical point of view.  

Consider an example of a 3-dimension real received signal space 
(i.e. Nr= Nt =3) for 4PAM as shown in Fig. 1, where the symbol  
denotes the received signal vector r. The generation matrix of the 
lattice is H, having column vectors h1, h2 and h3 as the directions 
of s1, s2 and s3, respectively. The detector aims to find the lattice 
point closest to r. In Fig. 1, the dots of the same color denote the 
lattice points with the same values of s2. We call the hyperplane 
formed by the dots with the same value of s2 a layer of s2. For 
example, the layers with slashes are layers of s3. 

In Section II, it is described that, in each iteration of the ordering 
process, one column of H is removed. Therefore, in the (i+1)th 
iteration, for i=0,1,…,Nt-1, the space is spanned by only the 
columns of 

tN i−H  and the lattice is generated by 
tN i−H . We 

denote the index of the symbol corresponding to the jth column of 

tN i−H  by I(i,j), and the distance between the layers of )( ,I i js  in 

the (i+1)th iteration by l  (for j=1,2,…,Ni
j t). Then in the 1st 

iteration (i=0) we have the following equation. 

 0

0

2
[ ]j

jj

l =
Q

 (4) 

Proof: In this proof, we use the 3-dimensional example of Fig. 1. 
The extension to an Nt-dimensional space is straightforward. 

Denoting the matrix 1
0 0 0( )H H−H H H  as zfM , we have  

  (5) 0zf =M H I
for full expansion, 

Then denoting the jth row of zfM as H
jm , (5) implies m  is 

orthogonal to all but the j
j

th column vectors of H . Also note that  0

for single expansion, 

 0j j=m H q  (6) 

where H
jq  is the jth row of Q . (6) means that m  is within the 

vector space spanned by the columns of H . From (5) and (6), 

we can see that m  is orthogonal to the layers of s

0 j

0

j j. The length of 

the line segment of m  between adjacent layers of sj j is equal to 

the distance between adjacent layers of sj, which is . We denote 

 as the j

0
jl

0
jh th column of H  and 0  as the Euclidean norm of a 

vector. Then, from Fig. 1, we can see that the length of the line 
segment of h  between adjacent layers of s0

j j is equal to 02 . 

Since the layers of s
jh

j are parallel to each other, we have: 

 0 02 cosj jl θ= h  (7) 

where θ  is the angle between  and .  jm 0
jh

From (5) we can write: 
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 0 0 cos 1H
j j j j θ=m h m h =  (8) 

Combining (7) and (8) yields: 

 0 2
j

j

l =
m

 (9) 

From (6) we know 

 
2

0 0
H H

j j j  (10) =m q H H q

Since H
jq  is the jth row of  and , 0Q 0 0 0

H =Q H H I 0 0
H H
j jq H H q  

is equal to the jth element of , which is . Substituting jq 0[ ] jjQ

0 0
H H
j jq H H q  into (10) and then to (9) yields 

 0

0

2
[ ]j

jj

l =
Q

 (11) 

Similarly, it can be proved that in the (i+1)th iteration: 

 
2

[ ]
i
j

i jj

l =
Q

 (12) 

From the previous analysis, we can see that the ordering for FSD 
actually depends on the distance between the layers of the 
symbols. The p symbols with the smallest layer distances are fully 
expanded. In single expansion, the symbol with a larger layer 
distance is detected first.   

To understand the reason for this ordering used in FSD, we can 
look at it from a geometrical way. Consider the same lattice 
shown in Fig.1. The layer distance of s2 is obviously smaller than 
those of s1 and s3, so the lattice point closest to the received point 
r (the ) is equally likely to be in one of the four layers of s2. 
Thus all the four layers of s2 need to be searched and the full 
expansion process is used in FSD. In single expansion, the 2nd 
column of H is removed and the space becomes a 2-dimensional 
space spanned by h1 and h3, as depicted in Fig. 2. Now the 
symbols are detected iteratively and only one candidate of each 
symbol is taken. If the layer distance of a symbol is large, it is 
likely that the lattice point closest to r is on the layer closest to r. 
In the example of Fig. 2, the distance between the layers of s3 is 
large, so the point closest to r is more likely to be on the layer 
where s3=-1, which is the closest layer to r. This means that the 
decision of s3=-1 has a higher probability of being correct, so 
detecting s3 first will reduce the error propagation in single 
expansion detection. This is the reason why the symbols 
corresponding to small [ ]  are detected first in single 
expansion detection in FSD. 

i jjQ

 

4. SIMPLIFIED ORDERING 
As we can see from section II, the ordering for FSD requires at 
least Nt-1 matrix inversion operations, which contributes to much 
of decoding complexity. This problem is even worse for a fast 
fading channel where the channel matrix changes at each 
transmitted symbol vector. In this section, we propose a simplified 
ordering criterion based on the geometrical analysis to 

approximate the original ordering criterion for FSD. This new 
ordering requires only one matrix inversion operation and thus 
reduces the complexity of the ordering process for FSD. The 
simplified ordering is described as follows: 

The kth symbol is selected according to 

 
0

0

arg max[ ] ,

arg min[ ] ,

jjj

jjj

k
⎧⎪= ⎨
⎪⎩

Q

Q
 (13) 

for full expansion, 

for single expansion, 

where  is the j0[ ] jjQ th-diagonal element of  and 0Q
1

0 ( )H −=Q H H . 

In the example of Fig. 1 and Fig. 2, the simplified ordering is 
equivalent to using  to approximate . This approximation is 
more clearly depicted in Fig. 3. The extension to an N

0
3l

1
2l

t-
dimensional system is straightforward. Recall the definition of 

( , )I i j  in the last section. It is easy to see that in the ith iteration 
(for i=0,1,…,Nt-1) of ordering in an Nt-dimensional system, the 
symbol corresponding to  is i

jl ( , )I i js  and (0, )I j j= . Thus a 

simplified method is to use 0
( , )I i jl  to approximate . As we can 

see from the example of Fig. 3, this approximation uses the layer 
distance in a 3-dimensional space to approximate the layer 
distances in a 2-dimensional space. Generally, it uses an N

i
jl

t-
dimensional layer distance to replace all the layer distances in the 
lower dimensional spaces. Although errors may occur in 
approximating the distances, the ordering is less affected. 
Moreover, the simplified ordering of (13) only requires one matrix 
inversion operation, which substantially reduces the complexity of 
the ordering, especially in the fast fading channels. 

 

5. SIMULATION RESULTS 
Computer simulation has been used to evaluate the effects of 
ordering and simplified ordering on the BER performance and the 
complexity of a MIMO system. A 4 × 4 MIMO system 
transmitting 4 uncoded 16QAM symbols at a time interval has 
been used for studies. The channel is a fast fading channel which 
varies from each transmitted symbol vector to another one. 

The BER performances of SD, original FSD, FSD without using 
the ordering and FSD with the simplified ordering are shown in 
Fig. 4. It can be seen that the BER performance of the FSD 
algorithm is very close to that of ML detection. The BER 
performance of FSD without using the ordering is also shown in 
Fig. 4. This algorithm is the same as the FSD algorithm except 
that the order for symbol detection is random. Comparing the 
BER performance with that of FSD shows that significant 
improvements in BER performance can be achieved by using the 
ordering. The BER of the FSD with our proposed simplified 
ordering is also shown in the same figure. It can be seen that the 
BER curve is nearly identical to that of the original FSD.  

Figure 5 compares the complexity of FSD using the original and 
simplified orderings at different SNRs. The solid lines correspond 
to the average number of multiplication operations while the 
dashed lines correspond to the average number of addition 
operations. It can be seen that the simplified ordering reduces the 
complexity of FSD by more than 20%. 
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6. CONCLUSIONS 
In this paper, we have analyzed the ordering of FSD from a 
geometrical point of view. Based on the analysis, we proposed a 
new ordering criterion to approximate the original ordering 
criterion for FSD. Computer simulation results have shown that 
the simplified ordering algorithm does not cause obvious 
degradation to the BER performance of the FSD, but reduces the 
complexity by more than 20%. 

 

 

 

 

Fig. 4. Bit-error rate of FSD with and without simplified 
ordering. 

Fig. 1. Lattice in received signal space. 

 

Fig. 5. Complexity of FSD with original and simplified 
ordering. 

 

Fig. 2. Space spanned by h1 and h3. 

  
Fig. 3. Approximation of simplified ordering. 
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