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ABSTRACT
In a number of network scenarios (including military set-
tings), mobile nodes are clustered into groups, with nodes
within the same group exhibiting significant correlation in
their movements. Mobility models for such networks should
reflect this group structure. In this paper, we consider the
problem of identifying the number of groups, and the mem-
bership of mobile nodes within groups, from a trace of mobile
nodes. We present two clustering algorithms to determine
the number of groups and their identities: k-means chain
and spectral clustering. Different from traditional k-means
clustering, k-means chain identifies the number of groups
in a dynamic graph, using a chaining process to keep track
of group trajectories over the entire trace. The second ap-
proach uses spectral clustering, which uses similarities be-
tween node pairs to cluster nodes into groups. We show that
the number of groups and node membership can be accu-
rately extracted from traces, particularly when the number
of groups is small.

Categories and Subject Descriptors
C.2 [Computer communication networks]: Misc.; I.5.3
[Clustering]: Algorithms and similarity measures
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Performance
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1. INTRODUCTION
The modeling and analysis of wireless networks greatly de-

pends on the specific rules that govern the movement of the
nodes. One class of mobility model is that of group-oriented
or leader-oriented movement, in which the set of moving
nodes is divided into several disjoint groups, where the move-
ment of individual nodes within each group is highly cor-
related. By separating out groups from each other, a more
precise analysis of intra-group behavior can be achieved, and
inter-group mobility correlation can be observed and ana-
lyzed. This group structure can also be used in generative
models of group-based node mobility [5].

In this work we present two approaches for dividing mobile
units into groups, given a set of candidate values k in ad-
vance, with the goal of determining the most suitable value
of k and the group memberships. We analyze the ability
of these approaches to correctly identify the number and
membership of groups, using both real and synthetic mobil-
ity traces. Here, a trace consists of a series of snapshots of
nodes’ locations. In the field of machine learning, cluster-
ing tools are most commonly used to assign each point in a
data set to one of a set of clusters, the number of which is as-
sumed be known. When the number of clusters is unknown
at the outset, selecting the ”correct” number of clusters is a
difficult problem.

The first approach we propose for group identification, k-
means chaining, fixes the number of groups at k for each can-
didate value k, and clusters nodes into k groups at each snap-
shot. By counting the number of nodes’ changing groups
between consecutive snapshots, the number of groups is se-
lected to minimize the number of such group changes. The
trajectories of the corresponding groups are also produced
by the k-means chaining algorithm. The second approach
we investigate uses spectral clustering methods to group the
nodes for each candidate value of k, and uses clustering sta-
bility measures to determine which value of k best models
the system.

The remainder of this paper is structured as follows. After
reviewing k-means clustering in Sec. 2, we describe the two
different methods used to determine the number of groups
in the trace and membership of nodes in these groups in Sec.
3. Then, in Sec. 4 we present the traces used to study and
evaluate these two methods. Sec. 5 is devoted to a detailed
discussion of the range of tests we ran to evaluate our meth-
ods, and we conclude with Sec. 7 where we summarize our



findings and present ideas for future research.

2. K-MEANS CLUSTERING
In the fields of statistics and machine learning, clustering

analysis is usually regarded as the problem of dividing a set
of objects into two or more groups in such a way that ele-
ments in a group are similar to each other in some predefined
manner. A popular approach to clustering is the k-means
clustering algorithm [1], which is a special case of the classic
EM clustering algorithm. In this work, we rely heavily on
this algorithm, and so we proceed to define it formally.

k-means clustering is a method used to partition a data
set of n points into k different clusters such that similar
elements are grouped together. Given k, a set of points
{x1, x2, ...., xn}, and a distance metric, k-means clustering
partitions the n points into k different sets: S = {S1, S2, . . . , Sk}
so as to minimize the sum of squares of distance from the
points to the mean µi of the distance of each cluster Si:

arg min
S

k∑

i=1

∑

xj∈Si

‖xj − µi‖2 (1)

The values µi are referred to commonly as the cluster
centroids. Given k and a (possibly random) starting position
of the centroids, k-means uses an iterative procedure to try
to determine the µi that satisfy (1). There are two concerns
here selecting the correct value for k (a parameter that is
sometimes known in advance) and dealing with the fact that
k-means can select values of µi values that result in a local
minimum rather than a global minimum.

3. MOBILE GROUP CLUSTERING
In this section we present our two approaches to partition

the nodes in a mobility trace into groups, without a priori
knowledge of the number of groups, k. Our first approach,
k-means chaining, first selects a value for k and then assigns
each node to one of the k groups at each snapshot1 and then
selects the value of k that minimizes the number of times
that nodes are partitioned into a different group. The second
approach uses spectral clustering to generate clusterings for
various values of k, and then chooses the value of k most
likely to be correct by selecting the clustering exhibiting the
greatest clustering stability.

3.1 k-means Chains
We begin by introducing the concept of loyalty in mobile

groups. For expository purposes, we use the example of mo-
bile military units, where each soldier is a unit. Here, each
soldier (a mobile unit) is assigned to a group, and remains
with this group permanently. We say this soldier is loyal to
the group. Thus, consider an algorithm that would apply
k-means to each snapshot in a mobility trace for a set of
possible k values. For each snapshot a clustering would be
produced. If an incorrect value of k was used, units would
show a significant number of group changes, and is referred
to as disloyalty between snapshots. The disloyalty function
is defined by enumerating the number of times each unit
changes groups between snapshots for a set of possible val-
ues of k. We thus choose the number of groups to the value
of k for which disloyalty is a minimum2.
1
A snapshot is the trace of a specific second, containing information

of time stamp, node ID, x, and y coordinates.
2
We ignore the cases of k = 1 or n (no group changes occur).

Though useful in theory, comparing clusterings between
snapshots is a complicated and time-consuming process. First,
in the standard k-means implementation, the centroids are
randomly distributed at the beginning of the clustering pro-
cess for a given snapshot; in our scenario this can lead to in-
consistent labeling between snapshots (e.g., the same group
can be labeled as group 1 at time t and group 5 at time t+1).
Due to this inconsistent labeling, clustering comparison is
difficult. Specifically, a brute-force approach would require
iterating over all possible k! label permutations in search of
the best label-alignment between clusterings that minimizes
the differences between them. Additionally, a more funda-
mental challenge is that group identity is not well-defined:
if two units were in the same group at time t but not at time
t+1, which of the two should be considered to have changed
its group? Any answer to this question can be, at most, a
heuristic, and open for interpretation and dispute.

To address both of these problems, we initialize the k-
means algorithm so that the starting position (at time t+1)
of the centroid of cluster j is close to where we expect cluster
j from the previous snapshot to have moved to by t + 1. To
do this, we can simply use the centroid location computed
for cluster j at time t as the starting position for cluster j
at time t + 1. In this paper, we use a more practical way
to initialize the starting position of each group by forcing
the centroid of each cluster to be one of the nodes closest
to the computed center location. This is because, in some
cases, nodes in a group may suddenly move very fast from
one point and arrive at another, say a hot spot, at time t+1,
resulting in the situation that no node at t + 1 is near the
centroid position at time t.

We refer to such sequences of k-means as a “k-means
chain”, as the behavior at every snapshot is determined by
the previous one, creating a dependency chain between snap-
shots. This method can be thought of as extending the clas-
sic k-means algorithm from solely clustering nodes in a sin-
gle static snapshot, to the case of dynamic, sequential snap-
shots. Using this approach, we use the following approach
for selecting the best value of k: we count the total number
of times that nodes change their assigned group label, and
select the k that minimizes this value. For our implemen-
tation here we sum up the number of group label changes
for all nodes across snapshots, and refer to this as the com-
bined disloyalty of all the units/nodes. The motivation for
this algorithm is that since units are loyal to their groups,
the disloyalty should be low for the correct value of k, where
group changes will occur only in borderline cases when two
groups are close to one another.

This technique can also be used to keep track of the move-
ment of group centroids over the trace. Since we know group
centroids’ movement, during each snapshot, the trajectory
of each group can be identified by the k-means chaining pro-
cess. Furthermore, if the correct value of k is given, nodes’
group affiliation can also be identified in an online fashion.
For the first snapshot, k-means clustering returns k groups
and node affiliation (i.e., each node will be given an assign-
ment of group affiliation: g, where 1 ≤ g ≤ k). After setting
the start positions for the next snapshot described previ-
ously, nodes of the same group should ideally remain in that
same group for the entire length of the trace, showing loyalty
to its group. A pseudo code for k-means chain algorithm can
be found in [10].



3.2 Spectral Clustering
Spectral clustering methods [2] accept as input a set of ob-

jects {x1, . . . , xn} for which there exists a pairwise similarity
(or weight) matrix S = (sij), i, j ∈ {1, . . . , n}, representing
the similarity between every pair of objects i and j. From S
we extract a graph Laplacian matrix L, and determine the
k eigenvectors of L with the lowest eigenvalue, denoted by
e1, ..., ek. These are arranged as columns of a matrix Ek,
and each object xi is mapped to the ith row in Ek, denoted
yi, s.t. yi ∈ Rk. Finally, we run k-means over the points
{yi}n

i=1, generating the desired k groups. The challenges in
applying spectral clustering lie in (i) determining the value
of k, (ii) selecting a useful and expressive similarity func-
tion, and (iii) deciding whether the matrix should contain
all the similarity information or just a section of it [2].

We defer our discussion of these issues until Sec. 5, and
for now explain how we use clustering stability [4] to choose
the most suitable value of k. We say that a clustering is sta-
ble if it is insensitive to the specific sample from the sample
space that is input to the clustering algorithm, for samples
of equal size. For the case at hand, for each unit we have
a sample space consisting of its movement over the length
of the trace, and a sample is a part of the trace. Assuming
the mobility pattern of the unit does not change between
samples, including its association with its group, then the
clustering into groups for the ”correct” value k would ideally
be insensitive to the specific sample used to generate the
clustering (for large enough samples), and in such a case we
say the clustering is stable. Thus, for the problem at hand,
we test the stability of a specific k by randomly dividing
the available trace into h ≥ 2 disjoint samples, run spec-
tral clustering on each sample, and compare the resulting
clusterings. If the clusterings match, this indicates that the
clustering is stable, increasing the confidence that k is the
actual number of clusters3.

Using this concept of clustering stability, we run spectral
clustering over two equal and disjoint portions of the trace,
and compare the results to check that the clusters for each
run are the same. Note, however, that clustering stability
assumes that the different samples are taken from the same
sample space. In real-world mobility traces, groups change
their behavior patterns over time even if their groups remain
intact. For this reason, each sample is a concatenation of
small samples (i.e., consecutive snapshots) taken over entire
trace, so that the behavior of each node is similar in both
samples. A more detailed description and pseudo code for
spectral clustering is in [10].

4. TRACE DATA
In this section we discuss the traces we used to evaluate

our two group-detection algorithms. We use both synthetic
traces generated by a mobility model, and a “real-world”
trace of a military scenario. Note that we also apply our
algorithms on the traces of other scenarios, such as campus
area and vehicular networks, as case studies [10].

4.1 Reference Point Group Mobility (RPGM)
In the RPGM model, each group has a logical center (i.e.,

the leader) whose motion defines the behavior and the tra-
jectory of the whole group [3]. We generate RPGM traces

3
For discussion regarding the theoretical usefulness of stability as a

tool for selecting k, see [6] and [7].

Figure 1: Map of Lakehurst Scenario

using the IMPORTANT tool [5]. IMPORTANT takes a
compressed description of group leader(s) movement and
outputs a full mobility trace for all nodes in all groups. The
leader trace consists of a series of checkpoints visited by the
leader and the speed at which it moves between successive
checkpoints. The resulting trace contains snapshots every
second, giving the location of each node at each snapshot.
In this paper, we generated 50 RPGM traces for k = 2, ..., 9,
where each group is comprised of 5 nodes. We fixed the
speed deviation and angle deviation in IMPORTANT [5] to
a default value4.

4.2 Lakehurst Military Trace
This trace, supplied by the US Army Research Lab (ARL),

records the movements and communication between units
in a realistic military maneuver that took place at Lake-
hurst, New Jersey USA. The maneuver was 3 hours long
and consisted of 64 ground vehicles, each belonging to one
of 9 groups, referred to in this paper as military units, MUs
for short (The number and membership of each of these
groups was determined by human observation). Vehicles
were equipped with GPS receivers so that they could record
their positions at intervals of one second. All 9 MUs started
and ended the maneuver at same locations, but were divided
into two meta-groups, with each following a different route
from the starting point to the end point shown in Fig. 1.
Along this route there were several checkpoints, with each
MU stopping at every checkpoint for some period before
moving on to the next checkpoint.

5. TESTS AND RESULTS
We evaluate our group-identification algorithms using both

synthetic and military traces. We compared the results of
these algorithms to the known correct groups in the traces.
In the case of synthetic traces, k was an input parameter.
Here in the cast of the military trace, the number of groups
was determined by the authors by viewing the movement of
groups visually using a mobility simulator.

We define group number accuracy as the fraction of the
traces where k is correctly chosen by the algorithm. Also,
for the correct value of k, we compute the fraction of nodes
that are assigned to the correct group in each snapshot, and
then determine the average of this fraction over all snapshots
in the trace as group member accuracy. In the case of RPGM
with 5 groups (k = 5), each of size 5, 25 nodes are associated
to 5 groups. If 22 of these 25 nodes are assigned to the
4
The default value of speed deviation is 5m/sec, and 90◦ for angle

deviation. All simulations were done in a 1000m× 1000m plane. We
leave detecting groups under different speed and angle deviation levels
as future work.
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Figure 2: K-means chain minimizes the group dis-
loyalty at k = 5, for 50 RPGM traces of 5 groups.
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Figure 3: The accuracy of k-means chaining in deter-
mining the correct number of groups, and assigning
nodes to groups.

correct group during a snapshot, then the accuracy for that
snapshot is 22

25 . For spectral clustering, the accuracy of the
group member detection is defined as the percentage that
nodes are correctly labeled after applying k-means on the
similarity matrix.

5.1 K-means chain
As described earlier, the k-means chain algorithm is a

heuristic that determines the number of groups in the trace
as that number of groups which minimizes the number of
group changes over the course of the trace. Since this al-
gorithm is just a heuristic, it is of interest to study how
well this heuristic performs in practice. In order to capture
the spatial and temporal relationships in group mobility, in
this paper, we run k-means chain over the data consisting
of nodes’ geographical positions and velocities (i.e., a node’s
x, y coordinates and its associated velocity: Vx and Vy).

Fig.2 shows the disloyalty for different values of k for syn-
thetic traces. The disloyalty for a given value of k is the
total number of times nodes change group under the clus-
terings computed at each snapshot, normalized by the sum
of all such changes for all values of k. Fig.2 shows that
k = 5 clearly has the minimum disloyalty; recall that this
is precisely the number of groups used by the RPGM trace
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Figure 4: Spectral clustering stability test for 50
RPGM traces of 5 groups.

generator.
The performance of k-means chain over all synthetic traces

is presented in Fig.3. Here, we see that k-means chaining is
most accurate when there are a smaller number of groups.
Its accuracy degrades a bit when the number of groups in the
traces increases. This is due to the fact that the simulation
environment is constrained to a 1000m×1000m plan in the
IMPORTANT tool. When the number of groups is large,
groups tend to mix with each other during their movement
from one checkpoint to another. This happens especially
when two or more groups are moving in opposite directions.
Cases like this one make it difficult for k-means chaining
to identify groups precisely in one snapshot, and results in
a performance degradation. On the other hand, k-means
chaining does a good job identifying members of each group
when a correct value of k is given. For 2 ≤ k ≤ 9, the
accuracy of assigning a node to a correct group is above 0.9.

The results for the military trace, shown in Fig.5, indicate
that the disloyalty function minimizes the group changing
frequency at k = 9. This shows the existence of nine opera-
tional groups, exactly the number of groups in the scenario
described in Sec. 4.
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Figure 5: K-means chain with military trace, where
the group disloyalty function is minimized at k = 9,
indicating the existence of nine groups.



!

! !

!
!

!
!

!

! ! ! ! ! !

2 4 6 8 10 12 14

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

No. of Groups (k)

%
 o

f 
s
ta

b
ili

ty
 t

e
s
ts

 p
a

s
t

Figure 6: Clustering stability with spectral cluster-
ing, for the military trace. Support for a specific k
is determined by the number of stability checks that
indicate stable clustering.

5.2 Spectral Clustering
To test the spectral clustering approach for solving this

problem, we divided each trace into two equal-length dis-
joint portions, constructed by ”concatenation of alternating
samples of length 10, taken over entire trace (example see
Sec. 3.2). For these samples, we used spectral clustering on
each sample 50 times and compared clusterings across sam-
ples each time. We then selected as the most suitable k the
one for which the clusterings were stable the largest fraction
of time. The need to repeat this test more than once arises
from the fact that spectral clustering uses k-means, an al-
gorithm that is prone to converging to a local rather than
a global minimum. By running spectral clustering several
times over the same samples, we can distinguish between
the k values that are consistently bad and those that be-
have well most of the time.

We analyzed two functions for generating the similarity
matrix needed by the spectral clustering algorithm: the
mean distance and distance variance between every two units.
The first metric was chosen since units in a group consis-
tently remain close together, while the second reflects the
fact that the direction of movement and speed within each
group are strongly correlated5. For both synthetic and real-
world traces (Fig. 4 and 6 respectively), the value of k for
which the clustering was stable the most times compared
to the correct number of groups, and the group association
of units was correct every time the clusterings were stable.
Furthermore, as indicated in these figures, for incorrect val-
ues of k, stability checks failed at least 70% of the time, but
almost never for the correct k, indicating that stability is a
useful measure for good k selection in this field.

6. RELATED WORK
Research of group mobility mostly follows the Reference

Point Group Mobility (RPGM) model [3] used in this pa-

5
Other metrics might be equally useful. However, note that care

needs to be taken when choosing the metric, specifically because trace
portions are non-contiguous, and this can cause metrics that are com-
puted over several snapshots at once to malfunction.

per. Some of RPGM’s variants, such as the more restric-
tive Structured Group Mobility (SGM) model [8] is also pre-
sented. A very similar work we are aware of that attempted
to discover groups in a mobility trace is that of Wang et al
[9], which presented a partition algorithm called Sequential
Clustering. Details about the constraints of this algorithm
and related comparisons are addressed in [10].

7. SUMMARY AND CONCLUSIONS
In this paper, we have presented two algorithms - k-means

chains and spectral clustering for identifying the number of
groups, and the membership of mobile nodes within groups,
in a trace of mobile network nodes We evaluated these al-
gorithms using both synthetically-generated traces with a
known group structure and a real-world trace from a mili-
tary scenario. We found that both algorithms were almost
always able to identify the number of groups correctly, and
assigned nodes to groups fairly accurately. Accuracy tended
to decrease and the number of groups operating within a
fixed-size domain became larger.

Much work still remains to be done. It is of interest to
understand how the accuracy of group detection changes as
the time between snapshot changes (i.e., as the system state
changes more between snapshots), and as group structure
becomes“looser”(e.g., as a node’s affinity for its group leader
decreases). We are interested in investigating new group-
detection algorithms as well.
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Look at Clustering Stability,” the 19th Annual Conference
on Computational Learning Theory, 2006

[7] O. Shamir and N. Tishbi, “Cluster Stability for Finite
Samples,” Advances in Neural Information Processing
Systems (NIPS) 2007-8

[8] K. Blakely and B. Lowekamp, “A Structured Group
Mobility Model for the Simulation of Mobile Ad Hoc
Networks,” ACM International Workshop on Mobility
Management and WIreless Access (MobiWac), 2004

[9] K. H. Wang, and B. Li, “Group Mobility and Partition
Prediction in Wireless Ad-Hoc Networks,” IEEE
International Conference on Communications (ICC), vol.
2, pp. 1017-1021, 2002

[10] Y.-C. Chen, E. Rosensweig, J. Kurose, and D. Towsley,
“Group Detection in Mobility Traces,” Tech. Rep.
Department of Computer Science, UMass Amherst

http : //gaia.cs.umass.edu/networks/papers/GroupDetect10.pdf


