
Supporting Dymmic Displays Using Active Rules

Oscar DiazS, Arturo Jailnet, Norman W. Patent, Ghassan al-Qaimarit

Departamento de Lenguajes y Sistemas Informdticos$
Basque Country University

Apartado 649, 20080 San Sebastidn Spain
e-mail: <diaz>@si.ehu.es

Department of Computi’ng and Electrical Engineeringi
Heriot-Watt University Edinburgh Scotland

e-mail: <norm>@cee.hw.ac.uk

Abstract displayed.

In a graphical interface which is used to dis-
play database objects, dynamic displays are up-
dated automatically as modifications occur to the
database objects being visualised. Approaches
based on enlarging either the database system or
the interface code to provide the appropriate com-
munication, complicates the interaction between
the two systems, as well as making later updates
cumbersome. In this paper, an approach based
on active rules is presented. The declara.tive and
modular description of active rules enables active
displays to be supported with minimal changes to
the database or its graphical interface. Although
this approach has been used to support the link
between a database system and its graphical inter-
face, it can easily be adapted to support dynamic
interaction between an active dataabase system and
other external systems.

In an object-oriented database system (OODBS)
this propa.gation could be achieved by the meth-
ods responsible for modifying the state of an ob-
ject: as well as updating the object, such methods
could notify appropriate interfaces of the change.
However, such an approach makes database objects
responsible for maintaining the consistency of all
interfaces upon which they may be displayed. Fur-
ther, any changes t.o the design of the interface
must be taken into account by methods associated
with all objects which may be displayed using the
interface.

An alternative approach is to make the underlying
database system responsible for informing int,er-
faces of changes to the database state, but as with
the use of method code, this approach is not read-
ily extensible to support new or revised database
interfaces.

1 Introduction

Graphical database interfaces allow some portion
of the data stored in the database to be displayed
for browsing or manipulation. However, there is
no guarantee that while this data is presented on
screen the extension of the database will remain
unchanged. Thus changes to database objects
which are depicted on screen can lead to inconsis-
tencies between the data which is stored and the
information which is displayed. Dynamic or active
displays remove such inconsistencies by propagat-
ing changes to the state of the database to the dif-
ferent interfaces where the affected data is being

To support active displays, it is necessary for the
interface to be informed automatically of changes
to the state of objects which it is currently display-
ing. Active databases have been proposed for ex-
actly this kind of activity, in which behaviour must
be invoked automatically to enable an appropriate
response to some happening [2].

OODBS commonly support activity by event-
condition-a.ction rules. The structure of a rule is
mainly described by euenf that triggers the rule,
the condition to be checked and the action to be
performed if the condition is satisfied.

Such rule mechanisms are particularly suitable for
describing extensions to behavioural properties of

SIGMOD RECORD, Vol. 23, No. 1, March 1994 21

http://crossmark.crossref.org/dialog/?doi=10.1145%2F181550.181555&domain=pdf&date_stamp=1994-03-01

a syst.em [i’] such as those required to support dy-
namic displays. This convenience mainly stems
f rom:

l rules having a more declarative description
which includes the context where the rule is
used. By contract, an extension achieved by
enlarging code makes this code and its exten-
sions more cumbersome to maintain.

l rules having a more modular description.
Each rule represents a single dunk of the
extension. By contrast, methods can sup-
port different types of extension, and as such
are the principal mechanism for defining user-
invoked operations on objects. However, the
implementation of extensions to the function-
ality of a class using method code can be jeop-
ardised by the subsequent overriding of the
method [7].

In what follows, such an approach is used to sup-
port active interfaces using event-condition-action
rules (hereafter ECA rules). The idea is borne
out by an implementation in which a graphical
browser, EVE [9], is used to visualised objects from
a DB system, ADAM [S].

The paper is organ&d as follows. The rule sys-
tem used, EXACT [3, 41 is presented in section 2.
Section 3 shows how rules are used to enhance the
interface with dynamic capabilities. Finally, con-
clusions are presented.

2 The rule system

Briefly described, the function of ECA rule man-
agement is to provide timely response through the
use of rules, to events generated by some system.
Five components can be identified in this process:

l ihe event is an indicator to signal that a spe-
cific situation has been reached to which reac-
tions may be necessary [6].

l the rule describes both when and how the sys-
tem reacts to an event.

l the event generator can be seen as any system
producing events which may need a special re-
sponse in terms of rule triggering. Events can
be generated by the DBMS itself or by any
other external system such as a clock or an
a.pplication program.

l the eueat manager which is in charge of the
management of events. This includes the set-
ting up of alarms in the appropriate event gen-
erator as well as the detection of comp0sit.e
events, i.e. events defined as a conjunction,
disjunction or sequence of events [l].

l th.e rule manager where the creation, order-
ing a.nd numbers of rules to be executed are
considered.

The event, the condition and the action are the
core components of rules. The condition is a set of
queries which checks that the state of the database
is appropriate for execution of the action. The ac-
tion is a set of operations that make some suitable
response to the event. The event description de-
pends upon the nature of the event. In an OODB,
an important source of internal events is message
sending. In EXACT, these events can be described
using the following attributes:

l active-method: the name of the method to be
monitored.

l when: the point at which the rule should
be fired relative to the execution of the
active-method - before or after method exe-
cution.

l active-class: the class of the object to which
the message has been sent for which the event
is to be triggered. In 00 systems, methods
are not isolated but are part of a class defini-
tion. The same method name can be imple-
mented in different ways in different classes,
or a method can be overridden by a definition
in a subclass. Thus the context in which an
event occurs needs to include the class of the
object to which a message has been sent.

l active-object: the instances to which the mes-
sage has been sent for which the event is to
be triggered. This is an alternative to the
active-class attribute. If an ECA rule is shared
by all instances of a class, this commonality
should be reflected by defining the rule at the
class level. However, sometimes active be-
haviour is shown by only a few instances of
a range of classes. In this case the definition
of the event should be at the instance level, to
avoid events being triggered for objects which
are not of interest.

22 SIGMOD RECORD, Vol. 23, No. 1, March 1994

3 Supporting Dynamic Dis-
plays Through ECA Rules

In what follows it is shown how ECA rules have
been used to convert a passive graphical interface
to an active interface. This is achieved by inform-
ing the interface of changes to the displayed ob-
jects.

The type of active behaviour which is most appro-
priate for updating the display depends upon:

whether the object is displayed as an instance
or as a class, and

the methods used to modify the state of the
object. The sending of these methods gen-
erates the events which ma,y have to be re-
sponded to, by the current displays.

Such differences are analysed in the following sub-
sections.

3.1 Updating Objects As Instances

In ADAM, methods used to modify the state of
an object are generated automatically by the sys-
tem whenever an attribute is created. For exam-
ple, when the attribute age is introduced, the sys-
tem generates the methods p&-age, delete-nge and
update-age.

Thus the instances of a class are modified by a
set of class-specific methods with fixed prefixes.
Rather than generate a separate rule for each
method which may update an attribute, the active
rule system provides the keyword modify-m.elhod
which can be used as the acfiue-method attribute of
a rule, to represent any method which directly up-
dates the state of an object. Objects are displayed
in their role as instances using windows with a for-
mat exemplified in figure 1. The nature of instance
browsing is that while there may be a very large
number of instances in the database, the number
of which are being displayed at any moment is typ-
ically very small. Thus monitoring changes to ev-
ery instance in a class which is known to be rep-
resented on screen would be extremely expensive,
as changes to instance objects are not uncommon.
A further characteristic of instance presentation is
that there are often instances from a number of
different classes displayed on screen at the same
time.

l it is the responsibility of the interface to up
date the active-object attribute dynamically
as the display is revised to show different ob-
jects. This rate of change is constrained by
the rate at which the user clicks on the Nezl
button illustrated in figure 1. This approach
can be supported by enlarging the definition
of the corresponding callbacks (i.e. behaviour
attached to the interface components, such as
icons or dialog boxes),

l it is the responsibility of the active mechanism
itself. Here, the interface is seen as an event
generator which warns the active mechanism
but the reaction to this warning is handled
within the database. Such reactions can be
expressed by another rule which is triggered
by these external events and whose action up-
dates the rule described above. Unlike the
previous approach, the “communication” with
the database interface is described by this ruie
rather than coded in the callbacks within the
interface.

The latter approach is supported by the second
rule shown in appendix A.

3.2 Updating Objects As Classes

Therefore, the approach taken is to define a rule In the ADAM database, all class objects share a
which fires only when changes are made to objects common signature which is used to support the
which are actually on screen (e.g. ll#siudenf, opera.tions associated with schema. evolution - for

23#course). Such a rule has the following at-
tributes:

l active-object: [l l#student,23#course]

l active-method: modify-method

0 when: after

l condition: true

l action: warn the interface of the change

On the basis of the rule described in the table,
the system will inform EVE of changes to the ob-
jects ll#studen.t and 23#course, as these are the
values of the active-object attribute. As a result,
the overhead of rule triggering is only paid for in-
stances which are actually being displayed, rather
than for every potentially displayable instance.

The next question to be addressed is who makes
the active mechanism aware of the objects to be
monitored i.e., who updates the acfive-object at-
tribute. Two approaches are possible namely:

SIGMOD RECORD, Vol. 23, No. 1, March 1994 23

Attrihlltfx
-_-_------

under-grad:

course:

grade:

key:

Total number of instances stored in the Database is:. 1

Number of instances available to browse is: 1

undergrad
I

course I

so

[john smith, ~~1051

Figure 1: Example default instance window.

example, all classes understand the methods used
to create or delete an attribute or method. Typi-
cal of these is the method put-slot, which is used
to introduce the definition of a new attribute. If
it happens that the class is being displayed at the
time when this method is invoked, the appropri-
ate part of the display has to be updated. Thus
for each of the limited number of methods which
perform changes to the database schema an ECA
rule has been defined which informs the displays of
schema changes.

Changes to the schema of the database directly af-
fect the information displayed in EVE using the
display shown in figure 2. For exa.mple, the cre-
ation of a new slot may require an insertion in the
list of the slot names of a class, or an extension
to the presented fragment of the schema diagram.
This is achieved using an active rule with the fol-
lowing characteristics:

l active-class: sm-beh’

l active-method: putslot

l when: after

l condition: true

l action: inform the displays of a new slot

‘All classes are created as instances of some metaclass.

Every metaclass is a subclass of smbeh, from which it in-
herits behaviour associated with schema modification [S].
Thus every class can be considered to be an instance of
sn~~eh in the same way as every student can be considered

an instance of person.

The effect of the rule is to inform each interface
every time a new slot is created. Each interface is
then able to detertnine if this requires any immedi-
ate action to update parts of its display. The fact
that interfaces are informed which need not make
any updates to their display is felt to be a.ccept-
able because the frequency of schema updates is
relatively low.

The fact that it is common for a significaxit num-
ber of classes to be depicted on screen at the same
time, combined with the relatively small number of
schema change operations, has enabled active be-
haviour for class objects to be defined for all classes
at the metaclass level, rather than separately for
each individual class. Thus, in contrast with the
previous subsection, rules are defined at the level
of the metaclass of which all classes are instances
sm-beh, rather at the level of individual objects.
Hence, the rule gives a value for the dive-class
attribute, rather than the ad&e-object attribute
utilised in section 3.1.

It is worth noting that the requirement placed on
the interface that it knows how to revise itself t,o
reflect schema changes is not a significant extra
burden - as the interface can be used to perform
schema modification, the ability to revise its dis-
play to reflect schema changes is necessary even
where the interface is not dynamic. It is also
appropriate that this information be stored along
with the interface, thereby a.dhering to the object-
oriented principle that programs are stored with
the data to which t,hey relate.

24 SIGMOD RECORD, Vol. 23, No. 1, March 1994

Figure 2: Layout of EVE startup window.

4 Conclusions

Dynamic displays are updated as modifications oc-
cur in the objects being displayed. The approach
presented here for supporting dynamic displays is
based on using active rules to provide such dy-
namism. The communication required between the
interface and the database system is supported us-
ing event-condition-action rules. Such an approa.ch
frees both the interface and the database system
code from being enlarged with the extra function-
ality which would implement the communication.
Besides, the modularity of rules allows for repre-
senting each unit of communication as a separate
rule, and hence it enhances the updateability and
evolution of the database interface. Indeed, a dif-
ferent interface can be supported by updating in
the action part of the rules to use the correspond-
ing commands of the new interface, and by con-
verting the interface into an event generator.

References

[l] S. Chakravarthy. Rule management and evalu-
ation: an active DBMS perspective. SIGMOD
RECORD, 18(3):20-28, 1989.

[2] U. Dayal. Active database management sys-
tems. SIGMOD RECORD, 18(3):150-169,
1989.

[3] 0. Diaz, P.M.D. Gray, and N. Paton. Rule
management in object oriented databases: a
uniform approach. In R. Camps G.M. Lohman,
A. Sernadas, editor, 17th Intl. Conf. 011. Very

Large Data Bases, Barcelona, pages 317-326.
Morgan Kaufmann, 1991.

[4] 0. Diaz and A. Jaime. EXACT: an Extensible
approach to ACTive object-oriented databases.
Submitted for publication, 1993.

[5] 0. Diaz and N. Paton. Making object-oriented
databases extensible through metaclasses: An
experience. To be published in IEEE Software,

1993.

[6] A.M. Kotz, K.R Dittrich, and J .A. Mulle.
Supporting semantic rules by a generalized
event/trigger mechanism. In Aduanxe in
Database Technology, EDBT, Venice, pages
76-91, 1988.

[7] N. Paton, 0. Diaz, and M.L. Barja. Combin-
ing active rules and metaclasses for enha.nced

SIGMOD RECORD, Vol. 23, No. 1, March 1994 25

extensibility in object-oriented systems. Data
and Knowledge Engineerin.g, 10:45-63, 1993.

N.W. Paton. Adam: An object-oriented
database system implemented in. prolog. In
M.H. Williams, editor, PFOC. British National
Conference on Daiabases, pages 147-1Gl. Cam-
bridge University Press, 1989.

N.W. Paton, G. al Qaimari, and A.C. Kilgour.
An extensible interface to an ext.ensible object-
oriented database system. In R. Cooper, editor,
Proc. 1st Infernational Workshop on Interfaces
to Database Systems. Springer-Verlag, 1992.

Appendix A: Example ECA rules in EX-
ACT notation

This rule maintains the instances that are being dis-
played on the different browsers:

new([RuleOid,[

activeabject([<List of displayed objects>]),

active-method([modify-method]),

when([after]),

isitmnable([yes]),

condition([(true)]),

action([(

current-object(DisObj),

(get-bydisplays((DisObj],TheBrowser)

=> adam-browser,

refresh([DisObj]) => TheBrowser,

fail ; true

1)

I)
I]) => display-rule,

newtL1
activerlass([sm-beh]),

active-method([putslot]),

when([after]),

isit-enable(~es]),

condition([(true)I),
action([(

current-object(Therlass),

currentarguments([-nam,-vis,rar,sta,Type]),

(objectdb(Type,-)

-> BroMetNam = newabjsscreen-refresh

; BroMetNam = newscalsscreen-refresh),

BroMet =.. [BroMetNam, [Therlass]],

(get(Browser)=>adam-browser,

BroMet => Browser, fail; t.rue

1 11)
I]) => display-rule,

The next rule maintains the “active-object” attribute

of the above rule. This is used to make active only

those instances that are being displayed on any browser

at that specific time. It is worth noting that EVE has

been integrated within ADAM as an object, i.e. di&

plays are described by attributes and methods. This

simplifies the detection of events generated by the in-

terface since its events are normal message-sending

events. A similar rule needs to be defined when ob-

jects are not longer displayed i.e., a rule triggered by

the sending of the method “delete-displays”.

newtL[
activerlass([sm-bell]),

active-method([deleteslot]),

when([after]),

isitanable(~es]),

condition([(true)I),

action([(

current-object(The-cl=s),

current-arguments([-nam,-vis,zar,sta,Type]),

(objectdb(Type,-)

-> BroMetNam = delabjsscreen-refresh

; BroMetNam = delscalsscreen-refresh),

BroMet =.. [BroMetNam, [The-class]],

(get(Browser)=>adam-browser,

BroMet => Browser, fail; true)

I]) => display-rule.

n-W
active-class([adam-browser]),

active-method([put-displays]),

when([before]),

isit-enable([yes]),

condition([(

currentarguments([DisObj]),

not get-bydisplays([DisObj],-)=> adam-browser

)I)9
action([(

current-arguments([DisObj]),

put-activeabject([DisObj]) => RuleOid

11)
I]) => display-rule,

Seven rules like the one shown below are defined for the

events generated by sending messages which update

the class definition: putslot, deleteslot, put-method,

delete-method, replace-method, new (introducing a

new class) and delete (deleting an existing class). The

action is custom&d depending upon the method.

26 SIGMOD RECORD, Vol. 23, No. 1, March 1994

