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Abstract 
The paper is concerned with the time efficient 

processing of spatiotemporal predicates, i.e. spatial 
predicates associated with an exact temporal 
constraint. A set of such predicates forms a buffer 
query or a Spatio-temporal Pattern (STP) Query with 
time. In the more general case of an STP query, the 
temporal dimension is introduced via the relative order 
of the spatial predicates (STP queries with order). 
Therefore, the efficient processing of a spatiotemporal 
predicate is crucial for the efficient implementation of 
more complex queries of practical interest. We propose 
an extension of a known approach, suitable for 
processing spatial predicates, which has been used for 
the efficient manipulation of STP queries with order. 
The extended method is supported by efficient indexing 
structures. We also provide experimental results that 
show the efficiency of the technique. 
 
1. Introduction 
 

The efficient handling of spatiotemporal data is an 
increasing demand of modern DBMSs, motivated by 
location based services (e.g. GIS applications) and 
telecommunications (cellular networks). Such 
applications soon expanded in areas such as robotics, 
medical imaging, multimedia applications, etc [5]. 
Spatial attributes can be viewed as 0D, 1D, 2D or 3D 
positions. Temporal attributes capture the temporal 
existence of entities and, in the general case, they can 
be represented as time points or time intervals. The 
most typical form of spatio-temporal data is that of 
trajectories. A spatio-temporal predicate is a pair (S,T), 
where S represents a spatial constraint and T 
represents a temporal constraint, which can be either a 
time-instant t or a time interval Δt. A query of the form 

    Q1 ={(S1,T1),(S2,T2), …, (SN,TN),}       (1) 
is referred to as STP query with time. 
Spatio-Temporal Pattern (STP) queries [6] depend on 
the efficient manipulation of such predicates.  

This paper is concerned with the efficient processing 
of such queries by using an appropriate indexing. 

We say that a spatio-temporal predicate (S, T) is 
satisfied by the trajectory of an object if the object lies 

in S at some time within the specified temporal 
constraint T. Moreover, we say that the trajectory 
satisfies a query Q if it satisfies all the spatio-temporal 
predicates of Q. 
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Figure 1. An example query. 

 
As an example, the query depicted in Figure 1 is 

Q={(R1, [t1,t2]),(R2, [t3,t4]), (R3, [t5,t6])}. 
and it is satisfied by every trajectory that crosses the 
regions R1, R2 and R3 at some time between [t1,t2], 
[t3,t4] and [t5,t6], respectively. 

The solution we propose in this paper is based on 
another solution [6], suitable for the efficient evaluation 
of STP queries with order. In these queries, the spatial 
predicates are not associated with temporal 
constraints. Instead, the dimension of time is inserted 
into the query via the order of the spatial predicates. 
Such an example query is  

Q2 ={(S1),(S2), …, (SN)}        (2) 
The output of this query consists of all the objects 

that visited the areas S1, S2, …, Sr in this order.  
 

2. Related work 
 

The problem of indexing and querying spatio-
temporal data lately has gained much attention. Güting 
et al [4] propose a data model and a query language 
for handling and expressing complex spatio-temporal 
queries. Several trajectory-indexing methods have also 
been proposed for the handling of spatial predicate 
queries (see [10] for a survey). Theodoridis et al. [12] 
study the issues that arise in spatio-temporal index 
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structures. Chakka et al [3] propose a two-level method 
that decouples the indexing of the spatial and the 
temporal dimensions of the datasets. Pfoser et al [11] 
propose two access methods, the STR-tree and the 
TB-tree. The former is based on the classical R* -tree 
[2] whereas the latter is an R-tree hybrid structure that 
preserves trajectories.  

A different approach for the handling of STP queries 
with order has been introduced in [6]. The idea 
considers a grid on a 2-dimensional space. Each cell of 
the grid is associated with a list. Assuming in particular 
that an object Ol enters cell Cm at time tk, the pair (Ol, 
tk) is inserted into a list associated with cell Cm. Each 
such list is ordered by object Id. Given also that an 
object may enter a cell more than once, all the times of 
entrance of an object in the same cell are ordered by 
time. A simple example of the approach is depicted in 
Figure 2, and explanations are as follows: 

The arrows on a trajectory show the direction of 
movement of an object. For simplicity, it is assumed 
that an object remains in a cell for a single time-instant. 
Each bullet on the trajectory of an object denotes the 
time instant at which the object sends a message. 
Hence, the Figure shows that object O1 entered cell C2 
at time 3. Similarly, object O2 entered C2 at time 8 and 
also at time 10. Each element of a list is called record. 

 
Figure 2. A partitioning of space into cells and 

representation of lists 
 
In an STP query with order (expression (2)), all the 

predicates are range constraints, and they are 
evaluated concurrently, by merging the lists associated 
with these predicates. The answers are retrieved in 
sorted object identifier order. In the remainder of the 
paper, we refer to this approach as the list solution. 

For each spatial or spatio-temporal predicate Pi, let 
F(Pi) be the set of object Ids which satisfy Pi. Let also B 
be the number of records that fit in a block of 
secondary memory. Finally let N be the number of 
predicates of the query. Assuming that the predicates 

are processed sequentially, an obvious upper bound 
on the number of I/Os for the evaluation of the query is  

O(max(|F(Pi)|, 1 ≤ i ≤ N)*N/B), 
where |F(Pi)| is the cardinality of F(Pi). This is because 
every object belonging to F(Pi) has to be examined in 
order to find out when it satisfies all the remainder 
predicates. 

As is going to be shown later, the list solution 
achieves this bound for STP queries with order but it 
does not work efficiently for STP queries with time. 

To efficiently manipulate spatio-temporal predicates, 
for STP queries with time, in this paper we propose the 
use of persistent indexing structures. To the best of our 
knowledge, persistent techniques have not been 
studied for this purpose.  

In the remainder of this paper we make the following 
assumptions / simplifications. 
1. Every spatial predicate matches a cell. Note that 

although this is rarely the case, it does not affect the 
efficiency of our solution. In addition, it allows to 
concentrate on the indexing structures.  

2. An object does not enter a cell more than once 
during the time interval specified in the query. This 
is a realistic assumption, if the time predicate does 
not represent an extremely long time interval. For 
example, the percentage of vehicles entering a 
certain cell more than once, during a period of a few 
hours, is expected to be extremely low. 

Assume now that an object Oi enters cell Ck at time 
instances 6, 10, and 15. It is then noted that, at time 
instance 8, it cannot be determined whether Oi is still in 
Ck. This is because we do not know the time at which 
Oi left Ck. To overcome this problem, if object Oi leaves 
Ck at time 7, then a record (Oi, 7) is stored in the list of 
Ck. Such records appear shaded in the remainder of 
the paper. Note that the knowledge of exit of an object 
from a cell is not needed for STP queries with order. 
Due to this, there is no need to maintain exit records in 
the lists of Figure 2. 
 
C1:  (O1,4) (O1,5) (O2,7) (O2,8)  
C2:  (O1,3) (O1,4) (O2,8) (O2,9) (O2,10) (O2,11) 

(O3,3) (O3,4)  
C3:  (O2,3) (O2,4) (O2,9) (O2,10) (O3,2) (O3,3)  

 
Figure 3. The new lists of Figure 2 

 
By the introduction of exit records, the list of Figure 2 
could have the form shown in Figure 3. 
 
3. Depicting the inefficiency 
 

When dealing with STP queries with order, a 
predicate has first to be chosen for evaluation. Let this 
predicate be C1. It then suffices to use lists for the 
storage of the objects that are inside the cells. Indeed, 
all the nodes in the list contain objects that may belong 
to F(C1), therefore they all have to be retrieved.  

C1: (O1, 4) (O2, 7) 
C2: (O1, 3) (O2, 8) (O2, 10) (O3, 3) 
C3: 

C1 C2 C3

O1

O2

O3

(O2, 3) (O2, 9) (O3, 2) 
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Now assume that the query in discussion is: 
Q={(C2, 6-8), (C1, 7), (C3,9)}  

according to the lists of Figure 3. Since the predicates 
are spatio-temporal, Q is an STP query with time. 
Consequently, the objective of this query is to find all 
the objects that entered cell C2 between the time 
instants 6 and 8, they were in cell C1 at time 7, and 
they were in C3 at time 9.  

By using the list solution, we then have to examine 
all the objects contained in the list, i.e. O1, O2 and O3, 
despite the fact that F(C2, 6-8) = {O2}. Obviously, such 
an examination is problematic if the number of objects 
inside each cell is large. Indeed, in such a case, the 
cell lists are too long, and a single I/O does not suffice 
to retrieve the entire list. In the worst case, one I/O per 
object will be needed, provided that pointers have been 
used, to point to the first occurrence of every object. It 
follows, therefore that, for an efficient processing of a 
query, in O(max(|F(Pi)|, 1 ≤ i ≤ N)*N/B) I/Os, a different 
approach has to be developed. Indeed, this is the 
objective of this paper. A new solution is proposed in 
Section 5, which enables the processing of a spatio-
temporal predicate P by consuming O(|F(P)|/B) I/Os 
and a satisfactory space consumption. Before this 
solution is described, another primitive solution is also 
presented in Section 4, which, however, suffers from 
enormous space consumption.  
 
4. The primitive solution 
 

In this approach, each cell Ci is associated with two 
structures, Structure A and Structure B.  

Structure A is a two-level structure: The upper level 
is an index for the object Ids. Each leaf (object Id) is 
associated with another index at the lower level, with 
the times at which this object entered cell C.  

Structure B is also a two-level structure: The upper 
level is an index for time stamps. Each leaf (time 
instant) is associated with a list (lower level) containing 
the object Ids that were in cell Ci at the given instant. 

Now, let 
Q={(C1,T1),(C2,T2),……,(Cr,Tr)}  

be the query. Initially, the upper level of Structure B of 
cell C1 is searched, in order to find the time-stamps, 
which satisfy the temporal predicate T1. We then follow 
the corresponding list of the lower level and we store 
the object Ids into a set V. Next, for each distinct object 
Oi in V, we have to check whether it satisfies all the 
remainder predicates.  

Let therefore (C2, T2) be the next predicate and 
assume that T2 is time t2. To check whether object Oi 
satisfies this predicate, we make use of Structure A of 
C2. The path of the upper level of Structure A leading to 
object Oi and the leaf corresponding to Oi is connected 
with a lower level indexing structure that contains the 
time instants at which Oi was in C2. Hence, we can find 
whether Oi was in C2 at time t2. 

The major advantage of this solution is its time 

efficiency, compared to the list solution. To make this 
clear, consider a cell in which a large number of 
objects have entered but, at each time instant, the 
number of objects in the cell is rather small (imagine a 
square of a road network in a big city.) Following the 
list solution, it is then noted that, at a given time instant 
t, the entire list of the cell has to be retrieved, which is 
large. In the primitive solution, instead, only the small 
list associated to the time instant t has to be retrieved.  

On the other hand, however, this solution has an 
obvious drawback, the duplicate space consumption, 
due to the necessity of maintaining two structures. 

A second, more crucial drawback, of this solution 
concerns Structure B, when a new time instant t is 
inserted into the upper index structure. Structure B 
implies that each time instant has its own list. Since we 
expect that during a short time period a small fraction 
only of the objects of a cell will move to another cell, 
we can easily create the list of the new time instant by 
copying and modifying slightly the list of the previous 
time instant. Obviously, when the lists are too long, we 
end up with a tremendous waste of space. 

Thus, the primitive solution achieves the desired 
time complexity but it may also suffer from vast space 
consumption. Hence, it is necessary to maintain a large 
number of similar lists, in a space efficient manner. 
This is the reason why persistent indexing structures 
have been proposed.[8] 

 
5. The advanced solution 
 

There are certain application areas, which require 
storing and accessing all the versions in which a data 
structure has undergone. Such requirements have 
been identified in the seminal paper by Driscoll et al. 
[8], in which the notion of persistent data structures has 
been coined. More typically, consider a data structure 
D. If persistence is supported, all the versions v1, …, 
vm+1 are maintained, as D undergoes a number of m 
update operations. 

We identify two flavors of persistence, namely partial 
and full persistence. In partial persistence, every 
version can be queried but only the most recent can be 
updated. In full persistence, every version can both be 
queried and updated. There is also a third kind, 
confluent persistence. Confluently persistent data 
structures support an operation, which combines two 
versions of the data structure to yield a new version.  

Application of persistence to secondary memory 
data structures is of particular interest since 
persistence finds a fertile ground in databases. A 
simple example is that of transaction databases, which 
store data with a certain lifespan. An extensive 
treatment of temporal and bi-temporal DBs, as well as 
their relationship to persistence, can be found in the 
survey by Salzberg and Tsotras [14]. Lorentzos et al [9] 
have studied the creation and maintenance of versions 
at the database design level. The fully persistent case 
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has been studied in [7]. In this paper, we make use of 
the partial persistent case. Two optimal, partially 
persistent B+ trees have already been developed, the 
Multi Version B-Tree (MVBT) by Becker et al. [1] and 
the Multi Version Access Structure (MVAS) by Varman 
and Verma [13]. Although they both share the same 
ideas, MVAS has a slightly better space consumption 
constant.  

MVAS is a modified B+ tree. Its internal nodes 
contain index records and its leaves contain data 
records. A data record contains the fields [key, start, 
end, info], with their obvious meaning. An index record 
contains the fields [key, start, end, ptr], where ptr is a 
pointer to a node of the next level. The node pointed by 
the ptr pointer contains keys no less than key, has 
been created at the time instant start and has been 
copied at the time instant end.  
A data record is active (live) if its end field has value 
‘$’, i.e. it has not been updated, deleted or copied to 
another node. If this is not the case, the data record is 
inactive (dead). An index record is active if it points to 
an sctive block at the immediately lower lever. 
Figure 4 shows a possible instance of MVAS, and a 
simple scenario. At time 5 (upper part of the figure), the 
tree consists of two nodes, the root and one leaf, which 
contains all the data records. The figure shows that key 
A was inserted at time 1, key C was inserted at time 2 
and was subsequently modified at times 3 and 4, and 
key B was inserted at time 5. Then, at time 6, key D is 
to be inserted. This insertion causes an overflow of the 
single leaf. Two new leaves are then created and the 
old leaf becomes inactive (all the records appear as 
shaded). The index record of the root, which points to 
the inactive leaf, also becomes inactive (shaded). The 
set of live records of the old leaf is sorted by key, is 
divided into two halves and each of these halves is 
copied to one of the two new leaves. Two new index 
records are created in the root. Their start value is the 
time at which the pointed leaves were created, i.e. time 
6. Note that it is not always the case that two new 
leaves have to be created. For example, if instead of 
inserting key D, we had to update B at time 6, then the 
live records of the old leaf would fit in one new leaf.  
To delete a record, we make use of a flag (shaded in 
Figure 4) and then count the remaining live records of 
the leaf. If they are too few, we may borrow some live 
records from a neighbor leaf, and create one or two 
new leaves. 
We do not describe the operations of MVAS in further 
detail, because we want to give only the intuition 
behind this structure.  

To search for a key x, at time t, we start from the 
root. We ignore records with a start value greater than t 
and an end value less than t. From the remaining 
records, we choose the one with the greatest key 
value, less than or equal to x. For example, if the 
search concerns key C, at the time instant 3, it is noted 
that only the inactive record (A, 1) at the root satisfies 

the time criterion, meaning that it was live at time 
instant 3. Following the pointer of this record, we reach 
the old inactive leaf, where we find that key C was 
really present at time 3. 

The key idea is to maintain the following invariant: 
For any version, the records contained in that version 
are sorted by key value and are clustered into 
secondary memory blocks in such a way, that each 
block contains B records belonging to that version.  

If n is the number of records in the current version 
and k is the output size, this invariant helps in 
achieving O(logBn+k/B) I/Os (or block transfers) for 
search and update operations.  

B

 

Figure 4. A simple MVAS instance 

(A,1)

(A,1) (C,2) (C,3) (C,4) (B,5) 

(A,1) (A,6) (C,6) 

(A,1) (C,2) (C,3) (C,4) (B,5) 

(A,1) (B,5)

(C,4) (D,6) 

Initially, at time 5 

After inserting D at time 6 

 
Based on the above, in our algorithm we use MVAS 

as the cell’s indexing structure: Whenever an update 
occurs (one or more Ids either enter the cell or leave 
the cell), we perform the updates inside a cell, and 
create a new version of it. Versions are named by the 
time at which they are created.  

Suppose now that we want to process the 
spatiotemporal predicate (C1,T1). Assume also that, 
initially, T1 is the time instant t1. We search the indexing 
structure of cell C1, in order to find all the leaves that 
were live at time t1. Each such leaf contains from B/4 
up to B records (this fact comes from the description of 
MVAS [13]), which belong to F(C1,T1). According to the 
technical constraints of the structure, we charge each 
leaf with one additional I/O (We recursively traverse the 
tree in order to reach the desired leaves each of which 
is charged with the access of an internal node.) It 
follows that the total number of I/Os is not greater than 
8*F(C1, T1)/B (for details see [13]). By using therefore a 
persistent indexing structure, we have managed to 
spare at most O(F(C1, T1)/B) I/Os in order to retrieve 
F(C1, T1).  

Now assume that the time constraint T1 of the 
spatio-temporal predicate is a time interval [t1, t2]. Then 
we can follow the history from time t1 up to time t2. 
When one or two leaves of the index structure die, 
either one or two new leaves are created. In either 
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case, this death–birth sequence is triggered by update 
operations. When a leaf L dies we store into it a pointer 
to the newly born leaf. If two new leaves are created, 
we store into L two pointers. Figure 5 shows the leaves 
of the indexing structure at the time instants ti, ti+1, …, 
ti+4. 

As is shown in Figure 5, at time ti, all the leaves 
have “experienced” insertions, as is shown by the 
shading). A series of deletions occur until time ti+3. At 
this time, a number of insertions lead to a split of the 
remaining leaf. Suppose that we want the Ids of all the 
objects that entered the cell between the times ti and 
ti+4. First, we retrieve the leaves that contain all the 
entries of time ti. Then, by following the depicted 
pointers, we can retrieve all the desired leaves. In 
general, it is not definite that we will find new Ids for 
every leaf of the succeeding time instants. For 
example, in Figure 5, none of the leaves at time 
instants ti+1 and ti+2 contain new entries. 

Figure 5. Moving from ti to ti+4
  
Nevertheless, this fact does not cause any problem. 

The total number of accessed leaves is at most twice 
the number of the dead (shaded). Having in mind that 
each dead leaf contains at least B/4 Ids, which belong 
to F(S1, T1), it follows that the total number of I/Os 
cannot be greater than 8*F(S1, T1)/B. Having also in 
mind that we can reach the leaves of MVAS by 
applying a recursive procedure that accesses one 
internal node per leaf, we end up with a total number of 
16*F(S1, T1)/B I/Os.  

By use therefore of the advanced solution, we can 
process a spatiotemporal predicate (S1, T1) by sparing 
at most 16*F(S1, T1)/B I/Os. The temporal constraint T1 
can be either a time instant or a time interval. We thus 
conclude that the query  

Q1 ={(S1,T1),(S2,T2),……,(Sr,TN )} 
is proccessed in O((max{F(Si, Ti)}/B)*N) I/Os, meaning 
that, we have achieved our goal.  

Beyond the theoretically excellent performance in 
terms of the number of block transfers (I/Os), this 
solution is also expected to achieve good results in 
terms of space consumption. Specifically, the indexing 
structure stores M versions, each of which is produced 
by one update, i.e. the space complexity is O(M).  
 

5. Experimental Results 
 

In this section we present the result of conducted 
experiments in order to compare the primitive and 
advanced solution with respect to the list solution. In 
particular, we have conducted an experimental study 
making the customary assumption that the disk page 
size is set to 512 bytes, the length of each key is 8 
bytes, and the length of each pointer is 4 bytes. 
Consequently, each block contains B=42 elements. We 
use a relatively small page size so that the number of 
nodes in an index simulates a realistic situation with a 
large number of objects, A similar methodology has 
also been used in [15]. We generated synthetic data 
sets of moving object ids. The 2-dimensional spatial 
universe is a 1000x1000 grid, which simulates an 
actual universe of 1000 miles long in each direction. 
We also assume that we have a heavy traffic, 
generated by 1.000.000 vehicles. The velocity value 
distribution is skewed (zipf) towards 0 in range [0, 50]. 
The query cost is measured as the average number of 
node accesses in executing a workload of 200 queries 
with the same parameters. Implementations were 
carried out in the VC++ programming language. 

ti

ti+1

ti+2 The time efficiency of the primitive and the 
advanced solution, with respect to the list solution, is 
shown in Figure 6. ti+3 
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ti+4 

 
Figure 6. Number of I/Os vs. Output size 

 
The average number of objects per cell was not 

more than 5000. The average number of predicates 
that appeared in the workload of the above queries 
was not more than 10. The output size of the queries 
varied in the range [2.500, 50.000].  

The major advantage of the advanced solution, 
versus that of the list solution, becomes evident when 
the query output concerns only a small fraction of the 
contents of a cell. To make it clear, assume that a cell 
structure contains the data of the last week. Assume 
also that we seek all objects that were in the cell during 
a period of only a few hours. (Such cases occur close 
to the beginning of the x- axis of Figure 6.) As can then 
be seen in this figure, the number of I/Os is very low in 
the case of the advanced solution. As opposed to this, 
this number is very large in the case of the list solution, 
matching always the worst case, since the entire list 
must be extracted. Of course, if we want to extract all 
the objects that entered a cell during the last week, the 
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advanced solution can be worse than the list solution. 
Note however that such queries are not realistic and 
are unlikely to be issued.  

Comparing the number of I/Os between the primitive 
and the advanced solution, we conclude that they do 
not differ substantially. The primitive solution is better, 
requiring about half of the I/Os of the advanced. This is 
because the lists of structure A are optimally dense, i.e. 
all the disk pages that store a list are full, except for 
only the last page. On the other hand, the leaves of 
MVAS are not usually full. The penalty however for this 
superiority is the enormous space consumption of 
Structure B (see Section 4).  

The theoretical space complexity of MVAS is O(N/B) 
blocks, where N is the number of stored elements and 
B the block size. In Figure 7 we have plotted the 
consumed space of (a) only structure A of the primitive 
solution (recall that the space of structure B makes the 
primitive solution unpractical and far worse than the 
other two solutions), (b) the advanced solution and (c) 
the list solution. As can be proved, the three 
competitors have theoretically identical space 
complexity. In Figure 7, it can be seen that the precise 
consumed space of the three competitors differs by a 
constant multiplication factor.  
 Cell Indexes's space consumption 

0 500000 
1000000 1500000 2000000 2500000 3000000 

0 10000 20000 30000 40000 50000 60000 
Number of objects that crossed the cell 

 
Primitive solution: 
Structure A

Advanced solution

List solution

  
 

Figure 7. Space consumption of cell’s indexing 
schemes 

 
From Figure 7 it also follows that Structure A 

consumes less space than the advanced solution, but 
not less that half of it. The increased space 
consumption of MVAS has been expected, because it 
is a complicated index structure, requiring more 
pointers and other pieces of data compared to those of 
the B-tree of Structure A. Finally, the list solution is the 
best, and this was expected since lists occupy less 
space than trees. Recall, however, that the increased 
space consumption of the advanced solution leads to a 
dramatically improved time efficiency on realistic 
queries, as has been shown in Figure 6. 

  
6. Discussion 
 

We have dealt with the problem of efficient 
processing of spatio-temporal predicates. For our 
purposes, a previous approach [6], which uses a grid, 
and associates a list with each cell of the grid, was 

extended by integrating into it a persistent indexing 
structure. This indexing structure enables the efficient 
maintenance of versions of the lists that are created by 
update operations. Since the versions correspond to 
time instants, what we have finally achieved is to hide 
the time dimension into a persistent indexing structure. 
While achieving time efficiency, we have thus managed 
to maintain the same space complexity with that in [6].  
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