
A Time Efficient Indexing Scheme for Complex Spatiotemporal Retrieval

Lagogiannis G.1, Lorentzos N.1, Sioutas S.3, Theodoridis E.2

1 Science Dep., Agricultural University of
Athens, Iera Odos 75, 11855 Athens, Greece

2 Computer Engineering and Informatics
Dept. University of Patras, Greece

3Dep. Informatics, Ionian University, Corfu, Greece

e-mails : {lagogian, lorentzos}@aua.gr, sioutas@ionio.gr, theodori@ceid.upatras.gr

Abstract
The paper is concerned with the time efficient

processing of spatiotemporal predicates, i.e. spatial
predicates associated with an exact temporal
constraint. A set of such predicates forms a buffer
query or a Spatio-temporal Pattern (STP) Query with
time. In the more general case of an STP query, the
temporal dimension is introduced via the relative order
of the spatial predicates (STP queries with order).
Therefore, the efficient processing of a spatiotemporal
predicate is crucial for the efficient implementation of
more complex queries of practical interest. We propose
an extension of a known approach, suitable for
processing spatial predicates, which has been used for
the efficient manipulation of STP queries with order.
The extended method is supported by efficient indexing
structures. We also provide experimental results that
show the efficiency of the technique.

1. Introduction

The efficient handling of spatiotemporal data is an
increasing demand of modern DBMSs, motivated by
location based services (e.g. GIS applications) and
telecommunications (cellular networks). Such
applications soon expanded in areas such as robotics,
medical imaging, multimedia applications, etc [5].
Spatial attributes can be viewed as 0D, 1D, 2D or 3D
positions. Temporal attributes capture the temporal
existence of entities and, in the general case, they can
be represented as time points or time intervals. The
most typical form of spatio-temporal data is that of
trajectories. A spatio-temporal predicate is a pair (S,T),
where S represents a spatial constraint and T
represents a temporal constraint, which can be either a
time-instant t or a time interval Δt. A query of the form

 Q1 ={(S1,T1),(S2,T2), …, (SN,TN),} (1)
is referred to as STP query with time.
Spatio-Temporal Pattern (STP) queries [6] depend on
the efficient manipulation of such predicates.

This paper is concerned with the efficient processing
of such queries by using an appropriate indexing.

We say that a spatio-temporal predicate (S, T) is
satisfied by the trajectory of an object if the object lies

in S at some time within the specified temporal
constraint T. Moreover, we say that the trajectory
satisfies a query Q if it satisfies all the spatio-temporal
predicates of Q.

Y

X

T

t1
t2

t3

t4

t5

t6

R1

R2

R3

Figure 1. An example query.

As an example, the query depicted in Figure 1 is

Q={(R1, [t1,t2]),(R2, [t3,t4]), (R3, [t5,t6])}.
and it is satisfied by every trajectory that crosses the
regions R1, R2 and R3 at some time between [t1,t2],
[t3,t4] and [t5,t6], respectively.

The solution we propose in this paper is based on
another solution [6], suitable for the efficient evaluation
of STP queries with order. In these queries, the spatial
predicates are not associated with temporal
constraints. Instead, the dimension of time is inserted
into the query via the order of the spatial predicates.
Such an example query is

Q2 ={(S1),(S2), …, (SN)} (2)
The output of this query consists of all the objects

that visited the areas S1, S2, …, Sr in this order.

2. Related work

The problem of indexing and querying spatio-
temporal data lately has gained much attention. Güting
et al [4] propose a data model and a query language
for handling and expressing complex spatio-temporal
queries. Several trajectory-indexing methods have also
been proposed for the handling of spatial predicate
queries (see [10] for a survey). Theodoridis et al. [12]
study the issues that arise in spatio-temporal index

1

structures. Chakka et al [3] propose a two-level method
that decouples the indexing of the spatial and the
temporal dimensions of the datasets. Pfoser et al [11]
propose two access methods, the STR-tree and the
TB-tree. The former is based on the classical R* -tree
[2] whereas the latter is an R-tree hybrid structure that
preserves trajectories.

A different approach for the handling of STP queries
with order has been introduced in [6]. The idea
considers a grid on a 2-dimensional space. Each cell of
the grid is associated with a list. Assuming in particular
that an object Ol enters cell Cm at time tk, the pair (Ol,
tk) is inserted into a list associated with cell Cm. Each
such list is ordered by object Id. Given also that an
object may enter a cell more than once, all the times of
entrance of an object in the same cell are ordered by
time. A simple example of the approach is depicted in
Figure 2, and explanations are as follows:

The arrows on a trajectory show the direction of
movement of an object. For simplicity, it is assumed
that an object remains in a cell for a single time-instant.
Each bullet on the trajectory of an object denotes the
time instant at which the object sends a message.
Hence, the Figure shows that object O1 entered cell C2
at time 3. Similarly, object O2 entered C2 at time 8 and
also at time 10. Each element of a list is called record.

Figure 2. A partitioning of space into cells and

representation of lists

In an STP query with order (expression (2)), all the

predicates are range constraints, and they are
evaluated concurrently, by merging the lists associated
with these predicates. The answers are retrieved in
sorted object identifier order. In the remainder of the
paper, we refer to this approach as the list solution.

For each spatial or spatio-temporal predicate Pi, let
F(Pi) be the set of object Ids which satisfy Pi. Let also B
be the number of records that fit in a block of
secondary memory. Finally let N be the number of
predicates of the query. Assuming that the predicates

are processed sequentially, an obvious upper bound
on the number of I/Os for the evaluation of the query is

O(max(|F(Pi)|, 1 ≤ i ≤ N)*N/B),
where |F(Pi)| is the cardinality of F(Pi). This is because
every object belonging to F(Pi) has to be examined in
order to find out when it satisfies all the remainder
predicates.

As is going to be shown later, the list solution
achieves this bound for STP queries with order but it
does not work efficiently for STP queries with time.

To efficiently manipulate spatio-temporal predicates,
for STP queries with time, in this paper we propose the
use of persistent indexing structures. To the best of our
knowledge, persistent techniques have not been
studied for this purpose.

In the remainder of this paper we make the following
assumptions / simplifications.
1. Every spatial predicate matches a cell. Note that

although this is rarely the case, it does not affect the
efficiency of our solution. In addition, it allows to
concentrate on the indexing structures.

2. An object does not enter a cell more than once
during the time interval specified in the query. This
is a realistic assumption, if the time predicate does
not represent an extremely long time interval. For
example, the percentage of vehicles entering a
certain cell more than once, during a period of a few
hours, is expected to be extremely low.

Assume now that an object Oi enters cell Ck at time
instances 6, 10, and 15. It is then noted that, at time
instance 8, it cannot be determined whether Oi is still in
Ck. This is because we do not know the time at which
Oi left Ck. To overcome this problem, if object Oi leaves
Ck at time 7, then a record (Oi, 7) is stored in the list of
Ck. Such records appear shaded in the remainder of
the paper. Note that the knowledge of exit of an object
from a cell is not needed for STP queries with order.
Due to this, there is no need to maintain exit records in
the lists of Figure 2.

C1: (O1,4) (O1,5) (O2,7) (O2,8)
C2: (O1,3) (O1,4) (O2,8) (O2,9) (O2,10) (O2,11)

(O3,3) (O3,4)
C3: (O2,3) (O2,4) (O2,9) (O2,10) (O3,2) (O3,3)

Figure 3. The new lists of Figure 2

By the introduction of exit records, the list of Figure 2
could have the form shown in Figure 3.

3. Depicting the inefficiency

When dealing with STP queries with order, a
predicate has first to be chosen for evaluation. Let this
predicate be C1. It then suffices to use lists for the
storage of the objects that are inside the cells. Indeed,
all the nodes in the list contain objects that may belong
to F(C1), therefore they all have to be retrieved.

C1: (O1, 4) (O2, 7)
C2: (O1, 3) (O2, 8) (O2, 10) (O3, 3)
C3:

C1 C2 C3

O1

O2

O3

(O2, 3) (O2, 9) (O3, 2)

 2

Now assume that the query in discussion is:
Q={(C2, 6-8), (C1, 7), (C3,9)}

according to the lists of Figure 3. Since the predicates
are spatio-temporal, Q is an STP query with time.
Consequently, the objective of this query is to find all
the objects that entered cell C2 between the time
instants 6 and 8, they were in cell C1 at time 7, and
they were in C3 at time 9.

By using the list solution, we then have to examine
all the objects contained in the list, i.e. O1, O2 and O3,
despite the fact that F(C2, 6-8) = {O2}. Obviously, such
an examination is problematic if the number of objects
inside each cell is large. Indeed, in such a case, the
cell lists are too long, and a single I/O does not suffice
to retrieve the entire list. In the worst case, one I/O per
object will be needed, provided that pointers have been
used, to point to the first occurrence of every object. It
follows, therefore that, for an efficient processing of a
query, in O(max(|F(Pi)|, 1 ≤ i ≤ N)*N/B) I/Os, a different
approach has to be developed. Indeed, this is the
objective of this paper. A new solution is proposed in
Section 5, which enables the processing of a spatio-
temporal predicate P by consuming O(|F(P)|/B) I/Os
and a satisfactory space consumption. Before this
solution is described, another primitive solution is also
presented in Section 4, which, however, suffers from
enormous space consumption.

4. The primitive solution

In this approach, each cell Ci is associated with two
structures, Structure A and Structure B.

Structure A is a two-level structure: The upper level
is an index for the object Ids. Each leaf (object Id) is
associated with another index at the lower level, with
the times at which this object entered cell C.

Structure B is also a two-level structure: The upper
level is an index for time stamps. Each leaf (time
instant) is associated with a list (lower level) containing
the object Ids that were in cell Ci at the given instant.

Now, let
Q={(C1,T1),(C2,T2),……,(Cr,Tr)}

be the query. Initially, the upper level of Structure B of
cell C1 is searched, in order to find the time-stamps,
which satisfy the temporal predicate T1. We then follow
the corresponding list of the lower level and we store
the object Ids into a set V. Next, for each distinct object
Oi in V, we have to check whether it satisfies all the
remainder predicates.

Let therefore (C2, T2) be the next predicate and
assume that T2 is time t2. To check whether object Oi
satisfies this predicate, we make use of Structure A of
C2. The path of the upper level of Structure A leading to
object Oi and the leaf corresponding to Oi is connected
with a lower level indexing structure that contains the
time instants at which Oi was in C2. Hence, we can find
whether Oi was in C2 at time t2.

The major advantage of this solution is its time

efficiency, compared to the list solution. To make this
clear, consider a cell in which a large number of
objects have entered but, at each time instant, the
number of objects in the cell is rather small (imagine a
square of a road network in a big city.) Following the
list solution, it is then noted that, at a given time instant
t, the entire list of the cell has to be retrieved, which is
large. In the primitive solution, instead, only the small
list associated to the time instant t has to be retrieved.

On the other hand, however, this solution has an
obvious drawback, the duplicate space consumption,
due to the necessity of maintaining two structures.

A second, more crucial drawback, of this solution
concerns Structure B, when a new time instant t is
inserted into the upper index structure. Structure B
implies that each time instant has its own list. Since we
expect that during a short time period a small fraction
only of the objects of a cell will move to another cell,
we can easily create the list of the new time instant by
copying and modifying slightly the list of the previous
time instant. Obviously, when the lists are too long, we
end up with a tremendous waste of space.

Thus, the primitive solution achieves the desired
time complexity but it may also suffer from vast space
consumption. Hence, it is necessary to maintain a large
number of similar lists, in a space efficient manner.
This is the reason why persistent indexing structures
have been proposed.[8]

5. The advanced solution

There are certain application areas, which require
storing and accessing all the versions in which a data
structure has undergone. Such requirements have
been identified in the seminal paper by Driscoll et al.
[8], in which the notion of persistent data structures has
been coined. More typically, consider a data structure
D. If persistence is supported, all the versions v1, …,
vm+1 are maintained, as D undergoes a number of m
update operations.

We identify two flavors of persistence, namely partial
and full persistence. In partial persistence, every
version can be queried but only the most recent can be
updated. In full persistence, every version can both be
queried and updated. There is also a third kind,
confluent persistence. Confluently persistent data
structures support an operation, which combines two
versions of the data structure to yield a new version.

Application of persistence to secondary memory
data structures is of particular interest since
persistence finds a fertile ground in databases. A
simple example is that of transaction databases, which
store data with a certain lifespan. An extensive
treatment of temporal and bi-temporal DBs, as well as
their relationship to persistence, can be found in the
survey by Salzberg and Tsotras [14]. Lorentzos et al [9]
have studied the creation and maintenance of versions
at the database design level. The fully persistent case

 3

has been studied in [7]. In this paper, we make use of
the partial persistent case. Two optimal, partially
persistent B+ trees have already been developed, the
Multi Version B-Tree (MVBT) by Becker et al. [1] and
the Multi Version Access Structure (MVAS) by Varman
and Verma [13]. Although they both share the same
ideas, MVAS has a slightly better space consumption
constant.

MVAS is a modified B+ tree. Its internal nodes
contain index records and its leaves contain data
records. A data record contains the fields [key, start,
end, info], with their obvious meaning. An index record
contains the fields [key, start, end, ptr], where ptr is a
pointer to a node of the next level. The node pointed by
the ptr pointer contains keys no less than key, has
been created at the time instant start and has been
copied at the time instant end.
A data record is active (live) if its end field has value
‘$’, i.e. it has not been updated, deleted or copied to
another node. If this is not the case, the data record is
inactive (dead). An index record is active if it points to
an sctive block at the immediately lower lever.
Figure 4 shows a possible instance of MVAS, and a
simple scenario. At time 5 (upper part of the figure), the
tree consists of two nodes, the root and one leaf, which
contains all the data records. The figure shows that key
A was inserted at time 1, key C was inserted at time 2
and was subsequently modified at times 3 and 4, and
key B was inserted at time 5. Then, at time 6, key D is
to be inserted. This insertion causes an overflow of the
single leaf. Two new leaves are then created and the
old leaf becomes inactive (all the records appear as
shaded). The index record of the root, which points to
the inactive leaf, also becomes inactive (shaded). The
set of live records of the old leaf is sorted by key, is
divided into two halves and each of these halves is
copied to one of the two new leaves. Two new index
records are created in the root. Their start value is the
time at which the pointed leaves were created, i.e. time
6. Note that it is not always the case that two new
leaves have to be created. For example, if instead of
inserting key D, we had to update B at time 6, then the
live records of the old leaf would fit in one new leaf.
To delete a record, we make use of a flag (shaded in
Figure 4) and then count the remaining live records of
the leaf. If they are too few, we may borrow some live
records from a neighbor leaf, and create one or two
new leaves.
We do not describe the operations of MVAS in further
detail, because we want to give only the intuition
behind this structure.

To search for a key x, at time t, we start from the
root. We ignore records with a start value greater than t
and an end value less than t. From the remaining
records, we choose the one with the greatest key
value, less than or equal to x. For example, if the
search concerns key C, at the time instant 3, it is noted
that only the inactive record (A, 1) at the root satisfies

the time criterion, meaning that it was live at time
instant 3. Following the pointer of this record, we reach
the old inactive leaf, where we find that key C was
really present at time 3.

The key idea is to maintain the following invariant:
For any version, the records contained in that version
are sorted by key value and are clustered into
secondary memory blocks in such a way, that each
block contains B records belonging to that version.

If n is the number of records in the current version
and k is the output size, this invariant helps in
achieving O(logBn+k/B) I/Os (or block transfers) for
search and update operations.

B

Figure 4. A simple MVAS instance

(A,1)

(A,1) (C,2) (C,3) (C,4) (B,5)

(A,1) (A,6) (C,6)

(A,1) (C,2) (C,3) (C,4) (B,5)

(A,1) (B,5)

(C,4) (D,6)

Initially, at time 5

After inserting D at time 6

Based on the above, in our algorithm we use MVAS

as the cell’s indexing structure: Whenever an update
occurs (one or more Ids either enter the cell or leave
the cell), we perform the updates inside a cell, and
create a new version of it. Versions are named by the
time at which they are created.

Suppose now that we want to process the
spatiotemporal predicate (C1,T1). Assume also that,
initially, T1 is the time instant t1. We search the indexing
structure of cell C1, in order to find all the leaves that
were live at time t1. Each such leaf contains from B/4
up to B records (this fact comes from the description of
MVAS [13]), which belong to F(C1,T1). According to the
technical constraints of the structure, we charge each
leaf with one additional I/O (We recursively traverse the
tree in order to reach the desired leaves each of which
is charged with the access of an internal node.) It
follows that the total number of I/Os is not greater than
8*F(C1, T1)/B (for details see [13]). By using therefore a
persistent indexing structure, we have managed to
spare at most O(F(C1, T1)/B) I/Os in order to retrieve
F(C1, T1).

Now assume that the time constraint T1 of the
spatio-temporal predicate is a time interval [t1, t2]. Then
we can follow the history from time t1 up to time t2.
When one or two leaves of the index structure die,
either one or two new leaves are created. In either

 4

case, this death–birth sequence is triggered by update
operations. When a leaf L dies we store into it a pointer
to the newly born leaf. If two new leaves are created,
we store into L two pointers. Figure 5 shows the leaves
of the indexing structure at the time instants ti, ti+1, …,
ti+4.

As is shown in Figure 5, at time ti, all the leaves
have “experienced” insertions, as is shown by the
shading). A series of deletions occur until time ti+3. At
this time, a number of insertions lead to a split of the
remaining leaf. Suppose that we want the Ids of all the
objects that entered the cell between the times ti and
ti+4. First, we retrieve the leaves that contain all the
entries of time ti. Then, by following the depicted
pointers, we can retrieve all the desired leaves. In
general, it is not definite that we will find new Ids for
every leaf of the succeeding time instants. For
example, in Figure 5, none of the leaves at time
instants ti+1 and ti+2 contain new entries.

Figure 5. Moving from ti to ti+4

Nevertheless, this fact does not cause any problem.

The total number of accessed leaves is at most twice
the number of the dead (shaded). Having in mind that
each dead leaf contains at least B/4 Ids, which belong
to F(S1, T1), it follows that the total number of I/Os
cannot be greater than 8*F(S1, T1)/B. Having also in
mind that we can reach the leaves of MVAS by
applying a recursive procedure that accesses one
internal node per leaf, we end up with a total number of
16*F(S1, T1)/B I/Os.

By use therefore of the advanced solution, we can
process a spatiotemporal predicate (S1, T1) by sparing
at most 16*F(S1, T1)/B I/Os. The temporal constraint T1
can be either a time instant or a time interval. We thus
conclude that the query

Q1 ={(S1,T1),(S2,T2),……,(Sr,TN)}
is proccessed in O((max{F(Si, Ti)}/B)*N) I/Os, meaning
that, we have achieved our goal.

Beyond the theoretically excellent performance in
terms of the number of block transfers (I/Os), this
solution is also expected to achieve good results in
terms of space consumption. Specifically, the indexing
structure stores M versions, each of which is produced
by one update, i.e. the space complexity is O(M).

5. Experimental Results

In this section we present the result of conducted
experiments in order to compare the primitive and
advanced solution with respect to the list solution. In
particular, we have conducted an experimental study
making the customary assumption that the disk page
size is set to 512 bytes, the length of each key is 8
bytes, and the length of each pointer is 4 bytes.
Consequently, each block contains B=42 elements. We
use a relatively small page size so that the number of
nodes in an index simulates a realistic situation with a
large number of objects, A similar methodology has
also been used in [15]. We generated synthetic data
sets of moving object ids. The 2-dimensional spatial
universe is a 1000x1000 grid, which simulates an
actual universe of 1000 miles long in each direction.
We also assume that we have a heavy traffic,
generated by 1.000.000 vehicles. The velocity value
distribution is skewed (zipf) towards 0 in range [0, 50].
The query cost is measured as the average number of
node accesses in executing a workload of 200 queries
with the same parameters. Implementations were
carried out in the VC++ programming language.

ti

ti+1

ti+2 The time efficiency of the primitive and the
advanced solution, with respect to the list solution, is
shown in Figure 6. ti+3

 Time Performance

0

500

1000

1500

2000

0 10000 20000 30000 40000 50000
Output Size

Primitive solution:
Structure A

Advanced solution

List solution

ti+4

Figure 6. Number of I/Os vs. Output size

The average number of objects per cell was not

more than 5000. The average number of predicates
that appeared in the workload of the above queries
was not more than 10. The output size of the queries
varied in the range [2.500, 50.000].

The major advantage of the advanced solution,
versus that of the list solution, becomes evident when
the query output concerns only a small fraction of the
contents of a cell. To make it clear, assume that a cell
structure contains the data of the last week. Assume
also that we seek all objects that were in the cell during
a period of only a few hours. (Such cases occur close
to the beginning of the x- axis of Figure 6.) As can then
be seen in this figure, the number of I/Os is very low in
the case of the advanced solution. As opposed to this,
this number is very large in the case of the list solution,
matching always the worst case, since the entire list
must be extracted. Of course, if we want to extract all
the objects that entered a cell during the last week, the

 5

advanced solution can be worse than the list solution.
Note however that such queries are not realistic and
are unlikely to be issued.

Comparing the number of I/Os between the primitive
and the advanced solution, we conclude that they do
not differ substantially. The primitive solution is better,
requiring about half of the I/Os of the advanced. This is
because the lists of structure A are optimally dense, i.e.
all the disk pages that store a list are full, except for
only the last page. On the other hand, the leaves of
MVAS are not usually full. The penalty however for this
superiority is the enormous space consumption of
Structure B (see Section 4).

The theoretical space complexity of MVAS is O(N/B)
blocks, where N is the number of stored elements and
B the block size. In Figure 7 we have plotted the
consumed space of (a) only structure A of the primitive
solution (recall that the space of structure B makes the
primitive solution unpractical and far worse than the
other two solutions), (b) the advanced solution and (c)
the list solution. As can be proved, the three
competitors have theoretically identical space
complexity. In Figure 7, it can be seen that the precise
consumed space of the three competitors differs by a
constant multiplication factor.
 Cell Indexes's space consumption

0 500000
1000000 1500000 2000000 2500000 3000000

0 10000 20000 30000 40000 50000 60000
Number of objects that crossed the cell

Primitive solution:
Structure A

Advanced solution

List solution

Figure 7. Space consumption of cell’s indexing
schemes

From Figure 7 it also follows that Structure A

consumes less space than the advanced solution, but
not less that half of it. The increased space
consumption of MVAS has been expected, because it
is a complicated index structure, requiring more
pointers and other pieces of data compared to those of
the B-tree of Structure A. Finally, the list solution is the
best, and this was expected since lists occupy less
space than trees. Recall, however, that the increased
space consumption of the advanced solution leads to a
dramatically improved time efficiency on realistic
queries, as has been shown in Figure 6.

6. Discussion

We have dealt with the problem of efficient
processing of spatio-temporal predicates. For our
purposes, a previous approach [6], which uses a grid,
and associates a list with each cell of the grid, was

extended by integrating into it a persistent indexing
structure. This indexing structure enables the efficient
maintenance of versions of the lists that are created by
update operations. Since the versions correspond to
time instants, what we have finally achieved is to hide
the time dimension into a persistent indexing structure.
While achieving time efficiency, we have thus managed
to maintain the same space complexity with that in [6].

8. References

[1] Becker B., Gschwind S., Ohler T., Seeger B. &
Widmayer P. (1997). An asymptotically optimal
multiversion B-tree. The VLDB Journal, 264-275.
[2] Beckmann N., Krigel H., Schneider R., Seeger B., “The
R*-tree: An Efficient and Robust Access Method for Points
and Rectangles”, ACM SIGMOD, 1990.
[3] Chakka V. P., Everspaugh A., and Patel J. M.. Indexing
large trajectory data sets with seti. In CIDR, 2003.
[4] Güting, R. H., Böhlen, M. H., Erwig, M., Jensen, C. S.,
Lorentzos, N. A., Schneider, M., and Vazirgiannis, M. 2000.
A foundation for representing and querying moving objects.
ACM Trans. Database Syst. 25, 1 (Mar. 2000)
[5] Gaede, V., Gunther, O., "Multidimensional Access
Methods”, ACM Computing Surveys, 30(2), 1998.
[6] Hadjieleftheriou M.,Kollios G., Bakalov P., Tsotras V.J,
"Complex Spatio-Temporal Pattern Queries”, Proceedings of
the 31st VLDB Conference, Trondheim, 2005.
[7] Lanka S. & Mays E. (1991). Fully Persistent B+-trees.
Proccedings of the ACM International Conference on
Management of Data, 426-435,
[8] Driscoll, J.R., Sarnak, N., Sleator, D., and Tarjan, R.E.
Making Data Structures Persistent. J. of Comp. and Syst. Sci.
Vol 38, No. 1, 1989, pp. 86-124.
[9] Lorentzos N. A., Yialouris C. P. & Sideridis A. B.
(1999). Time-Evolving rule-based Knoeldege Bases. Data
and Knowledge Engineering, 29, 313-335.
[10] Mokbel M. F., Ghanem T. M., and Aref W. G..
Spatiotemporal access methods. IEEE Data Engineering
Bulletin, 26(2):40--49, 2003.
[11] Pfoser, D., Jensen, C. S., and Theodoridis, Y. 2000.
Novel Approaches in Query Processing for Moving Object
Trajectories. In Proceedings of the 26th international
Conference on Very Large Data Bases (September 10 - 14,
2000).
[12] Theodoridis Y, Sellis T. , Papadopoulos A.,
Manolopoulos Y, Specifications for Efficient Indexing in
Spatiotemporal Databases, Proceedings of the 10th
International Conference on Scientific and Statistical
Database Management, p.123-132, July 01-03, 1998.
[13] Varman P. & Verma R. (1997). An Efficient
Multiversion Access Structure. IEEE Transactions on
Knowledge and Data Engineering, 391-409.
[14] Salzberg, B., and Tsotras, V. Comparison of Access
Methods for Time-Evolving Data. ACM Computing Surveys,
Vol. 31, No. 2, 1999, pp. 158-221.

 6

	1. Introduction
	2. Related work
	3. Depicting the inefficiency
	4. The primitive solution

	5. Experimental Results
	6. Discussion
	8. References

