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Abstract—Energy consumption is a crucial and rising operational
cost for data-intensive computing. In this paper we investigate some
opportunities and challenges that arise in energy-aware computing
in a cluster of servers running data-intensive workloads. A key insight
is that in most data centers, servers are underutilized, which makes it
attractive to consider powering down some servers and redistributing
their load to others. Of course, powering down servers naively will
render data stored only on powered down servers inaccessible.
While data replication can be exploited to power down servers
without losing access to data, unfortunately, care must be taken
in the design of the replication and server power down schemes
to avoid creating load imbalances on the remaining “live” servers.
Accordingly, in this paper we study the interaction between energy
management, load balancing, and replication strategies for data-
intensive cluster computing. In particular, we show that Chained
Declustering – a replication strategy proposed more than 20 years
ago – can support very flexible energy management schemes.

1 INTRODUCTION

Servers consume tremendous amounts of energy. A recent
report by the EPA [3] estimates that in 2006, the servers
and data centers in the US alone consumed about 61B
kilowatt-hours at a cost of $4.5B, which accounts for about
1.5% of the total US electricity consumption. If current
methods for powering servers and data centers continue to
be used, then it is predicted that this energy consumption
will nearly double by 2011. Furthermore, energy costs are
quickly rising as a component of the total cost of ownership
(TCO) for servers. In fact, it is estimated that in 2009,
the three-year cost of electricity per server will exceed the
initial cost of a server [13]. This trend is likely to get worse,
with the energy component of TCO going up over time,
since the processor performance follows Moore’s Law and
doubles (in number of cores) every 18 months, while the
performance per watt only doubles every two years [10].
Thus, energy is likely to continue to be a dominant cost
factor in cluster computing and data center deployments.

There are many ways one can attack the problem of
server energy consumption, ranging from new power distri-
bution schemes, to new hardware architectures, to software
mechanisms for energy-aware management of computation.
Many of these techniques are complementary and can be
used with each other. In this paper, we focus only on the
software mechanisms.

One striking observation is that the servers in most
data centers run at low utilization, that is, the average
utilization of servers is typically in the 20-30% range [8].
If servers consumed, say, 20% of their peak load energy
requirement when running at 20% utilization, this would
not be a problem — the underutilization of servers would
lead to an underconsumption of energy. Unfortunately, the
real situation is the opposite — lightly loaded servers
consume a substantial fraction of the energy they consume
at peak loads. (We present results from our experiments
demonstrating this phenomenon in Section 2.1.) While this
is unfortunate, it does suggest the interesting possibility that
one can run a given workload with less energy by powering
down underutilized servers and redistributing their load
to the remaining powered-on servers. However, this is
problematic if the cluster is being used in a fashion where
a large data set is distributed across the disks attached to
the servers (as is the practice for parallel DBMSs.) In such
systems, powering down servers can render a portion of the
data unavailable.

Fortunately, most clusters servicing data-intensive work-
loads already employ data replication schemes, to ensure
data availability and reliability in the presence of failures.
One of our key observations is thatthis same replication
can be exploited to ensure availability in the presence of
deliberate server power downs intended to save energy.
However, while data replication can indeed be exploited
to power down servers without losing access to data, care
must be taken in the design of the replication and server
power down schemes to avoid creating load imbalances
on the remaining “live” servers, which can have severe
performance consequences.

To see this point, consider a system that uses the common
replication strategy of mirroring partitioned data. To make
this example more concrete, suppose that there are four
nodes using mirrored replication. In addition, suppose that
the data set is split into two partitions,P0 with mirror R0,
andP1 with mirror R1. Assume that noden0, n1, n2, and
n3 store P0, P1, R0, and R1 respectively. Furthermore,
assume that queries can be sent to either the primary copy
or the replica for load balancing. If the overall system
utilization is at or below 50% of the provisioned utilization,
then nodesn2 andn3 could be turned off to save energy,
while nodes n0 and n1 would then operate at 100%
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utilization. This is an ideal scenario and may be sufficient
for certain systems. However, we wish to explore powering
down nodes when utilization is between50 − 100% for a
finer grained energy management scheme.

Now, consider another scenario in which the four nodes
each initially see a load of 75%. The system has the
capacity to run this workload on only three processors.
Furthermore, by exploiting replication, we can certainly
turn off one processor and still maintain access to all data.

Unfortunately, if we turn off noden3, then nodesn0

andn2 will continue to operate at 75% utilization, but now
both noden1 and noden3’s original load will be directed at
noden1, so the presented load there will be 150%, and the
system will likely fail to meet its performance requirement.
Such large load imbalances may be acceptable in certain
environments, but the performance degradations are usually
unacceptable (see Sections 2.1 and 3.1 for more details).

Given this example, our goal is to investigate the in-
teraction between replication and power down schemes to
provide the foundation for energy management approaches
that gracefully adapt to overall system utilization. This
should be done in such a way as to maximize energy
efficiency by powering down some nodes while ensuring
that the utilization of the remaining nodes does not exceed
a targeted peak utilization.

The database and distributed systems communities have
a rich history of designing various replication schemes for
reliability [6], [11], [12], [21], [28], [40]. This raises the
question of whether or not there is a replication scheme
that can be exploited to better meet our goals than the
commonly used mirroring strategy adopted in our example
above. As we will demonstrate, the surprising answer is yes
— one of the earliest proposed parallel database data repli-
cation schemes, the “Chained Declustering” technique [21],
when coupled with careful choices of which nodes to power
down, can be exploited to achieve the above goal.

In this paper, we explore node power down sequences
that leverage Chained Declustering to mitigate the load
imbalances created by other replication and power down
sequences. We present two node power down techniques,
called “Dissolving Chains” and “Blinking Chains”, that
view the nodes in the cluster as a “chain” and then specify
which nodes are powered down as load drops (the power
up sequence in response to an increasing load follows a
reverse strategy, as discussed in Section 4). In Dissolving
Chains, as system utilization decreases, it simply powers
down more nodes (the chain dissolves). Blinking Chains
differs in its power down transition because it may first
power up some nodes before powering down the desired
number of nodes (the chain blinks) in order to reduce load
imbalances.

To the best of our knowledge this is the first paper
exploring this interaction between power down sequences
and replication strategies while controlling load imbalances.

In addition, we also evaluate these techniques using an
extensive experimental methodology, which includes using
an actual commercial DBMS, and show that: (1) given an
input parameter, namely, the percentage load imbalance the

power management scheme is allowed to introduce, our
method guarantees that it will not introduce any additional
load imbalances beyond that percentage. This percentage
refers to the tolerable load imbalance that the system is
allowed to take. As we will see, our methods produce low
imbalances (none at some points), and this measure can be
used by the system to determine if a certain power down
transition is acceptable. (2) Our methods have the potential
to produce significant energy savings (of40% or more)
over a wide variety of system loads while maintaining data
availability and a well-balanced system; and (3) our meth-
ods provide a trade off between mitigating load imbalance
and ease of transitioning between operating states.

The remainder of this paper is organized as follows:
Section 2 presents the problem statement. Previous replica-
tion methods are described in Section 3. Our methods are
presented in Section 4, and evaluated in Section 5. Related
work is discussed in Section 6; and Section 7 contains our
conclusions and directions for future work.

2 BACKGROUND AND PROBLEM SPECIFI-
CATION

Before we proceed, we define a few terms that we use
throughout this paper. We use the termload on a node to
refer to the work that is being carried out on a node. In
a system with a number of concurrent queries, each with
the same processing cost, the load can simply mean the
number of queries per node.

The term utilization of a server node refers to the
resource consumption on the node. Typically utilization of
a system in cluster environments is measured simply as the
CPU utilization [8], [17], which is a simplistic measure as it
ignores other resources such as memory, disk, and network,
but often works well in practice. The termoverall system
utilization refers to the average utilization across all the
server nodes in the system.Maximum node utilizationrefers
to the maximum utilization across all the server nodes.

Often cluster systems are designed to handle a certain
provisionedpeakload. We will often refer to the utilization
using a value expressed as a percentage. Within this context,
a utilization of 100% simply refers to operating at an initial
designated “peak load” (which could be lower than the
system’s peak load at which it is stable). Lower utilization
values, e.g., 50%, imply a corresponding reduction in the
load (and an increase in server idle time).

The energy management schemes that we describe in this
paper work by taking some nodesoffline, which refers to a
node being powered down to save energy. Nodes that are
available to run queries areonline. An offline node becomes
available when it is powered up, in which case it then comes
online. (In the more traditional case of replication for failure
management, offline refers to the node being unavailable
due to some component failure.)

Finally, an operational state for the entire system is
defined as:

Definition 2.1: Theoperating state of the entire system,
s(m), is a state wherem of theN total nodes in the system
are offline.
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Fig. 1. Energy Consumption and Response Time
Profile

2.1 Server Load vs. Energy Consumed

In this section we discuss the interaction between the load
on a server and the energy consumed by the server. The
main point here is that this relationship is not linear —
even at zero load, a server consumes an unfortunately high
fraction of its fully loaded energy requirement, mirroring
the observation in [8], but for DBMSs.

As an example, consider Figure 1, which shows the
characteristics of a 1% clustered index query workload
running on a commercial DBMS. (Each point is actually
an average over a thousand runs; more details about this
workload are presented in Section 5.2.) In this graph, the
point W1 corresponds to a server workload in which one
instance of the query takes X ms to run followed by the
server being idle for 4X ms. One can view this workload
as a series of time windows, each of size5X ms, whereX
is the time to run the query. For workload W1, only one
query is run in each window.

Other points in this graph correspond to higher server
utilizations, which we achieved by randomly adding more
queries in the time window (of length 5X ms), thereby
reducing the idle component. Specifically, a point Wi
corresponds to injectingi queries, with random arrival
times, into each5X ms time window. Figure 1 shows for
each workload the average execution time per query and
the energy consumed by the server to run the workload.

Now, consider the point W1 in Figure 1. In this case,
the server consumes about 41.5 Joules and provides a query
response time of 102.5 ms. Most of this energy, specifically
74%, is consumed while the server is idle. As we add more
queries to the workload, i.e., go beyond W1, the idle time
decreases and a larger fraction of the energy consumed by
the server is spent actually running the queries. At W5,
since each query takes X ms to run, we are running at
some provisioned “peak” utilization of100%. Notice how
performance rapidly degrades beyond W6. Operating at
such points (W7 and beyond) merely to save power may
be unacceptable as this region likely represents an unstable
operating range.

If efficiency is defined as the energy consumed by the
server per query, of the five workloads W1 to W5, W5 has
the highest efficiency. Notice, however, the response time
per query is slightly worse at W5 than at the other four

points, since at the other points there is less contention for
resources across different queries.

Thus we have two possibly conflicting optimization
goals. The first is the traditional one — we could simply
optimize for response time, which means running the
system at point W1. However, typically in data center
environments, the performance constraint to meet is not
“as fast as possible;” but rather, something more like “no
worse thant seconds per query for this workload.” When
agreeing to such Service Level Agreements (SLAs), data
center service providers tend to be conservative and agree
to performance that they can generally guarantee under
the heaviest provisioned load, rather than performance
they can meet in the best case. Consequently, the second
optimization goal, and the one that we focus on in this
paper, is to reduce the energy consumption while staying
below a response time target.

2.2 Problem Statement
We want an energy management scheme that starts with
an operating states(m) for a system with maximum node
utilization ofu (u < M ). HereM refers to some maximum
tolerable system utilization (perhaps defined by an SLA).
We want the system to move to a new operating states(m′)
with maximum node utilizationu′ such thatu′ < M and
m ≤ m′, and at least one copy of each data item is available
on the remaining servers that are still powered up.

Note thatM is defined relative to the initial designated
peak load (see discussion at the beginning of Section 2).
Consequently,M can be greater than100%; e.g., if the
maximum tolerable response time is120ms in Figure 1,
thenM is 120% (at W6).

Notice that the problem statement also allows setting
M to 100%, in which case no node operates over the
designated peak capacity.

In addition, in our problem formulation we require “data
availability” – i.e., the power down sequence does not
deliberately make any data item unavailable on the live
servers that are powered up. We make this assumption since
the time it takes to bring up a powered down server can
be very high (e.g., booting up from system-off or from
hibernation – see Section 5.5), and any queries against data
that is made unavailable by a power down scheme will incur
this latency. This high latency/delay may be unacceptable,
and also makes it harder to maintain the fault-tolerance
property of replication in the presence of updates (See
Section 4.3). An interesting direction for future work is
to consider relaxing this assumption. (As the reader will
see, this paper presents many such twists that we hope
will fuel further research in this emerging field of energy
management for data processing systems.)

The schemes that we present differ in the “variance”
in the load across the different nodes. In other words,
some schemes result in larger variation in the loads across
the nodes (cf. Section 5.4, Figure 6). While load variance
(imbalances) are inevitable, and minor load imbalances do
not create a problem, artificially creating major load imbal-
ances can result in the system failing to meet its targeted



4

performance (e.g., W7 and W8 in Figure 1). Accordingly,
we require that the energy management techniques bound
the load imbalances (M ) that they introduce.

The parameterM can be set based on what the sys-
tem administrator feels is a comfortable upper bound for
that system (e.g., W6 in Figure 1). Note such a bound
is important as it provides a guarantee that the energy
management method will not introduce unbounded load
imbalances. We expect that there might be other sources
of imbalances that the system might face, such as flash
crowds. In such situations, the system can be pulled out of
energy-savings mode. Now the situation is the same as what
happens today when systems are faced with sudden load
changes. The system can then execute whatever method
it is currently using to deal with load fluctuations. It
is an interesting direction of future work to see if we
can improve upon this scheme to more deeply integrate
flash crowd load management and prediction with energy
management techniques that are proposed here, and/or to
pick M automatically based on other system operational
settings.

Finally, for certain system states, the nodes can be
“perfectly balanced” – which means that each online node
has the same node load. In Section 4.2.3, we discuss these
perfectly balanced states.

3 REPLICATION REVISITED

In parallel and distributed data processing systems, repli-
cation allows continued access to data when some nodes
fail. Here we want to exploit replication for a related but
different purpose: namely, allowing continued data access
not when nodes fail, but when they are deliberately powered
down to save energy, while controlling the resulting load
imbalance.

When we look at the commonly used techniques:
RAID [28], Mirrored Disk [11], [12], and Interleaved
Declustering [40], we find that they all produce undesired
load imbalances as nodes become inoperable or do not
allow us to turn off multiple nodes. For instance, Interleaved
Declustering retains load balance when one node fails but
loses data availability if any additional nodes are lost.

RAID storage uses an array of disks controlled either by
hardware or software to act as a single unit. Different RAID
levels define different storage properties such as parallel
data access, data redundancy, and data recoverability. How-
ever, RAID suffers from load imbalances when operating
in failure mode. For example, in RAID 1, if a disk fails,
the redundant copy disk must now handle all the requests
that were shared across the two disks. Recent methods for
a Power-Aware RAID [43] attempt to solve this problem
with distinct energy saving operating states. However, these
methods require pre-determining all the operating states and
are generally not adaptable to changes in data size.

Our goal is to leverage a replication scheme to safely
and easily power down any number of nodes for energy
efficiency, and exploit the load balancing and failover
properties of replication.

Note that we are powering down nodes to save energy,
but the node has not failed. In other words, our schemes
don’t change the fault-tolerance property of replication
(updates require special care as discussed in Section 4.3).

3.1 Mirroring Replication

The basic principle used in mirroring [11], [12] is to make
a second copy of the data and store it on a different
storage device. Mirroring can be implemented in a variety
of different ways. One mechanism is to have disk pairs
(RAID 1), with one disk storing the primary copy and the
other storing the mirrored copy [12]. Access to the disks
could have redundancy (e.g., there could be dual ports) so
that if a controller fails the disk can be accessed from a
different port (but this adds hardware costs). Mirroring can
also increase parallelism by allowing queries to use either
copy. When one disk fails, the mirrored copy takes over the
work of its pair. However, this technique doubles the load
on the disk that is still up.

There are a variety of different ways of mirroring data.
However, in most schemes, when some disk fails, the
load on the remaining copies goes up dramatically. For
example, if we use a 2X replication scheme, in which
we have a primary copy and one additional replica, then
when a disk with either of these copies fails, all the load
from the failed disk is transferred to the remaining disk.
Thus, if we say that the cluster system can only operate
as fast as its bottleneck, when a node is taken offline,
the system operates at 2X load. In other words, if one
decides to take one node offline in a mirrored scheme,
from a load perspective, one might as well take half of the
system offline. This means mirroring essentially has only
two operating states,100% online nodes or50% online
nodes. If a 2X increase in load is unacceptable (results in a
maximum node utilization beyond an acceptable threshold),
then with this scheme, there is no energy savings if the
system load is between 50 and 100%. Our goal is to design
schemes that will let us power down an appropriate number
of nodes atany utilization between50 − 100% without
creating unacceptable overloads, given a 2X replication
scheme.

Fortunately, Chained Declustering [21] seems to have the
properties that allow this exploration. Chained Declustering
can lose multiple nodes in the cluster and maintain data
availability. For this reason, in the rest of this paper, we
consider techniques built upon Chained Declustering.

3.2 Chained Declustering (CD)

Chained Declustering [21] is a replication scheme that
stripes the partitions of a data set two times across the
nodes of the system, thereby doubling the amount of
required disk space. The main hallmark of this scheme is
its tolerance to multiple faults along the chain, if those
faults do not occur on adjacent nodes. Furthermore, along
with high availability, the arrangement of the replicas along
the chain allows for balanced workload distribution when
some nodes are offline. If one thinks of all the nodes
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TABLE 1
An 8 node Chained Declustered ring without failure.

Nodes: n0 n1 n2 n3 n4 n5 n6 n7

Primary: R0 R1 R2 R3 R4 R5 R6 R7

Backup: r1 r2 r3 r4 r5 r6 r7 r0

Load: 1 1 1 1 1 1 1 1

in the system as being arranged in a ring or chain, then
Chained Declustering (CD) places a partition and its replica
in adjacent nodes in the chain.

As an example of CD, consider a data setR, spread over
8 nodes in Table 1. Here the primary copies of the data set
areR0 ... R7. The corresponding replicas are shown asr0
... r7. The nodesn0 ... n7 are conceptually organized in a
ring. Primary copyRi is placed on nodei and its replicari
is placed on the “previous” node. During normal operation,
if the access to all the partitions is uniform, then the queries
simply access the primary partitions while updates in CD
go to both partitions.

Now consider what happens when a node is taken offline
by our energy management methods. Table 2 shows what
happens when noden0 is offline. Since noden0 holds the
partitionR0, all queries against this partition must now be
serviced by noden7, which holds the only other copy of
this partition. But simply redirecting the queries against
partition 0 to noden7 could double the load on node
n7. CD solves this problem by redistributing the queries
against partition 7 across both copies of that partition’s
data, namelyR7 and r7. It does this for all the partitions,
and ends up with a system in which each node is serving
the same number of queries (i.e., the system is balanced
after the node failure.) As shown in Table 2, for partition
7, 6/7th of the queries are directed to noden6 and1/7th

of the queries are directed to noden7. The distribution of
the queries for the other partitions are shown in brackets
in Table 2. The load on each node is balanced and is8/7
times the load on the node when all nodes were online.

While Table 2 shows what happens when one node is
offline, CD can also tolerate additional nodes going offline.
In fact, it can allow all failures in which two consecutive
nodes are not both offline. One can easily see why this is
the case in Table 1 and 2. If adjacent nodes fail, an entire
partition will be lost since CD places backup partitions in
adjacent nodes, which leads to the definition below.

Definition 3.1: A node in the Chained Declustering
scheme isessential if removing it makes the data stored
in the Chained Declustering scheme unavailable.

In fact, CD can allow up toN/2 alternating nodes to
go offline, whereN is the number of nodes in the system.
TheseN/2 offline nodes result in the uniform doubling
of load across the remaining nodes in the system (provided
N mod 2 = 0). We exploit this property of CD to develop
various energy management schemes.

TABLE 2
An 8 node Chained Declustered ring with 1 failure.

Nodes: n0 n1 n2 n3 n4 n5 n6 n7

Primary: —R1(1)R2( 67 ) R3( 57 ) R4( 47 ) R5( 37 ) R6( 27 ) R7( 17 )

Backup: —r2( 17 ) r3( 27 ) r4( 37 ) r5( 47 ) r6( 57 ) r7( 67 ) r0(1)

Load: 0 8
7

8
7

8
7

8
7

8
7

8
7

8
7

4 EXPLOITING REPLICATION FOR ENERGY
MANAGEMENT

We can now design schemes to exploit CD to manage
the energy consumption of a cluster system when the
overall system utilization is less than the peak utilization
(i.e., 100% utilization, using the terminology described in
Section 2). Recall that from the discussion in Section 2
we want to control load imbalances such that we obey the
constraint of the utilization parameterM .

While CD can tolerate a variety of configurations with
nodes/servers being offline, as we show below, some of
these configurations lead to system load imbalances. The
protocol that is used to take nodes offline directly de-
termines the uniformity and balance of the load on the
remaining online nodes.

For the discussion below, we introduce a few additional
terms: aring refers to the logical ordered arrangement of
all the nodes in a CD scheme. When a node in a ring goes
offline, the ring isbrokenand produces asegment. Addi-
tional node failures partition segments into other segments.
Each segment has twoend nodes.

Now, consider the following proposition:
Proposition 4.1: If the ring or a segment of a Chained

Declustered set of nodes is broken because a node goes
offline, then the two new end nodes of the resulting
segment(s) areessential.

The proof follows directly from the properties of CD and
Definition 3.1, and is omitted here.

From Proposition 4.1 it follows that to take nodes offline
any scheme must select additional nodes from the remain-
ing online nodes that are not end points of the remaining
segments.

Now we present two protocols for selecting which nodes
to take offline. The Dissolving Chain scheme walks along
segments of the ring, taking nodes offline at the halfway
point of the given segment. In contrast, the Blinking Chain
scheme spaces offline nodes on the ring evenly to achieve
better load balancing.

4.1 Dissolving Chain (DC)

The Dissolving Chain (DC) protocol sequentially with-
draws nodes using Proposition 4.1 so that data is always
available. A simple generic algorithm to implement this
scheme is shown in Algorithm 1. The input parameters
to this Algorithm are: the current state (s(m)), and the
number of offline nodes (m′) in the target state. At the
end of running Algorithm 1, the system will be in the new
states(m′).
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Algorithm 1 Dissolving Chain

INPUT: s(m), m′(m′ ≤ N/2 for an N node system)
Q ⇐ Seg(s(m)) //Extract segments in the current state.
Q ⇐ Sort(Q) //Sort in descending order of segment
lengths.
curr ⇐ NumOfflineNodes(s(m))
while curr 6= m′ do

seg = Q.pop
if | seg |> 2 AND 1 < ⌈(| seg |)/2⌉ <| seg | then
Q.push(seg1...⌈(|seg|)/2⌉−1)
Q.push(seg⌈(|seg|)/2⌉+1...|seg|)
seg⌈(|seg|)/2⌉.turnOff //turn off this node
curr ⇐ curr + 1

end if
end while

Algorithm 2 Transition Controller

INPUT: N , s(m), m′, U , M
L ⇐ maxlen(T,N,m′)
if m′ ≤ N/2 and U(L + 1)/L ≤ M then CALL
DissolvingChain(s(m), m′)

From the properties of CD, nodes in a longer segment
of a CD ring have lower loads compared to a node in a
shorter segment. By choosing to power down the middle
node in a segment, we are both minimizing load imbalance
as well as the load increase on the remaining nodes, as a
result of the transition.

Continuing the example from Table 2, the second node
that can be taken offline is noden4. The resulting system
is balanced (uniform node load) as shown in Table 3.

Now that we have taken two nodes offline, let us
consider taking another node offline to reduce the energy
consumption in response to a lowering of the overall system
utilization. Notice in Table 3 we have two segments of
length 3. To take the next node offline, we can pick one
of these two segments and cut it into two equal parts.
However the load on the system now becomes imbalanced
as illustrated in Table 4. Essentially, DC can only reach
a balanced state when the number of offline nodes is2i

and2i dividesN , whereN is the number of nodes in the
system.

The DC algorithm can solve the problem defined in
Section 2.2 if it is implemented within a wrapper controller
algorithm. This is because Algorithm 1 is not aware of
the the maximumM utilization requirement. The controller
algorithm is given in Algorithm 2. This algorithm takes as
input: the size of the systemN , current operating states(m)
desired number of offline nodesm′, the current system
utilization U , and the utilization requirementM . Function
maxlen calculates the maximum segment length that would
be produced usingT () if this transition occured. For DC,
maxlen first puts valueN −1 into an empty queue. It then
pops the top value in the queue (y) and pushes⌈(y−1)/2⌉
and⌊(y− 1)/2⌋ into the queue. This is donem′ − 1 times
and then the maximum value in the queue is returned. If

TABLE 3
Dissolving Chains at s(2)

Nodes: n0 n1 n2 n3 n4 n5 n6 n7

Primary: — R1(1) R2( 23 ) R3( 13 ) — R5(1) R6( 23 ) R7( 13 )

Backup: — r2( 13 ) r3( 23 ) r4(1) — r6( 13 ) r7( 23 ) r0(1)

Load: 0 4
3

4
3

4
3 0 4

3
4
3

4
3

TABLE 4
Dissolving Chains at s(3)

Nodes: n0 n1 n2 n3 n4 n5 n6 n7

Primary: — R1(1) — R3(1) — R5(1) R6( 23 ) R7( 13 )

Backup: — r2(1) — r4(1) — r6( 13 ) r7( 23 ) r0(1)

Load: 0 2 0 2 0 4
3

4
3

4
3

the number of offline nodes is valid and the maximum node
utilization constraint (M ) is not violated, the controller calls
the transitioning algorithm.

A companion algorithm is also required to bring nodes
online when utilization increases. In a simple implementa-
tion, this companion algorithm simply reverses the transi-
tions made by Algorithm 1. We omit this algorithm in the
interest of space.

4.2 Blinking Chain (BC)

The general intuition behind the Blinking Chain (BC)
methods is to allow more general cuts than the simple
binary cuts used by DC to: a) to reduce the variation in
the load across the nodes that are still up, and b) produce
states where the load across the nodes is “balanced” (see
Definition 4.2).

For example, for a system whereN = 40 nodes, for a
DC system ats(9), there will be segments of length4, 2, 1
with 28 nodes at(5/4) load, 2 nodes at(3/2) load, and
1 node at double load. A better way to cut theN = 40
ring results in4 segments of length4 and 5 segments of
length3. This results in minimal load variation across the
remaining online nodes (the benefits of this are shown in
Section 5.4). We now discuss how to create these segments.

4.2.1 Segments and Transitions
The general algorithm for transitions from a balanced state
with m nodes offline to a target state withm′ nodes offline
is shown in Algorithm 3. The goal of this algorithm is to
power down nodes such that the remaining online segments
have lengths as uniform as possible. In this algorithm,
one node in the ring is always deemed theroot node.
The algorithm iterates through every node in the ring
starting from the root and changes the state of the node
if appropriate. Notice that this algorithm can be used to
both transition down (i.e.,m < m′) or transition up (i.e.,
m > m′). After running this algorithm, the system moves
to the states(m′).

In Algorithm 3, whenm′|N (| is the “divides” operator),
all the resulting segments will be of equal length. However
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Algorithm 3 Blinking Chain

INPUT: N ,m′ (m′ ≤ N/2),root
curr ⇐ root; s ⇐ 0
if m′ > 0 then curr.turnOff
curr ⇐ root.next; tgtlen ⇐ ⌈(N −m′)/m′⌉; ctr ⇐ 0
while curr 6= root do

if ctr 6= tgtlen and curr.isOff then curr.turnOn
if ctr = tgtlen and curr.isOn then curr.turnOff
ctr ⇐ (ctr + 1)%(tgtlen+ 1)
curr ⇐ curr.next; s ⇐ s+ 1
if s = N modm′ then tgtlen ⇐ ⌊(N −m′)/m′⌋

end while

if N is not divisible bym′, (N mod m′) segments will
have lengths⌈tgtlen⌉ and the remainingm′ − (N mod
m′) segments of length⌊tgtlen⌋.

BC can also adhere to the maximum node utilization
constraintM defined in Section 2.2 by using a controller
algorithm similar to Algorithm 2 except that a) we call
Algorithm 3 (Blinking Chain) instead of Dissolving Chain
in the last line and b)maxlen calculates⌈tgtlen⌉ as
described above.

Now, consider transitioning from a state withm nodes
offline to m′ nodes offline. A method to implement this
transition is to bring all but the root node back online
and then turnm′ − 1 of them off, but this results in a
high transitioning cost as each transition requires making
m + m′ − 2 node state changes (i.e., changing the state
of a node from offline to online, or vice versa). These
state changes can consume a significant amount of energy
(see Section 5.5), and we would alsolike to minimize the
energy spent in making these transitions. An interesting
property of BC is that when transitioning from states(m) to
s(m′), there may be offline nodes in thes(m) configuration
that can remain offline in thes(m′) configuration. By not
changing the status of these nodes, the transitions can be
made more energy efficient, as discussed next.

4.2.2 Optimizing the Transitions
First consider finding states that provide the most “efficient”
transitions, which implies making the least number of node
state changes in the transition. In BC, the most efficient
transition between two statess(m) ands(m′) is such that
only |m − m′| nodes undergo transition. This efficient
transition is defined formally as:

Definition 4.1: The Optimal Blinking Chain Transi-
tion s(m) to s(m′) only requires |m − m′| nodes to
undergo transition.
This optimal transition can be implemented by using Al-
gorithm 3. We now give Proposition 4.2 which highlights
a key relationship between divisible states (s(m), s(m′)
such thatm|m′ or m′|m) and the Optimal Blinking Chain
Transition.

Proposition 4.2:s(m) to s(m′) is an optimal Blinking
Chain transition iff(m|m′ OR m′|m)

Proof: First, if s(m) to s(m′) is an optimal transition,
then only |m − m′| nodes have changed state. Given any

s(m), we know there are(N mod m) segments of length
⌈(N − m)/m⌉ and [m − (N mod m)] of length ⌊(N −
m)/m⌋. Also, we know that there arem total segments in
s(m). Without loss of generality, assumem′ > m, which
means exactlyx = (m′ − m) nodes have powered down.
We can provem|x by contradiction. Assume thatx is not
a multiple of m, then segments ins(m) are not all cut
the same number of times. This means that the maximum
difference between two segments ins(m′) cannot be 1,
which is a contradiction of the above. Next, we need to
prove that givenm|m′, then the segments ins(m) can be
cut into the segments ins(m′) with m′ −m offline nodes.
Sincem|m′, then each segment ins(m) will receive c =
(m′−m)/m cuts. So the lengths of the segments ins(m′)
will be (⌈(N − m)/m⌉ − c)/(1 + c) = ⌈(N − m′)/m′⌉
and(⌊(N−m)/m⌋−c)/(1+c) = ⌊(N−m′)/m′⌋. Lastly,
x⌈(N−m′)/m′⌉+y⌊(N−m′)/m′⌋ = N−m′ and certainly
(x = N modm′) and (y = m′ − (N modm′)) hold.

Proposition 4.2 tells us that in a given operating state,
s(m), for N CD nodes, we can transition to anothers(m′)
with maximum efficiency if and only ifm′ is a multiple or
factor ofm. While the Optimal Blinking Chain Transition
has interesting properties, it does not handle all possible
state transitions. Specifically, it does not cover transitions
between any statess(m) and s(m′) when m and m′ do
not divide each other. For example, ifN = 42, we cannot
executes(6) to s(15), since the optimal transition is not
defined in this case.

To handle transitions between any two arbitrary states,
we need aGeneral Blinking Chain Transition. This
transition is implemented as a composition of two Optimal
Blinking Chain Transitions:s(m) to s(GCD(m,m′)) to
s(m′), which maximizes the number of offline nodes that
are untouched during the transition.

Using our previous example, ifN = 42 and we wish
to transition froms(6) to s(15), then using the General
Blinking Chain Transition, we can save4 node transitions
by doing two optimal transitions: one froms(6) to s(3)
and the second froms(3) to s(15). Finally, we note
that since the Optimal Blinking Chain Transition can be
implemented with Algorithm 3, the General Blinking Chain
Transition can simply be implemented using two iterations
of Algorithm 3.

Notice that BC transitions are “optimal”, when only|m−
m′| nodes transition. Recall this isalwaysthe case for DC
transitions. The implication of this property is discussedin
Section 5.5.

4.2.3 Number of Balanced States
Let us now consider the special statess(m) wherem|N .
In these states, all the nodes have identical loads and we
deem this “balanced” as defined in Definition 4.2.

Definition 4.2: If all segments of a Chained Declustered
ring are of equal length (m|N ) in a given operating state
s(m), then we deem this abalanced operating state,̄s(m)
and all nodes have the same load.

We can calculate the total number of possible balanced
operating states for a Chained Declustered system ofN
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Fig. 2. Index query regression model Fig. 3. Database scan regression model

nodes as follows: consider the system configured with
N = pN1

1 pN2

2 ...p
Nj

j wherepi is the ith prime; by simple
combinatorics, the total number of unique factors ofN is
Π1≤i≤j(Ni + 1), which is also the number of balanced
states for this system sincēs(0) replaces factorN .

4.3 Updates

Updates while operating in energy saving modes can be
handled (without sacrificing the fault-tolerance properties
of replication) as follows: if an update needs to be applied
to a partition replicate that is offline, then the “next left
node” can store the updates applied to a partition that has
a replicate powered down.

For example, consider the node segment “A–B–C–D” in
a CD ring with C has been powered down. In this case, node
B can store the updates that have been applied to node D,
and node A can store the updates that have been applied to
node B. Updates for node A go to node B as usual. When
node C comes back online, the update logs stored on A
and B will be applied to the partitions on node C. Note
that the original fault tolerance property of replication is
maintained for CD even when we are operating in energy
efficient modes, as the system always keeps two copies of
each update.

Section 5.6 presents results on the cost of log replay with
respect to the amount of data updated and node power up
costs.

5 EVALUATION

In this section we present results evaluating the effective-
ness of our energy management methods. At a high level
our methodology was the following: we took an actual
server and ran two prototypical workloads on the server.
We then took actual measurements for both energy and
response time on this server, as we varied the load on
the server (i.e., changed the server utilization). We then
produced a model for a single node in a system. This
model was then plugged into a larger model for the entire
distributed system. Using this method, we were able to
explore a range of system configurations.

In all results presented below, we consider a system
with 1000 nodes (i.e.,N = 1000). Additional results with
different values ofN are similar to those presented here,
and hence are omitted.

5.1 Experimental Setup

Our system under test (SUT) consisted of an ASUS P5Q3
Deluxe WIFI-AP motherboard with an Intel Core2Duo
E8500, 2GB Kingston DDR3 memory, an ASUS GeForce
8400GS 256M graphics card, and a Western Digital Caviar
SE16 320G SATA disk. The power supply unit was a
Corsair VX450W PSU. System energy draw was measured
using a Yokogawa WT210 unit as suggested by the SPEC
power benchmarks [5]. The WT210 measurements were
collected by a separate system through the RS232 interface
and the provided Yokogawa software.

We used both a DBMS index query workload and a table
scan workload (described below). The DBMS workload
was run on a commercial DBMS. Our database consisted
of the Wisconsin Benchmark (WB) tables [16]. Client
applications accessing the database were written in Java
1.6 using the JDBC connection drivers for the commercial
DBMS.

All empirical results were the average of the middle
three results of five runs. The offline mode used was the
hibernation (ACPI S4) state. Alternative offline modes are
discussed in Section 5.5.

5.2 Workload

We model two different types of workloads. The first
workload uses WB Query 3. This query is a 1% selection
query using a clustered index. The target table for this
query is a table with20M tuples (approx. 4GB table size).
The actual workload consists of 1000 such queries with
randomly selected ranges. This workload is used to model
simple lookup queries. Our second workload is a file scan
on a WB table (of varying sizes) that has no indices. This
workload mimics queries that require scanning tables in a
DSS environment. These workloads are described in more
detail below.
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Fig. 4. Energy savings under varying system utiliza-
tion.

5.2.1 Index Queries Workload

To simulate varying node underutilization with the indexed
range query, we defined various workloads for the indexed
query by varying idle times (this is the same setup as
described in Section 2.1). First, we ran this query and
measured the query runtime. Lets call this X seconds. Then,
we defined a 20% utilization workload as one in which
the query runs for X seconds followed by an idle time of
4X seconds. In this setup, the server is presented with a
series of these 5X time windows. An actual run consists
of 1000 such windows, with random arrival time for the
query in each window. We average the results over each
run. Workloads with higher utilization are generated by
injecting additional queries in this 5X window. For example
a workload with 40% utilization has two queries in each
5X window, and a workload with 100% utilization has 5
queries in each 5X window.

To determine the value of X above, we ran 10000 random
1% selection queries and measured the average response
time at 102.5 ms, with a standard deviation of 0.46 ms.

5.2.2 Database Scan Workload

We modeled utilization of the system running scan work-
loads slightly differently to mimic a scenario in which a
single scan runs across all the nodes in the system. In this
case, when nodes are taken offline, the remaining online
nodes have to scan larger portions of the data. In this model,
let the time it takes a node to scan a20M tuple WB table be
56.49 seconds. This node is operating at100% utilization,
scanning as much as possible. For75% utilization, we ask
the node to scan a15M tuple table every56.49s. Thus,
over time, it is doing75% of the work that it would do
in the 100% case. Similarly, for50% utilization, we ask
it to scan a10M tuple WB table every56.49s. Energy
consumption is measured for the entire56.49s window.
With increased utilization, the increase in response time
increases (nearly) linearly. All scans are “cold” and there
is no caching between successive scans.

5.3 Modeling Energy and Response Time

In this section we present the measured energy consumption
and response time results for each workload. We then use
these results to develop a model for the behavior of a node
in the system. All models were picked by trying a number
of different linear and polynomial regression models, and
picking the one with the lowest coefficient of determination,
R2. All presented models hadR2 > 0.94.

5.3.1 Indexed Query Workload
The response time and energy measurement results for the
index workload are presented in Figure 1 (in Section 2.1).
Figure 2 plots this data with utilization on the x-axis, system
energy consumption (for a 5X window) on the primary y-
axis, and the query response time in milliseconds on the
secondary y-axis.

Figure 2 also show the derived regression models for
the average energy consumed by our SUT and the average
query response time as a function of utilization. The energy
consumption model is linear while the response time model
is quadratic.

5.3.2 Database Scan Workload
For the scan workload, increased utilization corresponds to
increasing the length of time that an instance runs (to mimic
what would happen if we turned nodes offline for such
workloads). The results for this workload are presented
in Figure 3. Again, the energy model is linear, but for
scan the response time model is logarithmic. The average
response time curve is sublinear as the pre-fetching used
by the DBMS decreases the per-record response time as we
increase the amount of data that is read. While the energy
consumption curves in Figures 2 and 3 are both linear, as
utilization increases, energy consumption grows faster with
the CPU-bound index workload.

5.4 Effect of Decreasing Utilization

Using the models described in the previous section, we
now apply the workload models to aN = 1000 system
configuration under varied system utilization.

We then analyze the workload energy consumption of the
overall system as the overall system utilization decreases
from 100%. In addition to comparing differences between
our methods, we also compare against theUnmanaged
system, where all nodes are always online regardless of
the overall system utilization.

These results are shown in Figures 4 (a) and (b). In
these figures, we vary the system utilization from 100%
to 50% as shown on the x-axis (going from 100% on
the left to 50% on the right). So going left to right,
corresponds to decreasing the overall system utilization
from the fully loaded (100%) system. For each point in
these figures, we apply our empirically derived models from
Section 5.3 to calculate the energy consumption. Using this
calculated energy consumption, we plotted, on the y-axis,
the energy saved by the entire system compared to the
energy consumption at the 100% point.
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Fig. 5. (a-b) Maximum node utilization as we iteratively
take nodes offline. (c) Ability of Dissolving Chains to
power down half of the nodes.

We notice that an unmanaged cluster saves at most
10% in energy consumption (for the Index query workload
Figure 4 (a)) at50% utilization. For the Scan workload
(Figure 4 (b)), the unmanaged cluster only saves 3% of
energy at50% utilization! However, using DC and BC, we
can save 48% and 50% of the energy consumption at50%
utilization respectively. Notice, because of DC’s inability
to power down500 nodes forN = 1000, its savings is
slightly lower than BC.

Another striking observation from Figure 4 is that the
curves for both BC and DC have big swings/spikes. These
spikes can be seen for both methods clearly in Figure 4
(b). This behavior is because both methods introduce load
imbalances at certain operating states. Notice that the
swings for BC are more gradual compared to DC – this is
because BC maintains optimal load balance on the online
nodes at any given operating state, which makes its energy
swings are more subtle compared to DC.

Let us explore these swings in greater detail. Consider
Figures 5 (a) and (b), where we power downm nodes when
the system utilization is(1000−m)/1000 for a 1000 node
system. As the system utilization drops, consider taking
nodes offline one by one (incrementingm by 1), up to a
maximum of500 nodes, using both DC and BC methods.
Note that not all states will be balanced.

Figures 5 (a) and (b) show themaximum node utilization
for both methods, i.e., the maximum relative increase

105

110

115

120

125

130

R
e

sp
o

n
se

 T
im

e

(s
e

co
n

d
s)

100

105

1
5

0

1
5

5

1
6

0

1
6

5

1
7

0

1
7

5

1
8

0

1
8

5

1
9

0

1
9

5

2
0

0

2
0

5

2
1

0

2
1

5

2
2

0

2
2

5

2
3

0

2
3

5

2
4

0

2
4

5

2
5

0

R
e

sp
o

n
se

 T
im

e

(s
e

co
n

d
s)

Offline Nodes

(a) Dissolving Chains Response Time

105

110

115

120

125

130

R
e

sp
o

n
se

 T
im

e

(s
e

co
n

d
s)

100

105

1
5

0

1
5

5

1
6

0

1
6

5

1
7

0

1
7

5

1
8

0

1
8

5

1
9

0

1
9

5

2
0

0

2
0

5

2
1

0

2
1

5

2
2

0

2
2

5

2
3

0

2
3

5

2
4

0

2
4

5

2
5

0

R
e

sp
o

n
se

 T
im

e

(s
e

co
n

d
s)

Offline Nodes

(b) Blinking Chains Response Time

Fig. 6. Comparing imbalanced operating points us-
ing the Index Query workload. The vertical lines in
represent the range between the minimum and the
maximum response times and the horizontal bar is the
median response time.

(compared tom = 0) that any system node will see. Note
the maximum node utilization is a crude way to determine
the imbalance of the system. (This type of analysis can be
used to avoid load spikes seen in Figure 1.) Comparing
these two figures, we see that BC is more graceful in
its worst-case node utilization in imbalanced states (where
maximum node utilization is greater than100%) compared
to DC.

In addition, from Sections 4.1 and 4.2.3 we know that
BC has16 balanced states (see Section 4.2.3) forN = 1000
while DC only has4. (These correspond to a 100% maxi-
mum node utilization in Figures 5 (a) and (b).) Furthermore,
even when both methods are imbalanced, BC has a better
worst-case behavior than DC, as is evidenced by the lower
height (node utilization) of the operating points in Figures 5
(a) and (b). For example, with respect to our problem
statement in Section 2.2, ifM = 120%, then BC has
67 states where the maximum node utilization violates this
constraint while DC has209 states. This is simply a count
of all possible operating states with a maximum nodes
utilization greater thanM .

Lastly, we notice from in Figure 5 (a) that DC cannot
reach s̄(500) for N = 1000. This is because as it sys-
tematically traverses the ring, cutting segments in half, it
may create irreducible segments of length2. Thus, it cannot
reach the optimal number of offline nodes. This effect can
be seen in Figure 4, where near50% utilization, DC is
slightly lower in energy savings than BC.

An analysis of this phenomenon over varying system
sizes (N ) is shown in Figure 5 (c). Here we show how
close DC can come to powering downN/2 nodes for
1 ≤ N ≤ 1000. What we notice is that there are dramatic
swings, but more importantly, we notice that DC can
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TABLE 5
Costs for different types of offline states.

“Down” means going from the idle online state (75.2W ) to an
offline state, and “Up” is the reverse. The ASUS offline state is
a proprietary idle state provided by the motherboard software.

Down Down Up Up State
time (s) cost (J) time (s) cost (J) cost (W)

ASUS 0.8 83.5 0.7 68.4 72.3
Standby 12.1 1033.2 14.3 1299.8 11.6
Hibernate 12.2 1107.6 37.3 3531.6 0
Shutdown/Off 8.7 700.2 177.6 9655.9 0

transition to s̄(N/2) only whenN = 2i. Ultimately, the
reason this occurs is because DC heuristically takes nodes
down and will never self-correct by bringing them back
online as utilization monotonically decreases. The upside
to this heuristic is a low (constant) transitioning energy
cost that is discussed in Section 5.5.

For a detailed look at further effects of BC optimal
load balancing to DC heuristic balancing, we zoom in on
a smaller set of operating states. We use the models of
Figures 2 and 3 and compare how energy consumption
and response time are affected by these imbalanced states.
Figure 6 examines the imbalanced operating points for the
range of150 to 250 offline nodes, in5 node increments,
while executing the Index query workload (Figure 2). (The
results for the scan query workloads are similar and omitted
here.) Figures 6 (a) and (b) compare the variance in node
response time between the operating states for DC and
BC, respectively. The response time variance is clearly far
smaller with BC.

To summarize, BC transitioning results in more balanced
node loads than DC. With its lower maximum node utiliza-
tions, BC offers greater opportunities to power down nodes
and stay within the thresholdM in our problem statement
(see Section 2.2).

5.5 Effect of Transitioning Costs

So far we have not included any energy or latency costs
associated with making transitions from one state to the
next. There are a number of possible offline “power states”
for a node. For our test system (SUT), Table 5 shows the
different offline and online transitions, along with the time
it takes to make the transition and the energy consumed
in making the transition. To put the energy costs into
perspective, our SUT has an idle power consumption of
75.2W . While the “ASUS” state has the fastest transitioning
time, it consumes95% of the idle cost, making it of
limited use. The standby mode is more efficient, consuming
11.6W while keeping keeping memory and system state
online. The hibernate state has no sustained cost in the
offline mode, and provides faster transitions than turning the
machine off. Here we use hibernation as our power down
mechanism (note that machines can be powered up/down
using IPMI which is fairly ubiquitous on modern servers).

TABLE 6
Example transitioning sequence, energy costs, and τ

Util BC DC τ Util BC DC τ

(%) (kJ) (kJ) (secs) (%) (kJ) (kJ) (secs)

100 to 90 111 111 0 50 to 60 1,745 353 DNE
90 to 80 111 111 0 60 to 70 1,281 353 168.9
80 to 70 575 111 84.4 70 to 80 817 353 141.6
70 to 60 1,039 111 DNE 80 to 90 353 353 0
60 to 50 1,503 111 321.9 90 to 100 353 353 0

From Section 5.4, we know that BC is optimal in balanc-
ing the load across the nodes, but the cost of this optimality
is a complex transitioning mechanism (cf. Section 4.2.2). In
contrast, DC always powers up/down the minimal number
of nodes required to reach the target operating state. (As
discussed in Section 5.4, not all BC operating states are
available to DC. To facilitate direct comparison, here we
compare operating states that are accessible to both DC and
BC). From the perspectives of energy consumed during the
actual transitions, DC is clearly more efficient. Now we
answer the question:How much worse is the transition
cost of BC?

Let Os(N, y, z, t) be the energy cost of running a work-
load on anN node system withy offline nodes atz%
utilization for t seconds using schemes (e.g.,OD andOB

for Dissolving and Blinking Chains respectively).

∆O(N, a, b, z, t) = OD(N, a, z, t)−OB(N, b, z, t) (1)

∀y, z, t : OB(N, y, z, t) ≤ OD(N, y, z, t) (2)

Given Equation 1 and Equation 2 (the load balancing of
DC is lower bounded by BC),∆O(N, y, y, z, t) ≥ 0.
Given this, if a ≤ b, the function∆O(N, a, b, z, t) grows
monotonically ast increases.

∆O(N, y, y, z, τ) > γ (3)

Equation 3 introduces the notion ofτ , which is the length
of time that the two systems, one using DC and the other
using BC, must operate for for the BC system to overcome
its extra (with respect to DC) transitioning cost penalty (γ)
with its efficient load balancing (energy efficiency).

For example, givenN = 1000 and the Index Query
workload, if we want to transitions(200) to s(300), BC
pays γ = 464kJ in extra transitioning cost over DC. If
we have two systems where both DC and BC making this
transition, then the BC system must stay ats(300) for at
leastτ = 36.4sec to overcome this penalty, otherwise DC
is a more cost (energy) effective solution.

In Table 6, we provide two example transitioning se-
quences for two1000 node systems: one using the DC
scheme and the other using the BC scheme. We show a tran-
sitioning sequence (in columns 1-4) where the utilization
starts at100% and falls by10% increments until50%. We
also show a transitioning sequence (in columns 5-8) where
utilization increases from50 − 100% in 10% increments.
In both these scenarios, we assume that there is no time
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(b) Powering up 500 nodes.

Fig. 7. Energy cost of powering up nodes and updating
the data partitions, given different rates of incoming up-
dates and duration for which the nodes were powered
down.

spent for the change in utilization, the decision to transition,
and the actual power down sequences. That is, if there is
a change in utilization, the decision to transition and the
execution of the transition occur instantly.

The rows show the transitioning energy cost and the
time it takes (τ ) for a more balanced BC derived operating
state to overcome its heavy transitioning cost. We notice
a number of key points. First, there are a number of
transitions whereτ = 0 such as transitioning from 100%
to 90% (i.e.s(1000) to s(900)). In this case, both Blinking
and Dissolving Chains perform optimal|m − m′| node
transitions and so the node transition costs are the same.
Second, if both Blinking and Dissolving Chains result in
states with idential load imbalance, then Blinking Chains
can never overcome its disadvantage in transition cost and
τ does not exist (DNE). This is seen in transitions50% to
60% utilization and60% to 70%.

5.6 Update Costs

The idea of transitioning costs is extended when we con-
sider the costs of updates. Recall from Section 4.3 that
when both replicas are online the updates are applied to
both replicas, but if one of the replica is offline, then the
update is applied to the online copy and a log of the update
is stored in the “left” node. This log is then applied when
the node with the (stale) replica is powered up (in a single
update transaction). In this section, we provide an analysis
of the energy cost of powering up a cluster and applying the
update logs that have accumulated over varying amounts of
time.

Consider a 1000 node cluster powered down to 75% and
50%. Let us assume 3 different update rates of 1, 10, 100
updates per second and different periods of time 10, 30,
and 60 minutes during which the updates are accumulating.

Load

Balancing


Transitioning

Overhead


Blinking Chains


Properties


Methods


Good
 High


Fair
 Low
Dissolving Chains


Mirroring
 Poor
 Low


Fig. 8. Comparison of energy management methods

So the powered down nodes have been down for this time
and updates are accumulating, while a second log of the
updates is stored on the next left node for fault tolerance
(see Section 4.3). Further, let us assume that updates are
uniformly distributed across the file and thus the nodes in
the cluster. This means that the total number of updates that
must be replayed is amortized over the number of nodes
that are brought up. (We have run different variants of this
setup by varying the # nodes, start and end states, update
rates, and down time, and the results are similar to the ones
presented here.)

Using our 20 million tuple Wisconsin Benchmark table
with a non-clustered index, our SUT can update individ-
ual tuples at 933 updates per second at a cost of 0.08
Joules/update. In Figures 7(a) and (b), we show the energy
cost of powering up 250 nodes and 500 nodes with the
varying update rates and accumulation lengths. The cost
in energy is primarily dominated by the energy spent
in bringing nodes out of hibernation. We notice that in
both cases, updates cause at most a 2% increase in the
transitioning energy.

Finally, the time spent bringing nodes online is also
largely dominated by the time spent powering up from
hibernation. In the case of Figure 7(a) where 6000 queries
per minute accumulates for 60 minutes, the entire update
process takes 38.79 seconds, of which only 1.5 seconds
is the actual time to run the update transaction while the
remaining 37.29 seconds is used to bring the node out of
hibernation (Table 5).

5.7 Summary

Now we summarize some of the practical implications
of our work. In a setting where load balance is not as
important, as we discussed in Section 3.1, simple mirroring
can be used. The power down scheme is simple (turn
off one of the two replicate nodes, causing a 2X load
increase on the remaining node) and it affords the100%
and 50% online balanced states. However, in cases where
the huge 2X load imbalances must be avoided (in most
cases involving SLAs), we suggest the Dissolving Chain
(DC) and the Blinking Chain (BC) methods.

The differences between DC and BC are summarized
in Figure 8. If avoiding load imbalances and the variation
in loads across the nodes is important, then BC offers
excellent load balancing in energy saving states. How-
ever, BC requires significant state transitioning overhead
that would be amplified when system utilization is highly
variable. Thus, if one knows the system utilization will be
highly variable, DC offers low transitioning cost but incurs
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slight but predictable load imbalances and offers fewer state
transitions.

Finally, notice that since both schemes leverage Chained
Declustering, the usage of one over the other is not exclu-
sive; if utilization fluctuates, we can switch to DC, and if
there is little fluctuation, we can switch to BC. We will
examine such hybrid approaches as part of future work.

6 RELATED WORK

The problem of increasing energy consumption in large-
scale data processing environment has received consider-
able attention since the beginning of this decade, especially
in the context of data center construction and operation. The
increasing attention in part is driven by the minimization
of the TCO for data centers [27]. Examples of efficiency
methods include reducing the number of power conversions,
bringing in higher voltage closer to the rack, using more ef-
ficient power supply parts, raising data center temperatures,
shorter control of airflow (e.g., avoiding pumping cool air
from a cooling source that is far way from the target), using
a cooling tower rather than A/C, using lower performance
equipment, etc. [4], [18], [19], [24], [25], [29], [37]. All
these efforts have resulted in dramatic improvements in
the energy efficiency of data centers, and can largely be
used orthogonally to software methods that reduce energy
consumption.

On the software systems side, a desired property is en-
ergy proportionality. That is, an X% utilized server should
consume X% of the power that it would consume when it
is at 100% utilization (peak power). One of the hurdles in
achieving this behavior is the problem that idle machines
typically consume a significant amount (50%) of its peak
power [8]. Poor energy proportionality is caused by all
the major components of the server. Certain components,
such as CPU, are already efficient [9] and components such
as disk are under high scrutiny [1], [14], [38]. However,
software systems must also be aware of hardware capabil-
ities or adapt its usage of hardware to also achieve energy
proportional computing. One example is the Tickless kernel
project which aims to change the way OS kernels operate
at idle [39]. The systems community has since begun to
develop energy based metrics of efficiency that place power
optimization as a first-order goal [5], [36]. The Joulesort
benchmark develops a sort benchmark that focuses on the
energy consumed [35]. Recent work has examined how
direct CPU power control mechanisms can effect energy
savings and workload response time [22].

Rajamani and Lefurgy studied the effect of shutting down
servers to save energy [33] and achieve energy proportion-
ality. However, their study focuses on front end web servers
where back-end database servers were left unmanaged and
always on. Notice that turning off database servers is a
harder problem as one has to account for data availability.
Pinheiro et al. showed that turning cluster nodes on and
off when node load is low can save energy [31]. They
studied real web server workloads as well as a distributed
Linux cluster that ran synthetic workloads of CPU and I/O

benchmarks. Again, since the workloads studied web re-
quest management and application migration, there was no
account of data availability. Additional methods [30], [32]
either rely on learning request skew, specialized hardware,
and data migration and do not explore load imbalances
caused by powering down disks.

One mechanism to deal with data intensive services being
powered down is to use a virtual machine (VM) solution [2]
whereby we run such services on replicated VMs. Indeed
this idea is gaining momentum as it is an ideal candidate for
non-data intensive service migration [7], [15], [34], [41],
[42]. However, using VMs when running data intensive
services for the purpose of migration and equipment power
down is challenging for a number of reasons: (1) the
performance penalty of running data intensive services on
VMs may not be tolerable in an SLA environment; (2)
achieving homogeneous performance from identical VMs
running on differing underlying hardware platforms is still
an open problem [26]; (3) migrating VMs that serve as
data nodes to achieve energy efficiency is costly in per-
formance (migrating gigabytes of data over the network),
energy (network traffic), and space overhead (disks must
be tremendously overprovisioned to allow the on-the-fly
replication of data). Our work is distinct as we focus on
leveraging replication to reduce energy consumption, while
maintaining data availability and reducing load imbalances.

Weddle et al. [43] described a RAID-based system to turn
off disks to save power when utilization is low. However,
their work only focuses on the disk subsystem, and not
entire nodes. Furthermore, their system requires pre-setting
well defined “gears”, one for each operating point for the
system with some disks offline. This scheme can produce
up to k-replicas of some data items for k-different operating
points. If gears are not setup, then the system requires on-
the-fly replication as disks are taken offline, which increases
the costs of taking disks offline. Such hardware/device
driver-based approaches only provide a partial solution and
can be complementary to our methods (such as, using this
RAID-based scheme if a RAID is present at each node).
Harizopoulos et al. [20] echo this connection, and also
outline some broad goals for energy-aware DBMSs.

Recent work by Leverich powers down MapReduce
cluster nodes but does not consider load balancing [23].

None of these previous works have considered the prob-
lem that we address – namely, energy management using
replication to maintain data availability, while maintaining
a well-balanced system.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have presented energy management meth-
ods that can be used in distributed data processing envi-
ronments to reduce energy consumption. We leverage the
properties of replication schemes and design techniques that
can take nodes offline to conserve energy when the system
utilization is low. Our results show that by simply choosing
an appropriate replication scheme and power down strategy,
significant energy savings (35% or more in some cases)
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can be gained over unmanaged systems without extra
hardware or data migration. Further, our methods trade off
load balancing against energy efficient state transitioning,
allowing the user to choose a suitable strategy. To the
best of our knowledge, this is the first paper that makes
a connection between replication, energy management and
load balancing.

This paper seeds a number of directions for future work.
First, our methods used a 2X replication, and does not
exploit utilization below 50% very effectively. While our
methods can be used below the 50% utilization point,
they do not produce any direct additional benefits (they
might get some indirect energy savings benefits from the
hardware as nodes are not running near 100% utilization,
e.g., point W2 in Figure 1 has a lower energy consumption
compared to point W5). One direction for future work is to
build on the ideas proposed in this paper and broaden the
connections between generic levels of replication and en-
ergy management. Other directions for future work include
incorporating workload modeling and prediction techniques
to work with our method, techniques that switch between
Blinking and Dissolving Chains based on hybrid workload
characteristics, and improving the techniques for handling
rapid transitions between different operating states.

Finally, we fully recognize that replication, power down
sequences, and load balancing are only part of a larger
software solution for energy management in data intensive
computing environments. We recognize that extensions to
our work are needed to produce fully deployable complete
solutions (e.g. incorporating workload modeling), and it
is our hope that this work instigates other work in this
emerging area of research.
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