Computer
Sciences
Department

On Energy Management, Load Balancing and Replication

Willis Lang
Jignesh Patel
Jeffrey Naughton

Technical Report #1670

March 2010

On Energy Management, Load Balancing and
Replication

Willis Lang, Jignesh M. Patel, and Jeffrey F. Naughton
Computer Sciences Department, University of Wisconsin — Madison; USA

{wW ang, jignesh,

naught on}@s. w sc. edu

Abstract—Energy consumption is a crucial and rising operational
cost for data-intensive computing. In this paper we investigate some
opportunities and challenges that arise in energy-aware computing
in a cluster of servers running data-intensive workloads. A key insight
is that in most data centers, servers are underutilized, which makes it
attractive to consider powering down some servers and redistributing
their load to others. Of course, powering down servers naively will
render data stored only on powered down servers inaccessible.
While data replication can be exploited to power down servers
without losing access to data, unfortunately, care must be taken
in the design of the replication and server power down schemes
to avoid creating load imbalances on the remaining “live” servers.
Accordingly, in this paper we study the interaction between energy
management, load balancing, and replication strategies for data-
intensive cluster computing. In particular, we show that Chained
Declustering — a replication strategy proposed more than 20 years
ago — can support very flexible energy management schemes.

1 INTRODUCTION

One striking observation is that the servers in most
data centers run at low utilization, that is, the average
utilization of servers is typically in the 20-30% range [8].

If servers consumed, say, 20% of their peak load energy
requirement when running at 20% utilization, this would
not be a problem — the underutilization of servers would
lead to an underconsumption of energy. Unfortunately, the
real situation is the opposite — lightly loaded servers
consume a substantial fraction of the energy they consume
at peak loads. (We present results from our experiments
demonstrating this phenomenon in Section 2.1.) While this
is unfortunate, it does suggest the interesting possiliit

one can run a given workload with less energy by powering
down underutilized servers and redistributing their load
to the remaining powered-on servers. However, this is
problematic if the cluster is being used in a fashion where
a large data set is distributed across the disks attached to
the servers (as is the practice for parallel DBMSs.) In such
systems, powering down servers can render a portion of the

Servers consume tremendous amounts of energy. A receéata unavailable.
report by the EPA [3] estimates that in 2006, the serversFortunately, most clusters servicing data-intensive work

and data centers in the US alone consumed about 6lbRds already employ data replication schemes, to ensure
kilowatt-hours at a cost of $4.5B, which accounts for abodtata availability and reliability in the presence of fadsr
1.5% of the total US electricity consumption. If currenOne of our key observations is thtitis same replication
methods for powering servers and data centers continuectin be exploited to ensure availability in the presence of
be used, then it is predicted that this energy consumptideliberate server power downs intended to save energy.
will nearly double by 2011. Furthermore, energy costs argowever, while data replication can indeed be exploited
quickly rising as a component of the total cost of ownership power down servers without losing access to data, care
(TCO) for servers. In fact, it is estimated that in 2009nust be taken in the design of the replication and server
the three-year cost of electricity per server will exceegl tipower down schemes to avoid creating load imbalances
initial cost of a server [13]. This trend is likely to get wets on the remaining “live” servers, which can have severe
with the energy component of TCO going up over timgerformance consequences.
since the processor performance follows Moore’s Law and To see this point, consider a system that uses the common
doubles (in number of cores) every 18 months, while theplication strategy of mirroring partitioned data. To reak
performance per watt only doubles every two years [1Ghis example more concrete, suppose that there are four
Thus, energy is likely to continue to be a dominant cosiodes using mirrored replication. In addition, supposé tha
factor in cluster computing and data center deploymentsthe data set is split into two partition®, with mirror Ry,
There are many ways one can attack the problem anhd P; with mirror R;. Assume that nodeg, n, ne, and
server energy consumption, ranging from new power distrz store Py, P, Ry, and R, respectively. Furthermore,
bution schemes, to new hardware architectures, to softwaissume that queries can be sent to either the primary copy
mechanisms for energy-aware management of computation.the replica for load balancing. If the overall system
Many of these techniques are complementary and can ugtéization is at or below 50% of the provisioned utilizatio
used with each other. In this paper, we focus only on thken nodes:; andns could be turned off to save energy,
software mechanisms. while nodesny and n; would then operate at 100%

utilization. This is an ideal scenario and may be sufficiemiower management scheme is allowed to introduce, our
for certain systems. However, we wish to explore poweringethod guarantees that it will not introduce any additional
down nodes when utilization is betweéfi — 100% for a load imbalances beyond that percentage. This percentage
finer grained energy management scheme. refers to the tolerable load imbalance that the system is
Now, consider another scenario in which the four nodedlowed to take. As we will see, our methods produce low
each initially see a load of 75%. The system has thmbalances (hone at some points), and this measure can be
capacity to run this workload on only three processorased by the system to determine if a certain power down
Furthermore, by exploiting replication, we can certainlyransition is acceptable. (2) Our methods have the potentia
turn off one processor and still maintain access to all data. produce significant energy savings @% or more)
Unfortunately, if we turn off nodens, then nodesy, over a wide variety of system loads while maintaining data
andns will continue to operate at 75% utilization, but nowavailability and a well-balanced system; and (3) our meth-
both noden; and nodens’s original load will be directed at ods provide a trade off between mitigating load imbalance
noden,, so the presented load there will be 150%, and ttend ease of transitioning between operating states.
system will likely fail to meet its performance requirement The remainder of this paper is organized as follows:
Such large load imbalances may be acceptable in cert&iaction 2 presents the problem statement. Previous replica
environments, but the performance degradations are ysudilbn methods are described in Section 3. Our methods are
unacceptable (see Sections 2.1 and 3.1 for more detailspresented in Section 4, and evaluated in Section 5. Related
Given this example, our goal is to investigate the inwork is discussed in Section 6; and Section 7 contains our
teraction between replication and power down schemesaonclusions and directions for future work.
provide the foundation for energy management approaches

that gracefully adapt to overall system utilization. Thi€ BACKGROUND AND PROBLEM SPECIFI-
should be done in such a way as to maximize ener§yATION

efficiency by powering down some nodes while ensurinBefore we proceed, we define a few terms that we use
that the utilization of the remaining nodes does not excegtoughout this paper. We use the telwad on a node to
a targeted peak utilization. refer to the work that is being carried out on a node. In
The database and distributed systems communities haveystem with a number of concurrent queries, each with
a rich history of designing various replication schemes fere same processing cost, the load can simply mean the
reliability [6], [11], [12], [21], [28], [40]. This raisestte number of queries per node.
guestion of whether or not there is a replication schemeThe term utilization of a server node refers to the
that can be exploited to better meet our goals than thgsource consumption on the node. Typically utilization of
commonly used mirroring strategy adopted in our exampiesystem in cluster environments is measured simply as the
above. As we will demonstrate, the surprising answer is yePU utilization [8], [17], which is a simplistic measure &s i
— one of the earliest proposed parallel database data refjinores other resources such as memory, disk, and network,
cation schemes, the “Chained Declustering” technique, [2Hut often works well in practice. The teroverall system
when coupled with careful choices of which nodes to poweitilization refers to the average utilization across all the
down, can be exploited to achieve the above goal. server nodes in the systeMaximum node utilizationefers
In this paper, we explore node power down sequencgsthe maximum utilization across all the server nodes.
that leverage Chained Declustering to mitigate the loadOften cluster systems are designed to handle a certain
imbalances created by other replication and power dowsfovisionedpeakload. We will often refer to the utilization
sequences. We present two node power down techniquésing a value expressed as a percentage. Within this context
called “Dissolving Chains” and “Blinking Chains”, thata utilization of 100% simply refers to operating at an iritia
view the nodes in the cluster as a “chain” and then speciiesignated “peak load” (which could be lower than the
which nodes are powered down as load drops (the powsistem’s peak load at which it is stable). Lower utilization
up sequence in response to an increasing load followss@ues, e.g., 50%, imply a corresponding reduction in the
reverse strategy, as discussed in Section 4). In Dissolvirgd (and an increase in server idle time).
Chains, as system utilization decreases, it simply powersThe energy management schemes that we describe in this
down more nodes (the chain dissolves). Blinking Chairgaper work by taking some nodeffline, which refers to a
differs in its power down transition because it may firshode being powered down to save energy. Nodes that are
power up some nodes before powering down the desiradailable to run queries ammline. An offline node becomes
number of nodes (the chain blinks) in order to reduce loaailable when it is powered up, in which case it then comes
imbalances. online. (In the more traditional case of replication fotdaé
To the best of our knowledge this is the first papamanagement, offline refers to the node being unavailable
exploring this interaction between power down sequencdge to some component failure.)
and replication strategies while controlling load imbalas Finally, an operational state for the entire system is
In addition, we also evaluate these techniques using defined as:
extensive experimental methodology, which includes using Definition 2.1: The operating state of the entire system,
an actual commercial DBMS, and show that: (1) given as(m), is a state where: of the N total nodes in the system
input parameter, namely, the percentage load imbalance #re offline.

240 points, since at the other points there is less contention fo

§ 200 “78 resources across different queries.
g;gm o Thus we .hav.e two po§§ibly conflicting optimizgtion
28 0 . oW goa}ls: The first is the traFj|t|onaI one — we could .S|mply
=2 . 0“73‘,;4 ws W6 optimize for response time, which means running the
gE % wi w2 system at point W1. However, typically in data center
g 40 environments, the performance constraint to meet is not
“ 0 “as fast as possible;” but rather, something more like “no
35 40 45 50 55 worse thant seconds per query for this workload.” When
Total Energy Consumed by the System during agreeing to such Service Level Agreements (SLAS), data

512.5ms Time Window (Joules) center service providers tend to be conservative and agree

Fig. 1. Energy Consumption and Response Time to performance that they can generally guarantee under
Profile the heaviest provisioned load, rather than performance
they can meet in the best case. Consequently, the second
optimization goal, and the one that we focus on in this
paper, is to reduce the energy consumption while staying
In this section we discuss the interaction between the logéiow a response time target.

on a server and the energy consumed by the server. The

main point here is that this relationship is not linear —2.2 Problem Statement

even at zero load, a server consumes an unfortunately g want an energy management scheme that starts with

fraction of it_s fuI_Iy loaded energy requirement, mirroringy, operating state(m) for a system with maximum node

the observation in [8], but for DBMSs. utilization of u (u < M). Here M refers to some maximum
As an example, consider Figure 1, which shows thg|erable system utilization (perhaps defined by an SLA).

characteristics of a 1% clustered index query workloagie want the system to move to a new operating state)

running on a commercial DBMS. (Each point is actuallyith maximum node utilization:’ such thatu’ < M and

an average over a thousand runs; more details about this<)/ and at least one copy of each data item is available

workload are presented in Section 5.2.) In this graph, thg, the remaining servers that are still powered up.

point W1 corresponds to a server workload in which one Note that])/ is defined relative to the initial designated

instance of the query takes X ms to run followed by thgeak load (see discussion at the beginning of Section 2).

server being idle for 4X ms. One can view this workloa¢onsequently)/ can be greater than00%; e.g., if the
as a series of time windows, each of siz€ ms, whereX maximum tolerable response time i80ms in Figure 1,

is the time to run the query. For workload W1, only ongnen A7 is 120% (at W6).

query is run in each window. Notice that the problem statement also allows setting
Other points in this graph correspond to higher servei to 100%, in which case no node operates over the
utilizations, which we achieved by randomly adding morgesignated peak capacity.
queries in the time window (of length 5X ms), thereby |n addition, in our problem formulation we require “data
reducing the idle component. Specifically, a pointi Wavailability” — i.e., the power down sequence does not
corresponds to injecting queries, with random arrival deliberately make any data item unavailable on the live
times, into eacl5X ms time window. Figure 1 shows for servers that are powered up. We make this assumption since
each workload the average execution time per query am time it takes to bring up a powered down server can
the energy consumed by the server to run the workloadpe very high (e.g., booting up from system-off or from
Now, consider the point W1 in Figure 1. In this casehibernation — see Section 5.5), and any queries against data
the server consumes about 41.5 Joules and provides a quRgt is made unavailable by a power down scheme will incur
response time of 102.5 ms. Most of this energy, specificallljis latency. This high latency/delay may be unacceptable,
74%, is consumed while the server is idle. As we add mogad also makes it harder to maintain the fault-tolerance
queries to the workload, i.e., go beyond W1, the idle timgroperty of replication in the presence of updates (See
decreases and a larger fraction of the energy consumedSaction 4.3). An interesting direction for future work is
the server is spent actually running the queries. At W& consider relaxing this assumption. (As the reader will
since each query takes X ms to run, we are running sée, this paper presents many such twists that we hope
some provisioned “peak” utilization dfo0%. Notice how will fuel further research in this emerging field of energy
performance rapidly degrades beyond W6. Operating management for data processing systems.)
such points (W7 and beyond) merely to save power mayThe schemes that we present differ in the “variance”
be unacceptable as this region likely represents an uestaibl the load across the different nodes. In other words,
operating range. some schemes result in larger variation in the loads across
If efficiency is defined as the energy consumed by ttthe nodes (cf. Section 5.4, Figure 6). While load variance
server per query, of the five workloads W1 to W5, W5 ha@mbalances) are inevitable, and minor load imbalances do
the highest efficiency. Notice, however, the response timet create a problem, artificially creating major load imbal
per query is slightly worse at W5 than at the other fousnces can result in the system failing to meet its targeted

2.1 Server Load vs. Energy Consumed

performance (e.g., W7 and W8 in Figure 1). Accordingly, Note that we are powering down nodes to save energy,

we require that the energy management techniques bound the node has not failed. In other words, our schemes

the load imbalances\() that they introduce. don't change the fault-tolerance property of replication
The parameterM/ can be set based on what the syqupdates require special care as discussed in Section 4.3).

tem administrator feels is a comfortable upper bound for

that system (e.g., W6 in Figure 1). Note such a bourgl; Mirroring Replication

is important as it provides a guarantee that the energy - hasic principle used in mirroring [11], [12] is to make

management method will not introduce unbounded loa ’

a second copy of the data and store it on a different

imbalances. We expect that there might be other sources . Lo . . .
sjgrage device. Mirroring can be implemented in a variety

of imbalances that the system might face, such as flash . : . . i

L or. different ways. One mechanism is to have disk pairs
crowds. In ;uch situations, the system can be pulled out ID 1), with one disk storing the primary copy and the
energy-savings mode. Now the situation is the same as Wo?aer storing the mirrored copy [12]. Access to the disks

happens today when systems are faced with sudden loa
changes. The system can then execute whatever metlﬁlggtld have redundancy (e.g., there could be dual ports) so

it is currently using to deal with load fluctuations. It it a controller fails the disk can be accessed from a
y g " different port (but this adds hardware costs). Mirroring ca

is an interesting direction of future work to see if we
. : . Iso increase parallelism by allowing queries to use either
can improve upon this scheme to more deeply integrate . . .
- . copy. When one disk fails, the mirrored copy takes over the
flash crowd load management and prediction with ener

management techniaues that are proposed here and/o%ry(gk of its pair. However, this technique doubles the load
9 q prop ’ onthe disk that is still up.

pick M automatically based on other system operationa There are a variety of different ways of mirroring data.

settings. . . i
Finally, for certain system states, the nodes can Heowever, in most schemes, when some disk fails, the
’ . ! . oad on the remaining copies goes up dramatically. For
“perfectly balanced” — which means that each online nog g copies g P Y

. . e§<ample, if we use a 2X replication scheme, in which
hgffitel Sggznr;zcéeslt(;?gs' In Section 4.2.3, we discuss th\?v%eehave a primary copy and one additional replica, then
P y ' when a disk with either of these copies fails, all the load
from the failed disk is transferred to the remaining disk.
3 REPLICATION REVISITED Thus, if we say that the cluster system can only operate
s fast as its bottleneck, when a node is taken offline,

In parallel and distributed data processing systems,-re .
P P g sy e system operates at 2X load. In other words, if one

cation allows continued access to data when some no& ides to tak de offline i . d sch
fail. Here we want to exploit replication for a related bu ec esl Od axe on(te. node o 'mﬁt n a nlqllr[rcl):eh ch ?';Ee’
different purpose: namely, allowing continued data acce gm a load perspective, one mignt as wetl taxe hait of the

not when nodes fail, but when they are deliberately power Xstem off'l!ne. 'I;h;s rrg)t(a)?yns rr|1.|rr0r|ngd essergg;lly h?s only
down to save energy, while controlling the resulting loal 0 operating states|007 oniine nodes or50% online

. nodes. If a 2X increase in load is unacceptable (results in a
imbalance. aximum node utilization beyond an acceptable threshold
When we look at the commonly used technique% Ximu dtilizatl y P),

RAID [28], Mirrored Disk [11], [12], and Interleaved en with this scheme, there is no energy savings if the

Declustering [40], we find that they all produce undesire%lyStem load is between 50 and 100%. Our goal is to design

load imbalances as nodes become inoperable or do ﬁ&wmes that will let us power down an appropriate number
0

allow us to turn off multiple nodes. For instance, Interkegv or ';f[)igesuitsggeugég“%r\'/e?g;f:n5?V;nlgo?xwr';h?ilé;ﬂon
Declustering retains load balance when one node fails buﬁ] mg P 9 P
loses data availability if any additional nodes are lost. ' . .

Y y Fortunately, Chained Declustering [21] seems to have the

RAID storage uses an array of disks controlled either b : . . ; .
) L roperties that allow this exploration. Chained Decluster
hardware or software to act as a single unit. Different RAI . ; o
an lose multiple nodes in the cluster and maintain data

levels define different storage properties such as parallel . =% . . :
. availability. For this reason, in the rest of this paper, we
data access, data redundancy, and data recoverability: HOW !

. . consider techniques built upon Chained Declustering.
ever, RAID suffers from load imbalances when operating
in failure mode. For example, in RAID 1, if a disk fails,) .
the redundant copy disk must now handle all the request@ Chained Declustering (CD)
that were shared across the two disks. Recent methods @rained Declustering [21] is a replication scheme that
a Power-Aware RAID [43] attempt to solve this problenstripes the partitions of a data set two times across the
with distinct energy saving operating states. Howevesehenodes of the system, thereby doubling the amount of
methods require pre-determining all the operating statds aequired disk space. The main hallmark of this scheme is
are generally not adaptable to changes in data size. its tolerance to multiple faults along the chain, if those

Our goal is to leverage a replication scheme to safefgults do not occur on adjacent nodes. Furthermore, along
and easily power down any number of nodes for energyith high availability, the arrangement of the replicasrgjo
efficiency, and exploit the load balancing and failovethe chain allows for balanced workload distribution when
properties of replication. some nodes are offline. If one thinks of all the nodes

TABLE 1 TABLE 2

An 8 node Chained Declustered ring without failure. An 8 node Chained Declustered ring with 1 failure.
Nodes: Ng N1 N2 N3 Ng4 N5 Ng N7 Nodes: ng N1 no ns N4 ns ne nr
Primary: Ry Ri R, Rs Ry Rs Rg Rr Primary: —R;(1) Ro(8) R3(2) Ra(2) R5(2) Re(2) Rz (1)
Backup: r1 ro r3 r4 15 16 T7 TO Backup: —7'2(%) 7’3(%) 7“4(%) 7”5(%) 7‘6(%) 7‘7(?) 70(1)
Load: 11 1 1 1 1 1 1 Load: 0 £ g 8 g 8 g g

in the system as being arranged in a ring or chain, theh EXPLOITING REPLICATION FOR ENERGY
Chained Declustering (CD) places a partition and its replig ANAGEMENT

in adjacent nodes in the chain. . .
) We can now design schemes to exploit CD to manage

As an example of CD, consider a data &etspread over the energy consumption of a cluster system when the
8 nodes in Table 1. Here the primary copies of the data gaterall system utilization is less than the peak utilizatio
are Ry ... R;. The corresponding replicas are shownrgs (i.e., 100% utilization, using the terminology described i
... 77. The nodesy ... n; are conceptually organized in aSection 2). Recall that from the discussion in Section 2
ring. Primary copyR; is placed on nodé and its replica; we want to control load imbalances such that we obey the
is placed on the “previous” node. During normal operatiogonstraint of the utilization parametar .
if the access to all the partitions is uniform, then the cgeeri While CD can tolerate a variety of configurations with
simply access the primary partitions while updates in CDodes/servers being offline, as we show below, some of
go to both partitions. these configurations lead to system load imbalances. The

)) _protocol that is used to take nodes offline directly de-
Now consider what happens when a node is taken offliggnines the uniformity and balance of the load on the

by our energy management methods. Table 2 shows Wkﬂé‘haining online nodes.

happens when nodey is offline. Since node:, holds the £ the discussion below, we introduce a few additional
partition Ry, all queries against this partition must now bgarms: aring refers to the logical ordered arrangement of
serviced by node:7, which holds the only other copy of)| the nodes in a CD scheme. When a node in a ring goes
this partition. But simply redirecting the queries aga'”%fﬂine, the ring isbrokenand produces aegmentAddi-

partition O to noden; could double the load on nodeiong) node failures partition segments into other segment
n7. CD solves this problem by redistributing the querieg,qh segment has twend nodes

against partition 7 across both copies of that partition’s Now consider the following proposition:
data, namelyR; andr;. It does this for all the partitions, Proposition 4.1:If the ring or a segment of a Chained

and ends up with a system in which each node is servigycystered set of nodes is broken because a node goes
the same number of queries (i.e., the system is balanqﬂﬁine’ then the two new end nodes of the resulting
after the node failure.) As shown in Table 2, for partitio'%egment(s) aressential.

7,6/7™ of the queries are directed to nodg and 1/7" The proof follows directly from the properties of CD and
of the queries are directed to node. The distribution of pefinition 3.1, and is omitted here.

the queries for the other partitions are shown in bracketsg,gm Proposition 4.1 it follows that to take nodes offline
in Table 2. The load on each node is balanced art}’s 4ny scheme must select additional nodes from the remain-
times the load on the node when all nodes were onllne.ing online nodes that are not end points of the remaining

While Table 2 shows what happens when one node §9ments. _ _
offline, CD can also tolerate additional nodes going offline. NOW We present two protocols for selecting which nodes
In fact, it can allow all failures in which two consecutive!© take offline. The Dissolving Chain scheme walks along
nodes are not both offline. One can easily see why this§ggments of the ring, taking nodes offline at the halfway
the case in Table 1 and 2. If adjacent nodes fail, an enti@int of the given segment. In contrast, the Blinking Chain
partition will be lost since CD places backup partitions ifcheéme spaces offline nodes on the ring evenly to achieve
adjacent nodes, which leads to the definition below, ~ Petter load balancing.

Definition 3.1: A node in the Chained Declustering, 1 Dissolving Chain (DC)

scheme isessential if removing it makes the data stored_l_h Dissolving Chain (DC | iall ith
in the Chained Declustering scheme unavailable. e bissolving &hain (_)_ protocol sequentia y with-
draws nodes using Proposition 4.1 so that data is always

In fact, CD can allow up taV/2 alternating nodes to available. A simple generic algorithm to implement this
go offline, whereN is the number of nodes in the systemscheme is shown in Algorithm 1. The input parameters
These N/2 offline nodes result in the uniform doublingto this Algorithm are: the current state({n)), and the
of load across the remaining nodes in the system (providedmber of offline nodesn{’) in the target state. At the
N mod 2 = 0). We exploit this property of CD to developend of running Algorithm 1, the system will be in the new
various energy management schemes. states(m/).

Algorithm 1 Dissolving Chain TABLE 3

INPUT: s(m), m/(m’ < N/2 for an N node system) Dissolving Chains at 5(2)
Q@ < Seds(m)) /lExtract segments in the current state

Q < SortQ) //Sort in descending order of segmentNOdeS: o ™ N2 M3 M4 M5 M6 T
lengths. Primary: — R1(1) R2(3) R3(3) — Rs(1) Re(3) R:(3)
CUT.T <~ NumOffIineNode(s;(m)) Backup: _7.2(%) 7.3(%) ra(l) — 7'6(%) 7.7(§) r0(1)
while curr # m’ do Load: 0 4 4 4 g 4 4 4
seg = Q.pop : 3 3 3 3 3 3
if | seg |>2AND 1 < [(]|seg|)/2] <] seg | then
Q.push(segi.. [(|seg|)/2]—1) ' .TABLE.4
Q.push(segr(jseql) /2] +1.. |seq|) Dissolving Chains at s(3)
izgg‘“zggqﬁr.tirr;Off /Iturn off this node Nodes: no ny ns ns na ns ng o
end if Primary: — Ri(1) — Rs(1) — Rs(1) R¢(2) Rz(3)
end while Backup: — 7’2(1) — 7‘4(1) — 716(%) 7’7(%) 7’0(1)
Load: 0 2 0 2 0 3 3 3

Algorithm 2 Transition Controller
INPUT: N, s(m), m', U, M
L < maxlen(T, N,m’)
if m < N/2 and U(L + 1)/L < M then CALL
DissolvingChain§(m), m’)

the number of offline nodes is valid and the maximum node
utilization constraint 4/) is not violated, the controller calls
the transitioning algorithm.

A companion algorithm is also required to bring nodes
online when utilization increases. In a simple implementa-
tion, this companion algorithm simply reverses the transi-

From the properties of CD, nodes in a longer segmetions made by Algorithm 1. We omit this algorithm in the
of a CD ring have lower loads compared to a node in iaterest of space.
shorter segment. By choosing to power down the middle
node in a segment, we are both minimizing load imbalande2 Blinking Chain (BC)

as well as the quq increase on the remaining nodes, ag general intuiton behind the Blinking Chain (BC)
result of the transition. methods is to allow more general cuts than the simple

Continuing the example from Table 2, the second noggnary cuts used by DC to: a) to reduce the variation in
that can be taken offline is nodel. The resulting system the |oad across the nodes that are still up, and b) produce
is balanced (uniform node load) as shown in Table 3. states where the load across the nodes is “balanced” (see

Now that we have taken two nodes offline, let uBefinition 4.2).
consider taking another node offline to reduce the energyFor example, for a system wheré = 40 nodes, for a
consumption in response to a lowering of the overall systeDtT system at(9), there will be segments of length 2, 1
utilization. Notice in Table 3 we have two segments afjith 28 nodes at(5/4) load, 2 nodes at(3/2) load, and
length 3. To take the next node offline, we can pick ong node at double load. A better way to cut the = 40
of these two segments and cut it into two equal partgng results in4 segments of lengtd and 5 segments of
However the load on the system now becomes imbalandefigth 3. This results in minimal load variation across the
as illustrated in Table 4. Essentially, DC can only reagemaining online nodes (the benefits of this are shown in
a balanced state when the number of offline nodes'is Section 5.4). We now discuss how to create these segments.
and 2’ divides N, where N is the number of nodes in the
system. 4.2.1 Segments and Transitions

The DC algorithm can solve the problem defined ithe general algorithm for transitions from a balanced state
Section 2.2 if it is implemented within a wrapper controllewith m nodes offline to a target state with’ nodes offline
algorithm. This is because Algorithm 1 is not aware df shown in Algorithm 3. The goal of this algorithm is to
the the maximum\/ utilization requirement. The controller power down nodes such that the remaining online segments
algorithm is given in Algorithm 2. This algorithm takes ahave lengths as uniform as possible. In this algorithm,
input: the size of the systefi, current operating statdm) one node in the ring is always deemed ttoot node.
desired number of offline nodes’, the current system The algorithm iterates through every node in the ring
utilization U, and the utilization requirement/. Function starting from the root and changes the state of the node
maxlen calculates the maximum segment length that woulfl appropriate. Notice that this algorithm can be used to
be produced using’() if this transition occured. For DC, both transition down (i.e4n < m’) or transition up (i.e.,
maxlen first puts valueN — 1 into an empty queue. It thenm > m’). After running this algorithm, the system moves
pops the top value in the queug) @nd pushe$(y —1)/2] to the states(m’).
and|(y — 1)/2] into the queue. This is done’ — 1 times In Algorithm 3, whenm/|N (| is the “divides” operator),
and then the maximum value in the queue is returned. dfl the resulting segments will be of equal length. However

Algorithm 3 Blinking Chain s(m), we know there ar¢ N mod m) segments of length

INPUT: N,m/ (m' < N/2),root [(N —m)/m] and [m — (N mod m)] of length [(N —
curr <= root; s <=0 m)/m|. Also, we know that there are: total segments in
if m’ > 0 then curr.turnOff s(m). Without loss of generality, assume’ > m, which
curr < root.next; tgtlen < [(N —m’)/m’]; ctr <=0 means exactlyy = (m’ —m) nodes have powered down.
while curr # root do We can proven|z by contradiction. Assume that is not
if ctr # tgtlen and curr.isOff then curr.turnOn a multiple of m, then segments in(m) are not all cut
if ctr = tgtlen and curr.isOnthen curr.turnOff the same number of times. This means that the maximum
ctr <= (ctr + 1)%(tgtlen + 1) difference between two segments ') cannot be 1,
curr <= curr.next; s <= s+1 which is a contradiction of the above. Next, we need to
if s =N modm’ then tgtlen < |(N —m/)/m/’] prove that givennm|m’, then the segments if(m) can be
end while cut into the segments is(m’) with m’ — m offline nodes.

Sincem|m/, then each segment is{m) will receive ¢ =
(m’ —m)/m cuts. So the lengths of the segments(m’)
if N is not divisible bym’, (N mod m’) segments will will be ([(N —m)/m] —¢)/(1 +¢) = [(N —m/)/m/]
have lengths[tgtien] and the remainingn’ — (N mod and(|(N—m)/m]—c¢)/(14+¢) = [(N—m')/m’]|. Lastly,
m’) segments of lengthtgtien|. [(N=m/)/m/T+y[(N—m')/m'] = N—m' and certainly
BC can also adhere to the maximum node utilizatiofr = N modm’) and (y = m’ — (N modm’)) hold. O
constraintM defined in Section 2.2 by using a controller Proposition 4.2 tells us that in a given operating state,
algorithm similar to Algorithm 2 except that a) we calls(m), for N CD nodes, we can transition to anothém’)
Algorithm 3 (Blinking Chain) instead of Dissolving Chainwith maximum efficiency if and only ifn’ is a multiple or
in the last line and b)maxlen calculates [tgtlen] as factor of m. While the Optimal Blinking Chain Transition
described above. has interesting properties, it does not handle all possible
Now, consider transitioning from a state with nodes state transitions. Specifically, it does not cover traosgi
offline to m’ nodes offline. A method to implement thisbetween any states(m) and s(m’) whenm and m’ do
transition is to bring all but the root node back onlingot divide each other. For example,if = 42, we cannot
and then turnm’ — 1 of them off, but this results in a executes(6) to s(15), since the optimal transition is not
high transitioning cost as each transition requires makimfined in this case.
m + m’ — 2 node state changes (i.e., changing the stateTo handle transitions between any two arbitrary states,
of a node from offline to online, or vice versa). Theseve need aGeneral Blinking Chain Transition. This
state changes can consume a significant amount of enetigsition is implemented as a composition of two Optimal
(see Section 5.5), and we would aléice to minimize the Blinking Chain Transitions:s(m) to s(GCD(m,m’)) to
energy spent in making these transitiod interesting s(m’), which maximizes the number of offline nodes that
property of BC is that when transitioning from staten) to are untouched during the transition.
s(m’), there may be offline nodes in tkém) configuration Using our previous example, iV = 42 and we wish
that can remain offline in the(m’) configuration. By not to transition froms(6) to s(15), then using the General
changing the status of these nodes, the transitions canBilmking Chain Transition, we can savenode transitions

made more energy efficient, as discussed next. by doing two optimal transitions: one from(6) to s(3)
o - and the second froms(3) to s(15). Finally, we note
4.2.2 Optimizing the Transitions that since the Optimal Blinking Chain Transition can be

First consider finding states that provide the most “effitienimplemented with Algorithm 3, the General Blinking Chain

transitions, which implies making the least number of nodgansition can simply be implemented using two iterations

state changes in the transition. In BC, the most efficienf Algorithm 3.

transition between two state$m) and s(m’) is such that ~ Notice that BC transitions are “optimal”, when orjty, —

only |m — m’| nodes undergo transition. This efficientn’| nodes transition. Recall this @waysthe case for DC

transition is defined formally as: transitions. The implication of this property is discuséed
Definition 4.1: The Optimal Blinking Chain Transi- Section 5.5.

tion s(m) to s(m’) only requires|m — m/| nodes to

undergo transition. 4.2.3 Number of Balanced States

This optimal transition can be implemented by using Alket us now consider the special statésn) wherem|N.

gorithm 3. We now give Proposition 4.2 which highlightdn these states, all the nodes have identical loads and we

a key relationship between divisible stategnt), s(m’) deem this “balanced” as defined in Definition 4.2.

such thatm|m’ or m/|m) and the Optimal Blinking Chain Definition 4.2: If all segments of a Chained Declustered

Transition. ring are of equal lengthn¢|N) in a given operating state
Proposition 4.2: s(m) to s(m’) is an optimal Blinking s(m), then we deem this balanced operating states(m)
Chain transition iff(m|m’ OR m/|m) and all nodes have the same load.

Proof: First, if s(m) to s(m’) is an optimal transition, ~We can calculate the total number of possible balanced
then only|m — m/| nodes have changed state. Given amyperating states for a Chained Declustered systenV of

O Energy Consumption B Response Time O Energy Consumption W Response Time

«=Linear (Energy Consumption)= =Poly. (Response Time) ==Linear (Energy Consumption)= =Log. (Response Time)
60 140 5 60 __
g y= 15.44x22- 1.92x +102.22 . g 45 o S o ",__—é é
17 50 R*=0.94 120 6 17 Pl L 50 ©
& 3 & 4 " g
[
Q 100 © . @ 35 pSalln k)
< 40 53 < . - y=222.10x+4319.44 | 49 T
>~ y=10.22x + 39.82 a c >— 3 - R?=1.00 s
2 v 2 80 o o 2 3 Pl S
2230 R*=0.99 £ TS 25 B 30 &
€29 60 i~ =2 €S , | y=386lin(x) +56.49]
27 20 2 E 2= R?=0.99 0 2
S - 40 §— S 1.5 £
L>). 10 & L>,~ 1 10 ”
2 20 g 2 o5 2
2 g - 8
frr] 0 T 0 w 0 . 0 2
[
20% 40% 60% 80% 100% 50% 60% 70% 80% 90% 100% &=
Utilization Utilization
Fig. 2. Index query regression model Fig. 3. Database scan regression model

nodes as follows: consider the system configured withIn all results presented below, we consider a system
N = pi'p)>..p)° wherep; is the i prime; by simple with 1000 nodes (i.e.N = 1000). Additional results with
combinatorics, the total number of unique factorsNofis different values of/N are similar to those presented here,
II1<;<;(N; + 1), which is also the number of balancedand hence are omitted.

states for this system sinGg0) replaces factorV.

5.1 Experimental Setup

4.3 Updates Our system under test (SUT) consisted of an ASUS P5Q3
Updates while operating in energy saving modes can Beluxe WIFI-AP motherboard with an Intel Core2Duo
handled (without sacrificing the fault-tolerance propesti E8500, 2GB Kingston DDR3 memory, an ASUS GeForce
of replication) as follows: if an update needs to be appli®400GS 256M graphics card, and a Western Digital Caviar
to a partition replicate that is offline, then the “next lefSE16 320G SATA disk. The power supply unit was a
node” can store the updates applied to a partition that h@srsair VX450W PSU. System energy draw was measured
a replicate powered down. using a Yokogawa WT210 unit as suggested by the SPEC
For example, consider the node segment “A—-B—C-D” ipower benchmarks [5]. The WT210 measurements were
a CD ring with C has been powered down. In this case, nodellected by a separate system through the RS232 interface
B can store the updates that have been applied to nodeadd the provided Yokogawa software.
and node A can store the updates that have been applied tdé/e used both a DBMS index query workload and a table
node B. Updates for node A go to node B as usual. Whaoan workload (described below). The DBMS workload
node C comes back online, the update logs stored onwas run on a commercial DBMS. Our database consisted
and B will be applied to the partitions on node C. Notef the Wisconsin Benchmark (WB) tables [16]. Client
that the original fault tolerance property of replicati® iapplications accessing the database were written in Java
maintained for CD even when we are operating in enerdy6 using the JDBC connection drivers for the commercial
efficient modes, as the system always keeps two copiesBMS.
each update. All empirical results were the average of the middle
Section 5.6 presents results on the cost of log replay withree results of five runs. The offline mode used was the
respect to the amount of data updated and node powerhipernation (ACPI S4) state. Alternative offline modes are
Ccosts. discussed in Section 5.5.

5 EVALUATION 5.2 Workload

In this section we present results evaluating the effectivde model two different types of workloads. The first
ness of our energy management methods. At a high levebrkload uses WB Query 3. This query is a 1% selection
our methodology was the following: we took an actuajuery using a clustered index. The target table for this
server and ran two prototypical workloads on the serveyuery is a table witlR0M tuples (approx. 4GB table size).
We then took actual measurements for both energy amtle actual workload consists of 1000 such queries with
response time on this server, as we varied the load mandomly selected ranges. This workload is used to model
the server (i.e., changed the server utilization). We themple lookup queries. Our second workload is a file scan
produced a model for a single node in a system. Tham a WB table (of varying sizes) that has no indices. This
model was then plugged into a larger model for the entivgorkload mimics queries that require scanning tables in a
distributed system. Using this method, we were able @SS environment. These workloads are described in more
explore a range of system configurations. detail below.

% Unmanaged Index Query
40% - OIndex Query w/Dissolving Chain
| @ Index Query w/Blinking Chain

5.3 Modeling Energy and Response Time

In this section we present the measured energy consumption
and response time results for each workload. We then use

Energy saved over
100% utilized system

10% M oD these results to develop a model for the behavior of a node
0% e r . - .
in the system. All models were picked by trying a number
100% 90% 80% 70% 60% 50%
System Utilization of different linear and polynomial regression models, and
(a) Index Queries, N=1000 picking the one with the lowest coefficient of determination

R2. All presented models ha&? > 0.94.

x Unmanaged DB Scan
40% : ODB Scan w/Dissolving Chain
® DB Scan w/Blinking Chain

5.3.1 Indexed Query Workload

The response time and energy measurement results for the

0280 index workload are presented in Figure 1 (in Section 2.1).
0% “"M" RXHVCOXXXKXXKXAHGOEOCOCX Figure 2 plots this data with utilization on the x-axis, gyst
energy consumption (for a 5X window) on the primary y-
axis, and the query response time in milliseconds on the
secondary y-axis.

Energy saved over
100% utilized system

100% 90% 80% 70% 60% 50%
System Utilization

(b) Scan Queries, N=1000

Fig. 4. Energy savings under varying system utiliza- Figure 2 also show the derived regression models for

tion. the average energy consumed by our SUT and the average
query response time as a function of utilization. The energy

5.2.1 Index Queries Workload consumption model is linear while the response time model

To simulate varying node underutilization with the indexel$ quadratic.
range query, we defined various workloads for the indexed
query by varying idle times (this is the same setup ax3-2 Database Scan Workload
described in Section 2.1). First, we ran this query arftPr the scan workload, increased utilization correspoads t
measured the query runtime. Lets call this X seconds. Thépcreasing the length of time that an instance runs (to mimic
we defined a 20% utilization workload as one in whichhat would happen if we turned nodes offline for such
the query runs for X seconds followed by an idle time oporkloads). The results for this workload are presented
4X seconds. In this setup, the server is presented witHhaFigure 3. Again, the energy model is linear, but for
series of these 5X time windows. An actual run consisg$an the response time model is logarithmic. The average
of 1000 such windows, with random arrival time for thé€sponse time curve is sublinear as the pre-fetching used
query in each window. We average the results over eaby the DBMS decreases the per-record response time as we
run. Workloads with higher utilization are generated bijicrease the amount of data that is read. While the energy
injecting additional queries in this 5X window. For exampl&éonsumption curves in Figures 2 and 3 are both linear, as
a workload with 40% utilization has two queries in eachHtilization increases, energy consumption grows fastém wi
5X window, and a workload with 100% utilization has ghe CPU-bound index workload.
queries in each 5X window.

To determine the value of X above, we ran 10000 rando4 Effect of Decreasing Utilization

1% selection queries and measured the average respqQsgg the models described in the previous section, we
time at 102.5 ms, with a standard deviation of 0.46 ms. 5, apply the workload models to & = 1000 system

configuration under varied system utilization.
5.2.2 Database Scan Workload We then analyze the workload energy consumption of the
We modeled utilization of the system running scan worleverall system as the overall system utilization decreases
loads slightly differently to mimic a scenario in which afrom 100%. In addition to comparing differences between
single scan runs across all the nodes in the system. In thig methods, we also compare against thlemanaged
case, when nodes are taken offline, the remaining onliegstem, where all nodes are always online regardless of
nodes have to scan larger portions of the data. In this modile overall system utilization.
let the time it takes a node to scaB@\V/ tuple WB table be These results are shown in Figures 4 (a) and (b). In
56.49 seconds. This node is operatingl@)% utilization, these figures, we vary the system utilization from 100%
scanning as much as possible. F6F% utilization, we ask to 50% as shown on the x-axis (going from 100% on
the node to scan a5M tuple table every56.49s. Thus, the left to 50% on the right). So going left to right,
over time, it is doing75% of the work that it would do corresponds to decreasing the overall system utilization
in the 100% case. Similarly, for50% utilization, we ask from the fully loaded (100%) system. For each point in
it to scan alOM tuple WB table every56.49s. Energy these figures, we apply our empirically derived models from
consumption is measured for the ent6.49s window. Section 5.3 to calculate the energy consumption. Using this
With increased utilization, the increase in response tinoalculated energy consumption, we plotted, on the y-axis,
increases (nearly) linearly. All scans are “cold” and thertie energy saved by the entire system compared to the
is no caching between successive scans. energy consumption at the 100% point.

10

=
s U
o o

130
125
120

\ \ 115

*\\.\‘~ ~ \ 10

|

w
o

=
o

Maximum
Response Time
(seconds)

Node Utilization (%)

B o
o o
o a

e e L
N
o

(=
o

n Q
o © o
- & N

0 100 200 300 400 500 Offline Nodes
Offline Nodes

(a) Dissolving Chains (a) Dissolving Chains Response Time

150
155
160
165
170
175 1
180
185
190
210
215
220
225
230
235
240
245
250

[y
[0
o

—_ 130
4 125

1
13
£ N 12
1
1

o

o

PN
=
«
L
(]
(]

110
105

o
Response Time
(seconds)

10 100
— T T
00—"“"'""7\\\\\\ O 1 © n © 1n o O 1 © 1 O 1N © N © W © 1 O
i ® VR KN ® & & 6 O d o4 N N MM T T 0
e R I - = N N N N N N N N N NN
0 100

200 300 400 500 Offline Nodes
Offline Nodes

(b) Blinking Chains (b) Blinking Chains Response Time

% s . o . .
o Wvé Fig. 6. Comparing imbalanced operating points us-
60% ™ ing the Index Query workload. The vertical lines in
40% represent the range between the minimum and the
20% maximum response times and the horizontal bar is the

0% ‘ ‘ ‘ median response time.
0 200 400 600 800 1000

System Size (N)

Maximum
Node Utilization (%

185

Powered Down

Maximum Percent of
N/2 Nodes That Can Be

(c) Dissolving Chain maximum number off offline nodes ,
(compared tan = 0) that any system node will see. Note

the maximum node utilization is a crude way to determine
the imbalance of the system. (This type of analysis can be
used to avoid load spikes seen in Figure 1.) Comparing
these two figures, we see that BC is more graceful in
its worst-case node utilization in imbalanced states (&her

We notice that an unmanaged cluster saves at m&dgximum node utilization is greater than0%) compared
10% in energy consumption (for the Index query workloadP PC- N)
Figure 4 (a)) at50% utilization. For the Scan workload N addition, from Sections 4.1 and 4.2.3 we know that
(Figure 4 (b)), the unmanaged cluster only saves 3% Bf hasl6 balanced states (see Section 4.2.3)¥or 1000
energy at0% utilization! However, using DC and BC, we While DC only hast. (These correspond to a 100% maxi-

utilization respectively. Notice, because of DC’s inapili €ven when both methods are imbalanced, BC has a better

to power down500 nodes forN = 1000, its savings is Worst-case behavior than DC, as is evidenced by the lower
slightly lower than BC. height (node utilization) of the operating points in Figaife

Another striking observation from Figure 4 is that théd) and (b). For example, with respect to our problem
curves for both BC and DC have big swings/spikes. The§tatement in Section 2.2, i/ = 120%, then BC has
spikes can be seen for both methods clearly in Figure64 states where the maximum node utilization violates this
(b). This behavior is because both methods introduce log@nstraint while DC hag09 states. This is simply a count
imbalances at certain operating states. Notice that tAk all possible operating states with a maximum nodes
swings for BC are more gradual compared to DC — this Wilization greater tharil/.
because BC maintains optimal load balance on the onlineLastly, we notice from in Figure 5 (a) that DC cannot
nodes at any given operating state, which makes its energpch 5(500) for N = 1000. This is because as it sys-
swings are more subtle compared to DC. tematically traverses the ring, cutting segments in half, i

Let us explore these swings in greater detail. Consid@ray create irreducible segments of lengtfThus, it cannot
Figures 5 (a) and (b), where we power dommodes when reach the optimal number of offline nodes. This effect can
the system utilization i$1000 —m),/1000 for a 1000 node be seen in Figure 4, where nead% utilization, DC is
system. As the system utilization drops, consider takir@jightly lower in energy savings than BC.
nodes offline one by one (incrementimg by 1), up to a An analysis of this phenomenon over varying system
maximum of500 nodes, using both DC and BC methodssizes (V) is shown in Figure 5 (c). Here we show how
Note that not all states will be balanced. close DC can come to powering dowN/2 nodes for

Figures 5 (a) and (b) show thmaximum node utilization 1 < N < 1000. What we notice is that there are dramatic
for both methods, i.e., the maximum relative increasavings, but more importantly, we notice that DC can

Fig. 5. (a-b) Maximum node utilization as we iteratively
take nodes offline. (c) Ability of Dissolving Chains to
power down half of the nodes.

11

TABLE 5 TABLE 6

Costs for different types of offline states. Example transitioning sequence, energy costs, and 7
“Down” means going from the idle online statgé5(21/) to an utii| BC|DC T util| BC|DC T
offline state, and “Up” is the reverse. The ASUS offline state is (%) | (kJ)|(kJ)|(secs (%) | (k)| (kJ)| (secs)
a proprietary idle state provided by the motherboard software. 100 to 90 111] 111 0] 50 to 601,745 353] DNE

Down Down Up Up State 90 to 80| 111|111 0| 60 to 70/1,281| 353| 168.9

time (s) cost (J) time (s) cost (J) cost (W) 80to 70, 575|111| 84.4|| 70to 80| 817|353|141.6

ASUS 0.8 83.5 0.7 68.4 72.3 7010 60/1,039] 111| DNE|| 80 to 90| 353|353 0

Standby 12.1 1033.2 14.3 12998 11.6 60 to 50| 1,503|111|321.9||90 to 100 353| 353 0
Hibernate 12.2 1107.6 37.3 3531.6 0

Shutdown/Off 8.7 700.2 177.6 9655.9

From Section 5.4, we know that BC is optimal in balanc-
ing the load across the nodes, but the cost of this optimality
transition tos(N/2) only when N = 2. Ultimately, the is a complex transitioning mechanism (cf. Se_ct_ion 4.212). 1
reason this occurs is because DC heuristically takes no&@@trast, DC always powers up/down the minimal number
down and will never self-correct by bringing them bac®f nodes required to reach the target operating state. (As
online as utilization monotonically decreases. The upsi@scussed in Section 5.4, not all BC operating states are
to this heuristic is a low (constant) transitioning energ9vaulable to DC_. To facilitate direct comparison, here we
cost that is discussed in Section 5.5. compare operating states that are accessible to both DC and

For a detailed look at further effects of BC optimaP©): From the perspectives of energy consumed during the

load balancing to DC heuristic balancing, we zoom in oﬂCtual transmons,. DC is clearly more efﬁment. NOW. we
a smaller set of operating states. We use the models W the question:How much worse is the transition
Figures 2 and 3 and compare how energy consumptiSRSt of BC? .

and response time are affected by these imbalanced st tekEt Os(N,y, 2,t) be the energy COSt_ of running a work-
Figure 6 examines the imbalanced operating points for t d on anN node system withy offline nodes at:%
range of150 to 250 offline nodes, in5 node increments, utlllzguon fprt SeCOﬂdS using sqhense(e.g.,QD andOp
while executing the Index query workload (Figure 2). (Thfeor Dissolving and Blinking Chains respectively).

results for the scan query workloads are similar and omitted

here.) Figures 6 (a) and (b) compare the variance in N0dR O(N, a,b, z,t) = Op(N, a, 2, t) — Op(N,b,z,t) (1)
response time between the operating states for DC and v t On(N 0 < On(N . 5
BC, respectively. The response time variance is clearly far V%t Op(N,y,2,1) < Op(N.y,21) - (2)

smaller with BC. Given Equation 1 and Equation 2 (the load balancing of
To summarize, BC transitioning results in more balancediC is lower bounded by BC)AO(N,y,y,z,t) > 0.

node loads than DC. With its lower maximum node utilizaGiven this, ifa < b, the functionAO(N,a, b, z,t) grows

tions, BC offers greater opportunities to power down nod@sonotonically ag increases.

and stay within the threshold/ in our problem statement

(see Section 2.2). AO(N,y,y,2,7) > (3)

Equation 3 introduces the notion of which is the length

of time that the two systems, one using DC and the other
using BC, must operate for for the BC system to overcome
So far we have not included any energy or latency costs extra (with respect to DC) transitioning cost penatfy (
associated with making transitions from one state to theth its efficient load balancing (energy efficiency).

next. There are a number of possible offline “power states” For example, givenN = 1000 and the Index Query
for a node. For our test system (SUT), Table 5 shows theorkload, if we want to transitiors(200) to s(300), BC
different offline and online transitions, along with the ém pays~y = 464kJ in extra transitioning cost over DC. If

it takes to make the transition and the energy consumes have two systems where both DC and BC making this
in making the transition. To put the energy costs intransition, then the BC system must stays&t00) for at
perspective, our SUT has an idle power consumption tEastT = 36.4sec to overcome this penalty, otherwise DC
75.2W. While the “ASUS” state has the fastest transitionings a more cost (energy) effective solution.

time, it consumes95% of the idle cost, making it of In Table 6, we provide two example transitioning se-
limited use. The standby mode is more efficient, consumimmences for twol000 node systems: one using the DC
11.6W while keeping keeping memory and system staseheme and the other using the BC scheme. We show a tran-
online. The hibernate state has no sustained cost in #iBoning sequence (in columns 1-4) where the utilization
offline mode, and provides faster transitions than turniireg t starts atl00% and falls by10% increments untib0%. We
machine off. Here we use hibernation as our power dovalso show a transitioning sequence (in columns 5-8) where
mechanism (note that machines can be powered up/doutiiization increases fron30 — 100% in 10% increments.
using IPMI which is fairly ubiquitous on modern servers)in both these scenarios, we assume that there is no time

5.5 Effect of Transitioning Costs

12

Updating 250 Nodes: —A-60 updates/min -8-600 updates/min -©-6000 updates/min

10 Properties
fs Load Transitioning
33 Methods Balancing Overhead
23 >
3 g el e——— " — — & Blinking Chains Good High
g & Dissolving Chains Fair Low
o 3 . .
&% 0.8 T i Mirroring Poor Low
2 0 10 20 30 40 50 60 70

Update Accumulation Duration (min)

Fig. 8. Comparison of energy management methods
(a) Powering up 250 nodes.

Updating 500 Nodes: -A-60 updates/min 5600 updates/min -©-6000 updates/min So the powered down nodes have been down for this time
e and updates are accumulating, while a second log of the
updates is stored on the next left node for fault tolerance
(see Section 4.3). Further, let us assume that updates are
uniformly distributed across the file and thus the nodes in
the cluster. This means that the total number of updates that
10 2 Update Accumulation Duration (min) % " must be replayed is amortized over the number of nodes
that are brought up. (We have run different variants of this
setup by varying the # nodes, start and end states, update
rates, and down time, and the results are similar to the ones
presented here.)

Using our 20 million tuple Wisconsin Benchmark table
with a non-clustered index, our SUT can update individ-
ual tuples at 933 updates per second at a cost of 0.08
L - ... Joules/update. In Figures 7(a) and (b), we show the energy
e e o e oot g o pavrng up 250 nodes and 500 nodes i e

' ’ varying update rates and accumulation lengths. The cost

a change in utilization, the decision to transition and thfﬁ enerav is primarilv dominated bv the enerav spent
execution of the transition occur instantly. 9y b y y 9y b

. in bringing nodes out of hibernation. We notice that in
The rows show the transitioning energy cost and tkbe

L : _both cases, updates cause at most a 2% increase in the
time it takes ¢) for a more balanced BC derived operatlngramsitioning energy

state to overcome its heavy transitioning cost. We nOticeFinaIIy the time .spent bringing nodes online is also

f‘ nu_rtr_1ber OL key f(z)mts. hF'rSt't ther_? are 6; nqu%z/%rgely dominated by the time spent powering up from
ransi)lor?s wherer = 0 such as transitioning from 96% ;0 nation. In the case of Figure 7(a) where 6000 queries
to 90% (i.e.s(1000) to 5(900)). In this case, both Blinking per minute accumulates for 60 minutes, the entire update

. : X . ,
?nd 3ISSO|VII‘13 Chz:ns pgrfotrm O.Et'mwn t_ m| ?ﬁde rocess takes 38.79 seconds, of which only 1.5 seconds
ransitions and so the node transition costs aré € Samey,o actyal time to run the update transaction while the

Second, if both Blinking and Dissolving Chains result irf’emaining 37.29 seconds is used to bring the node out of
states with idential load imbalance, then Blinking Chainﬁi ernation (Table 5)

can never overcome its disadvantage in transition cost ang '
7 does not exist (DNE). This is seen in transitidit¥s to
60% utilization and60% to 70%.

oy
o

Energy Consumed to
Update Cluster (MJoules)
P
3
B

=}

(b) Powering up 500 nodes.

Fig. 7. Energy cost of powering up nodes and updating
the data partitions, given different rates of incoming up-
dates and duration for which the nodes were powered
down.

5.7 Summary

Now we summarize some of the practical implications

of our work. In a setting where load balance is not as
5.6 Update Costs important, as we discussed in Section 3.1, simple mirroring
The idea of transitioning costs is extended when we cooan be used. The power down scheme is simple (turn
sider the costs of updates. Recall from Section 4.3 theff one of the two replicate nodes, causing a 2X load
when both replicas are online the updates are appliedit@rease on the remaining node) and it affords the%
both replicas, but if one of the replica is offline, then thand 50% online balanced states. However, in cases where
update is applied to the online copy and a log of the updatee huge 2X load imbalances must be avoided (in most
is stored in the “left” node. This log is then applied whemases involving SLAs), we suggest the Dissolving Chain
the node with the (stale) replica is powered up (in a sing(®C) and the Blinking Chain (BC) methods.
update transaction). In this section, we provide an arglysi The differences between DC and BC are summarized
of the energy cost of powering up a cluster and applying tte Figure 8. If avoiding load imbalances and the variation
update logs that have accumulated over varying amountsimfloads across the nodes is important, then BC offers
time. excellent load balancing in energy saving states. How-

Consider a 1000 node cluster powered down to 75% aader, BC requires significant state transitioning overhead

50%. Let us assume 3 different update rates of 1, 10, 10t would be amplified when system utilization is highly
updates per second and different periods of time 10, 3@riable. Thus, if one knows the system utilization will be
and 60 minutes during which the updates are accumulatirgghly variable, DC offers low transitioning cost but insur

13

slight but predictable load imbalances and offers fewaestdbenchmarks. Again, since the workloads studied web re-
transitions. guest management and application migration, there was no

Finally, notice that since both schemes leverage Chainadcount of data availability. Additional methods [30], 32
Declustering, the usage of one over the other is not excleither rely on learning request skew, specialized hardware
sive; if utilization fluctuates, we can switch to DC, and ifand data migration and do not explore load imbalances
there is little fluctuation, we can switch to BC. We willcaused by powering down disks.
examine such hybrid approaches as part of future work. One mechanism to deal with data intensive services being
powered down is to use a virtual machine (VM) solution [2]
whereby we run such services on replicated VMs. Indeed
6 RELATED WORK this idea is gaining momentum as it is an ideal candidate for
The problem of increasing energy consumption in larg@on-data intensive service migration [7], [15], [34], [41]
scale data processing environment has received consigép]. However, using VMs when running data intensive
able attention since the beginning of this decade, esppeciaervices for the purpose of migration and equipment power
in the context of data center construction and operatioe. THown is challenging for a number of reasons: (1) the
increasing attention in part is driven by the minimizatioperformance penalty of running data intensive services on
of the TCO for data centers [27]. Examples of efficiencyMs may not be tolerable in an SLA environment; (2)
methods include reducing the number of power conversiorghieving homogeneous performance from identical VMs
bringing in higher voltage closer to the rack, using more efunning on differing underlying hardware platforms islstil
ficient power supply parts, raising data center tempersaturan open problem [26]; (3) migrating VMs that serve as
shorter control of airflow (e.g., avoiding pumping cool aitlata nodes to achieve energy efficiency is costly in per-
from a cooling source that is far way from the target), usingrmance (migrating gigabytes of data over the network),
a cooling tower rather than A/C, using lower performancenergy (network traffic), and space overhead (disks must
equipment, etc. [4], [18], [19], [24], [25], [29], [37]. All be tremendously overprovisioned to allow the on-the-fly
these efforts have resulted in dramatic improvements igplication of data). Our work is distinct as we focus on
the energy efficiency of data centers, and can largely k#eraging replication to reduce energy consumption, avhil
used orthogonally to software methods that reduce enengyintaining data availability and reducing load imbalance
consumption. Weddle et al. [43] described a RAID-based system to turn

On the software systems side, a desired property is ajff disks to save power when utilization is low. However,
ergy proportionality. That is, an X% utilized server shoultheir work only focuses on the disk subsystem, and not
consume X% of the power that it would consume when éntire nodes. Furthermore, their system requires priagett
is at 100% utilization (peak power). One of the hurdles imwell defined “gears”, one for each operating point for the
achieving this behavior is the problem that idle machineystem with some disks offline. This scheme can produce
typically consume a significant amount (50%) of its pealfp to k-replicas of some data items for k-different opeiatin
power [8]. Poor energy proportionality is caused by afoints. If gears are not setup, then the system requires on-
the major components of the server. Certain componentise-fly replication as disks are taken offline, which incesas
such as CPU, are already efficient [9] and components suble costs of taking disks offline. Such hardware/device
as disk are under high scrutiny [1], [14], [38]. Howeverdriver-based approaches only provide a partial solutiah an
software systems must also be aware of hardware capabén be complementary to our methods (such as, using this
ities or adapt its usage of hardware to also achieve eneRpID-based scheme if a RAID is present at each node).
proportional computing. One example is the Tickless kernglarizopoulos et al. [20] echo this connection, and also
project which aims to change the way OS kernels operagatline some broad goals for energy-aware DBMSs.
at idle [39]. The systems community has since begun toRecent work by Leverich powers down MapReduce
develop energy based metrics of efficiency that place powsster nodes but does not consider load balancing [23].
optimization as a first-order goal [5], [36]. The Joulesort None of these previous works have considered the prob-
benchmark develops a sort benchmark that focuses on tég that we address — namely, energy management using
energy consumed [35]. Recent work has examined h@eplication to maintain data availability, while maintiaig
direct CPU power control mechanisms can effect energywell-balanced system.
savings and workload response time [22].

Rajamani and Lefurgy studied the effect of shutting dow.
servers to save energy [33] and achieve energy proportion- CONCLUSIONS AND FUTURE WORK
ality. However, their study focuses on front end web servehs this paper we have presented energy management meth-
where back-end database servers were left unmanaged adsl that can be used in distributed data processing envi-
always on. Notice that turning off database servers isranments to reduce energy consumption. We leverage the
harder problem as one has to account for data availabiliproperties of replication schemes and design techniqags th
Pinheiro et al. showed that turning cluster nodes on awdn take nodes offline to conserve energy when the system
off when node load is low can save energy [31]. Thewtilization is low. Our results show that by simply choosing
studied real web server workloads as well as a distributed appropriate replication scheme and power down strategy,
Linux cluster that ran synthetic workloads of CPU and I/@ignificant energy savings3§% or more in some cases)

can be gained over unmanaged systems without extra]
hardware or data migration. Further, our methods trade off
load balancing against energy efficient state transitmnine)
allowing the user to choose a suitable strategy. To the
best of our knowledge, this is the first paper that mak S,
a connection between replication, energy management n&
load balancing. [18]

This paper seeds a number of directions for future Worh.g]
First, our methods used a 2X replication, and does not
exploit utilization below 50% very effectively. While our
methods can be used below the 50% utilization poirf£”]
they do not produce any direct additional benefits (they
might get some indirect energy savings benefits from tff4]
hardware as nodes are not running near 100% utilization,
e.g., point W2 in Figure 1 has a lower energy consumptigsp)
compared to point W5). One direction for future work is to
build on the ideas proposed in this paper and broaden {ra
connections between generic levels of replication and gpg
ergy management. Other directions for future work include
incorporating workload modeling and prediction techn'ﬂqu%zs]
to work with our method, techniques that switch between
Blinking and Dissolving Chains based on hybrid workload
characteristics, and improving the techniques for hagdliﬂ\ze’]
rapid transitions between different operating states.

Finally, we fully recognize that replication, power dowri27]
sequences, and load balancing are only part of a larger
software solution for energy management in data intensiyg
computing environments. We recognize that extensions to
our work are needed to produce fully deployable comple[%g]
solutions (e.g. incorporating workload modeling), and igg)
is our hope that this work instigates other work in this

emerging area of research. (31]
REFERENCES 132]
[1] SNIA Green Storage Initiativehttp://www.snia.org/ forums/green
[2] VMware Infrastructure Architecture Overview White Papenttp: [33]
[Iwww.vmware.com/ pdf/vérchitecture wp.pdf.
[3] Report To Congress on Server and Data Center Energy éiffigi
In U.S. EPA Technical Repr2007. [34]
[4] Seven Strategies to Improve Datacenter Cooling Effigient/hite
Paper #11, Version. 1.0, Green Grid, 2008. 35]

(5]
(6]

Power and Temperature Measurement Setup Guide SPECpower
V1.1. SPEC Power2010. [36
R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E.I&@yH. M.
Hellerstein, D. A. Patterson, and K. Yelick. Cluster 1/O hvRiver:
Making the Fast Case Common. IBPADS 1999. [37]
P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A., Ho

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In SOSP 2003.

L. A. Barroso and U. Hizle. The Case for Energy-Proportional [38]
Computing. IEEE Computer40(12), 2007.

L. A. Barroso and U. Holzle. The Datacenter as a Computer: A[39]
Introduction to the Design of Warehouse-Scale Machii@sthesis
Lectures on Computer Architectur2009.

C. Belady. In the Data Center, Power and Cooling CostseMban
the IT Equipment it SupportsElectronics Cooling 23(1), 2007.

D. Bitton and J. Gray. Disk Shadowing. WMLDB, 1988.

A. Borr. Transaction Monitoring in Encompass. Ww.DB, 1981.

K. G. Brill. Data Center Energy Efficiency and Produdiiv In The
Uptime Institute - White Pape007. [42]
E. V. Carrera, E. Pinheiro, and R. Bianchini. Conseguilisk Energy
in Network Servers. IrSupercomputing2003.

(7]

(8]
[9]

[10]
[41]
[11]
[12]
(23]

[14]

14

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Lchpa
I. Pratt, and A. Warfield. Live Migration of Virtual Machinedn
NSDI, 2005.

D. J. DeWitt. The Wisconsin Benchmark: Past, Preserd, Feuture.
In J. Gray, editor,The Benchmark Handbook for Database and
Transaction Systems (2nd Editiojlorgan Kaufmann, 1993.

X. Fan, W.-D. Weber, and L. A. Barroso. Power Provisianior a
Warehouse-sized Computer. I8CA 2007.

J. Hamilton. Where Does Power Go In DCs and How To Get It
Back? Foo Camp 2008.

J. Hamilton. Cooperative Expendable Micro-slice Ses\€EMS):
Low Cost, Low Power Servers for Internet-Scale ServiceCIDR,
2009.

S. Harizopoulos, M. A. Shah, J. Meza, and P. RanganatBaargy
Efficiency: The New Holy Grail of Database Management Systems
Research. IrCIDR, 2009.

H.-l. Hsiao and D. J. DeWitt. Chained Declustering: A viNe
Availability Strategy for Multiprocessor Database Maasn In
ICDE, 1990.

W. Lang and J. M. Patel. Towards Eco-friendly Databasanbgye-
ment Systems. II€IDR, 2009.

J. Leverich and C. Kozyrakis. On the Energy (In)effiagnof
Hadoop Clusters. ItHotPower 2009.

K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, ariRie$-
hardt. Understanding and Designing New Server Architestdor
Emerging Warehouse-Computing EnvironmentsIS€A 2008.

D. Nelson, M. Ryan, S. DeVito, K. V. Ramesh, P. VlasatyRBicker,
and B. Nelson. The Role of Modularity in Datacenter Desilttp:
/lwww.sun.com/storagetek/docs/ EED .pdf

A. Noll, A. Gal, and M. Franz. CellVM: A Homogeneous Viglu
Machine Runtime System for a Heterogeneous Single-ChipiMult
processor. InNorkshop on Cell Systems and Applicatiop808.

C. D. Patel and A. J. Shah. Cost Model for Planning, Depelent
and Operation of a DatacenteHP Technical Report, HPL-2005-
107R1 2005.

D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Reidunt
Arrays of Inexpensive Disks (RAID). I8IGMOD, 1988.

PG&E. High Performance Datacentershttp://hightech.lbl.gov/
documents/ DATACENTERS/06DataCenters-PGE.pdf

E. Pinheiro and R. Bianchini. Energy Conservation Teghes for
Disk Array-Based Servers. IICS, 2004.

E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath.oat
Balancing and Unbalancing for Power and Performance in éust
Based Systems. IWorkshop on Compilers and Operating Systems
for Low Power 2001.

E. Pinheiro, R. Bianchini, and C. Dubnicki. ExploitifrRedundancy
to Conserve Energy in Storage SystemsSIGMETRICS2006.

K. Rajamani and C. Lefurgy. On Evaluating Request-ibstion
Schemes for Saving Energy in Server ClustersPiioc. of the IEEE
Intl. Symp. on Performance Analysis of Systems and Soft2@és3.
P. Ranganathan, P. Leech, D. Irwin, and J. Chase. Ensemm|
Power Management for Dense Blade ServerslS@A 2006.

S. Rivoire, M. A. Shah, P. Ranganathan, and C. KozyralasleSort:
a balanced energy-efficiency benchmark.SiGMOD, 2007.

] S. Rivoire, M. A. Shah, P. Ranganathan, C. Kozyrakisl &nMeza.

Models and Metrics to Enable Energy-Efficiency Optimizasion
Computer 2007.

S Greenberg and E Mills and B Tschudi. Best Prac-
tices for Datacenters: Lessons Learned from Benchmarking
22 Datacenters. http://eetd.Ibl.gov/ EA/mills/emills/PUBS/PDF/
ACEEE-datacenters.pdR006.

S. Sankar, S. Gurumurthi, and M. R. Stan. Intra-disk Raism:

An Idea Whose Time Has Come. IBCA 2008.

S. Siddha, V. Pallipadi, and A. V. D. Ven. Getting Maximiileage

Out of Tickless. InLinux Symposiun2007.

40] Teradata. DBC/1012 Database Computer System Manu&aBel

2.0. Technical Document C10-0001-02985.

N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathard an
X. Zhu. Delivering Energy Proportionality with Non Energy-
Proportional Systems - Optimizing the Ensemble. HotPower
2008.

C. A. Waldspurger. Memory Resource Management in VMweEX E
Server. InOSD|, 2002.

43] C. Weddle, M. Oldham, J. Qian, A. Wang, P. Reiher, and Geriku

ning. PARAID: A gear-shifting power-aware RAIOrans. Storage
2007.

