
Understanding Sources of Inefficiency
in General-Purpose Chips

Rehan Hameed1, Wajahat Qadeer1, Megan Wachs1, Omid Azizi1, Alex Solomatnikov2

Benjamin C. Lee
,

1, Stephen Richardson1, Christos Kozyrakis1 and Mark Horowitz

1

1

Stanford University, Stanford, CA
Dept. of Electrical Engineering

{rhameed, wqadeer, wachs, oazizi,
bcclee, steveri, kozyraki, horowitz}@stanford.edu

2

Menlo Park, CA
Hicamp Systems,

solomatnikov@gmail.com

ABSTRACT
Due to their high volume, general-purpose processors, and now
chip multiprocessors (CMPs), are much more cost effective than
ASICs, but lag significantly in terms of performance and energy
efficiency. This paper explores the sources of these performance
and energy overheads in general-purpose processing systems by
quantifying the overheads of a 720p HD H.264 encoder running
on a general-purpose CMP system. It then explores methods to
eliminate these overheads by transforming the CPU into a
specialized system for H.264 encoding. We evaluate the gains
from customizations useful to broad classes of algorithms, such as
SIMD units, as well as those specific to particular computation,
such as customized storage and functional units.

The ASIC is 500x more energy efficient than our original four-
processor CMP. Broadly, applicable optimizations improve
performance by 10x and energy by 7x. However, the very low
energy costs of actual core ops (100s fJ in 90nm) mean that over
90% of the energy used in these solutions is still “overhead”.
Achieving ASIC-like performance and efficiency requires
algorithm-specific optimizations. For each sub-algorithm of
H.264, we create a large, specialized functional unit that is
capable of executing 100s of operations per instruction. This
improves performance and energy by an additional 25x and the
final customized CMP matches an ASIC solution’s performance
within 3x of its energy and within comparable area.

Categories and Subject Descriptors
C.5.4 [Computer Systems Implementation]: VLSI Systems –
customization, heterogeneous CMP; C.1.3 [Processor
Architectures]: Other Architecture Styles - Heterogeneous
(Hybrid) Systems.

General Terms
Algorithms, Measurement, Performance, Design, Experimentation.

Keywords
ASIC, H.264, chip multiprocessor, high-performance, energy
efficiency, customization, Tensilica.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06...$10.00.

1. INTRODUCTION
Most computing systems today are power limited, whether it is
the 1W limit of a cell phone, or the 100W limit of a server. Since
technology scaling no longer provides the energy savings, it once
did [1], designers must turn to other techniques for continued
performance improvements and tractable energy costs. One
attractive option is to understand and to incorporate sources of
ASIC efficiency, since general-purpose processors can be
outclassed by three orders of magnitude in both performance and
energy efficiency by ASIC designs [5].

The desire to achieve ASIC-like compute efficiencies with
microprocessor-like application development cost is pushing
designers to explore two new areas. One area aims to create CPU
designs with much lower energy per instruction [6], while the
other aims to create new design methodologies to reduce the cost
of creating customized hardware. Examples of the latter include
using higher levels of abstraction (e.g., C-to-RTL [8], [7]), and
even full chip generators using extensible processors [2]. A
critical first step in all of these approaches is to understand, in
quantitative terms, the types and magnitudes of energy overheads
in general-purpose processors. Once these are understood, it is
then possible to explore ways to eliminate these overheads and
assess the feasibility of creating an efficient, general-purpose
machine.

This paper quantifies general-purpose overheads, exploring a
series of customizations that reduce overheads to achieve ASIC-
like efficiency. In particular, we consider three broad strategies:
(1) techniques to exploit instruction- and data-level parallelism,
such as VLIW and SIMD, (2) techniques to customize instructions
by fusing complex, frequently occurring instruction sub-graphs,
and (3) techniques to create application-specific data storage with
fused functional units. These strategies span a range of general
and domain-specific customization, incurring progressively
greater design effort.

We evaluate these strategies by transforming a general-purpose,
Tensilica-based, extensible CMP system into a highly efficient
720p HD H.264 encoder. We choose H.264 because it
demonstrates the large energy advantage of ASIC solutions (500x)
and because there exist commercial ASICs that can serve as a
benchmark. Moreover, H.264 contains a variety of computational
motifs, from highly data parallel algorithms (motion estimation)
to control intensive ones (CABAC).

The results are striking. Starting from a 500x energy penalty,
adding relatively wide (16x) SIMD execution units improves

performance by 10x and energy efficiency by 7x. Since SIMD
units are often augmented with special fused instructions to
accelerate important applications, we introduce our own custom
fused instructions to improve both performance and energy
efficiency by an additional 1.4x. Despite these customizations,
which collectively improve energy efficiency by 10x, the resulting
solution is still 50x less energy efficient than an ASIC.

An examination of the energy breakdown clearly demonstrates
why. Since the SIMD unit customizes datapath widths of 8-12bits,
functional unit energy comprises less than 10 percent of the total
even when performing more than 10 operations per cycle. Thus,
to create a truly efficient processor, one needs to construct
instructions that aggregate enough computation to offset the
energy overheads of flexible instruction and data fetch. Creating
such “magic” instructions improves energy efficiency by another
18x and yields a solution within 3x of a full ASIC design.

While identifying the right customizations for a given application
takes significant effort, it is hard to achieve ASIC-like efficiencies
without them. The inescapable conclusion is that truly efficient
designs will require application-specialized hardware. If energy
efficiency is going to drive future computing design, then we need
frameworks that allow application experts to easily (and at low
cost) create customized solutions. The fact that, for our
application, we can achieve good efficiency using processor
instruction extensions is an encouraging sign.

Since our experiments use an extensible processor, the next
section reviews some of the prior work in this area, provides an
overview of H.264 encoding, and describes the performance of
hardware and software solutions. Section 3 then presents our
experimental methodology, describing our baseline, generic
H.264 implementation on a Tensilica CMP and outlining our
strategies for customizing this system. The performance and
efficiency gains are described in Section 4, which also explores
the causes of the overheads and different methods for addressing
them. Using the insight gained from our results, Section 5
discusses the broader implications for efficient computing and
supporting application driven design.

2. BACKGROUND
Since we use an extensible processor for our case study, we first
describe prior work on efficient computing, focusing on processor
extensions. With this background, we then provide an overview of
H.264 encoding and its main compute stages. The section ends by
describing hardware and software implementations to demonstrate
the performance advantages of an ASIC.

2.1 Related Work in Efficient Computing
General-purpose processors are often customized to improve their
efficiency for specific application domains. For example, SIMD
architectures achieve higher performance for multimedia and
other data-parallel applications, while DSP processors are tailored
to perform signal-processing tasks efficiently. More recently,
ELM [6] and AnySP [10] have been optimized for embedded and
mobile signal processing applications, respectively, by reducing
processor overheads. While these strategies are meant to cover a
broad spectrum of applications, special instructions are sometimes
added to accelerate frequently used or critical operations for
specific applications. For example, Intel’s SSE4[11][12] includes
instructions to accelerate matrix transpose and sum-of-absolute-
differences.

Customizable processors allow designers to take the next step, and
create instructions tailored to applications. Extensible processors
such as Tensilica’s Xtensa provide a base design that the designer
can extend with custom instructions and datapath units [9].
Extending the ISA for a given application can be done either
manually or with automated tools. Tensilica provides an
automated ISA extension tool [18], which achieves speedups of
1.2x to 30x for EEMBC benchmarks [17] and signal processing
algorithms [16]. Other tools have similarly demonstrated
significant gains from automated ISA extension [13][14]. While
automatic ISA extensions can be very effective, manually creating
ISA extensions gives even larger gains: Tensilica reports speedups
of 40x to 300x for kernels such as FFT, AES and DES encryption
[19][20][21].

Our work takes customizable processors, which are much less
efficient than ASICs, and determines what is required to close that
efficiency gap within a flexible framework. While previous
studies have demonstrated significant improvements in
performance and efficiency, we explore the reasons for these
gains, which is essential to determine the nature and degree of
customization necessary for future systems. Our approach starts
with a generic CMP system, then customizes its memory system
and processors to determine the magnitude and sources of
overhead eliminated in each step toward achieving a high
efficiency 720p HD H.264 encoder.

2.2 H.264 Algorithm and Computational Motifs
To understand how we customize a generic CMP to efficiently
implement H.264, we must first understand the basic components
of the H.264 algorithm. Five major functions comprise more than
99% of the total execution time in our base CMP implementation:

(i) IME: Integer Motion Estimation

(ii) FME: Fractional Motion Estimation

(iii) IP: Intra Prediction

(iv) DCT/Quant: Transform and Quantization and

(v) CABAC: Context Adaptive Binary Arithmetic Coding.

We implement the H.264 baseline profile at level 3.1; however,
we use CABAC in place of CAVLC because CABAC is more
complex and more challenging to improve [23][24]. CABAC is
also more representative of advanced coding steps in other
applications.

IME finds the closest match for an image-block from a previous
reference image, and computes a vector to represent the observed
motion. While it is one of the most compute intensive parts of the
encoder, the basic algorithm lends itself well to data parallel
architectures. When run on our base CMP, IME takes up 56% of
the total encoder execution time and 52% of total energy.

The next step, FME, refines the initial match from integer motion
estimation and finds a match at quarter-pixel resolution. FME is
also data parallel, but it has some sequential dependencies and a
more complex computation kernel that makes it more challenging
to parallelize. FME takes up 36% of the total execution time and
40% of total energy on our base CMP design. Since FME and
IME together dominate the computational load of the encoder,
optimizing these algorithms is essential for an efficient H.264
system design.

IP then uses previously encoded neighboring image-blocks within
the current image to form a prediction for the current image-
block. While the algorithm is still dominated by arithmetic
operations, the computations are much less regular than the
motion estimation algorithms. Additionally, there are sequential
dependencies not only within the algorithm but also with the
transform and quantization function.

Next, in DCT/Quant, the difference between a current and
predicted image block is transformed and quantized to generate
quantized coefficients, which then go through the inverse
quantization and inverse transform to generate the reconstructed
pixels. The basic function is relatively simple and data parallel.
However, it is invoked a number of times for each 16x16 image
block, which calls for an efficient implementation. For the rest of
this paper, we merge these operations into the IP stage. The
combined operation accounts for 7% of the total execution time
and 6% of total energy.

Finally, CABAC is used to entropy-encode the coefficients and
other elements of the bit-stream. Unlike the previous algorithms,
CABAC is sequential and control dominated. While it takes only
1.6% of the execution time and 1.7% of total energy on our base
design, CABAC often becomes the bottleneck in parallel systems
due to its sequential nature. This becomes particularly important
because we need to speed up the application by around 250x on a
four-processor system. After speedups in the first four functions,
CABAC becomes the bottleneck and cannot be ignored.

2.3 Current H.264 Implementations
The computationally intensive H.264 encoding algorithm poses a
challenge for general-purpose processors, and is typically
implemented as an ASIC. Prior work has demonstrated efficient
hardware architectures for various sub-algorithms in H.264
[33][34][35][36]. T.-C. Chen et al. implement a full-system H.264
encoder [4] and demonstrate that real-time HD H.264 encoding is
possible in hardware using relatively low power and area cost.
Later implementations employ clever algorithmic optimizations
which sacrifice some signal-to-noise ratio (SNR) but significantly
reduce energy and area [29][30]. While these optimizations are
useful, our study works with the basic algorithms similar to those
in [4]. Our aim is to understand the mechanisms behind high
efficiency of custom hardware, and these insights are not likely to
change significantly for a particular algorithmic variant.

There has also been H.264 software optimizations, particularly for
motion estimation, which takes most of the encoding time. For
example, sparse search techniques along with other algorithmic
modifications speed up software performance of IME and FME
by up to 10x with negligible loss in SNR [31] [32]. Combining
aggressive algorithmic modifications with multiple cores and SSE
extensions lead to highly optimized H.264 encoders on Intel
processors [3][37].

Despite these optimizations, software implementations of H.264
lag far behind dedicated ASICs. Table 1 compares a software
implementation of a 480p SD encoder [3] to a 720p HD ASIC
implementation [4]. The software implementation employs a 2.8
GHz Intel Pentium 4 executing highly optimized SSE code. This
results in very high-energy consumption and low area efficiency.
It is also worth noting that the software implementation relies on
various algorithmic simplifications, which drastically reduce the
computational complexity to achieve real-time performance, but
result in a 20% decrease in compression efficiency for a given

SNR [3]. The custom ASIC hardware, on the other hand,
consumes over 500x less energy and is far more efficient in its use
of silicon area as shown by the area numbers in Table 1. The ASIC
makes few algorithmic simplifications and consequently has a
negligible drop in compression efficiency [4].

Table 1. Intel’s highly optimized, 2.8GHz Pentium 4 implementation
of a 480p H.264 encoder versus a 720p HD ASIC. The second row
presents Intel’s SD data scaled to HD H.264. ASIC numbers have
been scaled from 180nm to 90nm.

 Perf.
(fps)

Area
(mm2

Enrgy/frame
(mJ))

Intel (720x480 SD) 30 122 742
Intel (1280x720 HD) 11 122 2023

ASIC 30 8 4

3. EXPERIMENTAL METHODOLOGY
Our experiments use a CMP platform based on Tensilica’s
extensible RISC cores [2][39][40]. This baseline implementation
defines the gap we seek to bridge between general-purpose
computing and ASIC efficiencies. We use the extensible platform
to implement three different classes of customizations, each more
application specific than the previous one. We independently
customize each processor’s datapath using Tensilica’s TIE
language and optimize memory system parameters. To quickly
simulate and evaluate different design options, we created a
multiprocessor simulation framework that employs Tensilica’s
Xtensa Modeling Platform (XTMP) as its base. We use
Tensilica’s ISA extension framework to specify the number of
VLIW slots, the width for the SIMD data paths, the number and
size of register files, custom hardware instructions, and custom
data storage elements. Tensilica’s TIE compiler generates
simulation models for different processor configurations and their
energy explorer tool [22] estimates the energy and area of the
resulting system. Its results are within 30% of the actual energy
numbers [25], which is adequate since we are looking for more
than two orders of magnitude improvements in energy efficiency.

3.1 Baseline H.264 Implementation
We use H.264 encoder reference code JM 8.6 for our experiments
[38]. In the reference implementation, H.264’s video encoding
path is very long and suffers from sequential dependencies that
restrict parallelism. We carefully analyze existing H.264
partitioning techniques and implement algorithmic changes in
IME that remove some dependencies and allow mapping of the
five major algorithmic blocks to the four-stage macro-block (MB)
pipeline shown in Figure 1. This mapping exploits task level
parallelism at the macro block level and significantly reduces the
inter-processor communication bandwidth requirements by
sharing data between pipeline stages.

To build a base system, we map the four-stage macro-block
partition of H.264 to a four-processor CMP system where each
processor has 16KB 2-way set associative instruction and data
caches. Table 2 presents our base system’s performance and
energy efficiency for the individual 720p HD H.264 sub-
algorithms to highlight the large area and energy efficiency gap
between our base CMP and the reference ASIC. At approximately
8.6B instructions to process one frame (IME), our base system
consumes about 140 pJ/instruction—a reasonable value for a
general-purpose system.

Figure 1. Four stage macroblock partition of H.264. (a) Data flow
between different pipeline stages. (b) How the four stage pipeline
works on different macro blocks. The IP stage includes DCT+Quant.
EC is the CABAC stage.

Table 2. Performance and energy for a generic Tensilica CMP
implementation of H.264. Intra combines IP, DCT, and Quant. The
gap numbers compare these values to an equivalent ASIC.

Performance

Area
(mm2

)

Energy/
Frame
(mJ)

Perf.
Gap

Energy
Gap

MC/
MB

Frame
/sec

IME 2.10 0.06 1.04 1179 525.0x 707x

FME 1.36 0.08 1.04 921 342.0x 468x

Intra 0.25 0.48 1.04 137 63.0x 157x

CABAC 0.06 1.82 1.04 39 16.7x 261x

Table 3. Datapath energy breakdown for our base implementation in
mJ/frame. IF is instruction fetch/decode (including the I-cache). D-$
is the D-cache. Pip is the pipeline registers, buses, and clocking. Ctl is
random control. RF is the register file. FU is the functional elements.
Data estimates from processor simulations.

 IF D-$ Pip Ctl RF FU Total
IME 410 218 257 113 113 68 1179

FME 286 196 205 90 90 54 921

Intra 54 20 29 13 13 8 137

CABAC 12 2 8 4 4 2 32

Total 762 436 499 220 220 132 2269

We analyze the performance and energy efficiency of this base
CMP implementation and compare it to that of the ASIC. We
allocate the processor’s energy into different functional units as
shown in Table 3, which reports the energy consumed by our base
four-processor CMP system. As expected, the energy required for
each task is related to the time required for that task, since the
energy of each instruction is similar. The RISC implementations
of IME and FME, which are the major contributors to
performance and energy consumption, have a performance gap of
525x and an energy gap of over 700x with respect to the ASIC.

We also note that while IP, DCT, Quant and CABAC are much
smaller parts of the total energy/delay, even they need about 100x
energy improvements to reach ASIC-level values.
This data makes it clear how far we need to go to approach ASIC
efficiency. Clearly, the energy spent in instruction fetch (IF) is an
overhead due to the programmable nature of the processors and is
absent in a custom hardware state machine, but eliminating all this
overhead only increases the energy efficiency by less than 2x.
Even if we assume everything but the functional unit energy is
overhead, we still end up with energy savings of only 20x—not
nearly enough to reach ASIC levels. As the rest of this paper
demonstrates, we need to both customize functional units (for
correct bit widths, for efficient multi-input or output operations,
etc.) and remove almost all other processor overheads (instruction
fetches, register file accesses, etc.) to approach ASIC efficiency.
Table 4. Different stages of specialization, and the types of
optimizations implemented. Step 1 is very general; step 2 is often
done in general-purpose SIMD units for important applications; step
3 builds application specific functional units.

 Step 1 Step 2 Step 3

Inst.
decode
logic

App. class
optimizations
e.g. SIMD

App. class
optimizations
with custom
fused instruction
sub-graphs

Complex instrs
performing
multiple
independent
operations

Register
file

App. specific
register file
size and width.
SIMD register
file

Consume short-
lived
intermediate
results without
sending to
register file

App. specific
data storage
structures and
data supply
networks

Arithmetic
datapath

App. specific
precision

Custom fused
arithmetic
operations

App. specific
arithmetic
blocks

3.2 Customization Strategies
Table 4 defines three classes of processor customization. At the
first stage we restrict ourselves to relatively general purpose
datapath extensions such as SIMD and VLIW units; such
extensions are frequently found in processor designs today and
will be part of future efficient processors.

At the second stage, we add a limited degree of algorithm-specific
customization. Operation fusion – the creation of new
instructions that combine sequences of existing instructions –
produces new functional units. We limit new instructions to
operand requirements (i.e., two input operands, one output) that
match those for existing instructions; new instructions must fit in
existing instruction formats and datapath. This constraint is the
same as that of Intel’s SSE instructions. These customizations, at
least for key functions, are also likely to exist in future processors.

Finally, at the third stage we allow unrestricted tailoring of the
datapath according to algorithm needs by introducing arbitrary
new compute operations as well as by complementing or even
replacing the register files with custom storage structures. The
results of these customizations shown in Figures 2, 3 and 4 are
described in more detail in the next section.

4. RESULTS
We implement and evaluate the three-customization strategies of
Table 4, detailing their effectiveness. For algorithm-specific

instructions, we outline strategies for each major phase of
computation. Collectively, these results describe how efficiencies
improve by 170x over the baseline in Section 3.1.

4.1 SIMD and VLIW Enhancements
Using Tensilica’s FLIX (Flexible Length Instruction eXtension)
feature, we create processors with 2- and 3-slot VLIW
instructions. Using TIE, we add SIMD execution units to the base
processor with vector register files of custom depths and widths.
As expected, DLP algorithms using SIMD units show a large
decrease in processor energy; speedup increases as the number of
instructions executed decreases. IME and FME use 16 and 18-
way SIMD datapaths and achieve speedups of 10x and 14x.
Intra/DCT/Quant using an 8-way SIMD datapath achieves a
speedup of 6x. The SIMD units use custom-width functional units
instead of standard 32-bit versions to enable more efficient
computation, and generally run between 8 and 16 bits. As Figure
4 shows, even performing 16 concurrent operations barely
increases the percentage energy used by the functional units,
which still comprise around 10% of the total. Even the register file
energy decreases by 4-6x using SIMD since we use 8-bit vector
elements, and scale down register file depths, so its percentage
contribution to the total energy does not increase considerably.
While SIMD only works for data-parallel algorithms, all H.264
sub-algorithms achieve speedups from VLIW instructions, with 2-
slot VLIW offering higher energy efficiency than 3 slots. 2-slot
VLIW gains up to 1.5x more performance. For CABAC, VLIW
instructions increase the code size, and the resulting increase in
cache size and cache access energy offsets any energy gains.
SIMD and VLIW speed up the application by 10x, decreasing IF
energy by 10x, but the percentage of energy going to IF does not
change much. IF still consumes more energy than functional units.
Furthermore, while CABAC is not initially an issue, its power
dissipation is unchanged by these optimizations, and is now a
major contributor to overall power dissipation.
4.2 Operation Fusion
The second customization strategy builds on the first and
evaluates additional gains offered by the fusion of frequently

occurring complex instruction subgraphs. Operation fusion is
particularly interesting because it can be targeted by a number of
automatic tools [22]. Fusion of complex subgraphs is useful
because it reduces both instruction count and register file
accesses—intermediate results are consumed within the fused
operation and do not need to be stored in the register file. An
additional benefit is the ability to create more energy efficient
hardware implementations of the fused operations. For data
parallel algorithms, we fuse together both RISC as well as SIMD
operations. We pipeline our functional units to ensure fused
operations do not increase clock cycle time.

To illustrate operation fusion, we present a pixel up-sampling
example taken from FME:

xn = x-2 – 5x-1 + 20x0 + 20x1 – 5x2 + x

H.264 uses this equation to perform upsampling of pixels in the
reference image frame. In the equation x

3

n is the newly calculated
up-sampled pixel, formed by applying an interpolation filter on
pixels x-2 … x3

Before creating fused instructions, we split the equation into three
parts based on computation similarities: 20x

 of the reference frame. Upsampling uses a
major portion of FME compute time, so we want to enhance its
performance and energy efficiency.

0 +20x1, – 5x-1 – 5x2,
and x2 + x3

Note that the two-input operand restriction is not broken because
the accumulator register (acc), internal to the functional unit, is
used implicitly. Similarly, the instruction supplies the constant
multiplication factor directly, avoiding a register file access.
These new instructions improve energy efficiency by reducing
register file accesses by forwarding the result of the multiplication
directly to an adder and by using an accumulator.

. This allows us to keep the number of input operands
per fused instruction equal to two and thus we do not increase the
number of register file ports. Each instruction fuses
addition/subtraction with multiplication, which is implemented
using shift and adds. Figure 5 presents the newly created
instructions.

Figure 3. Each set of bar graphs represents speedup at each stage
of optimization. Each optimization builds on those of the
previous stage with the first bar in each set representing RISC
speedup, followed by generic optimizations such as SIMD and
VLIW, then operation fusion and finally “magic” instructions

Figure 2. Each set of bar graphs represents energy consumption
(µJ) at each stage of optimization for IME, FME, IP and CABAC
respectively. Each optimization builds on the ones in the previous
stage with the first bar in each set representing RISC energy
dissipation followed by generic optimizations such as SIMD and
VLIW, operation fusion and ending with “magic” instructions

acc = 0;
acc = AddShft(acc, x0, x1

acc = AddShft(acc, x
, 20);

-1, x2

acc = AddShft(acc, x
, -5);

-2, x3

xn = Sat(acc);
, 1);

Figure 5. FME upsampling after fusion of two multiplications and two
additions. AddShft takes two inputs, multiplies both with the
multiplicand and adds the result. Multiplication is performed using
shifts and adds. Operation fusion results in 3 instructions instead of
the RISC’s 5 add/sub and 4 multiplication instructions.

Table 5. Fused operations added to each unit and the resulting
performance and energy gains. FME required fusion of large
subgraphs to get significant performance improvement.

of

fused
ops

Op
Depth

Energy
Gain

Perf
Gain

IME 4 3-5 1.5 1.6
FME 2 18-34 1.9 2.4
Intra 8 3-7 1.9 2.1

CABAC 5 3-7 1.1 1.1

Table 5 presents the number of fused operations created for each
H.264 algorithm, the average size of the fused instruction
subgraphs, and the total energy and performance gain achieved
through fusion. Interestingly, IME and FME do not share any
instructions, though Intra and FME share instructions for the
Hadamard transform. DCT transform also implements the same

transform instructions. CABAC’s fused operations provide
negligible performance and energy gains of 1.1x. Fused
instructions give the largest advantage for FME, on average
doubling the energy/performance advantage of SIMD/VLIW.
Employing fused operations in combination with SIMD/VLIW
results in an overall performance improvement of 15x for the
H.264 encoder, and an energy efficiency gain of almost 10x, but
still uses greater than 50x more energy than an ASIC.
The basic problem is clear. For H.264, the basic operations are
very simple and low energy. In our base machine we over-
estimate the energy consumed by the functional units, since we
count the entire 32–wide functional unit energy. When we move
to the SIMD machine, we tailor the functional unit to the desired
width, which reduces the required energy. However, executing
10s of narrow width operations per instruction still leaves a
machine that is spending 90% of its energy on overhead functions,
with only 10% going to the functional units.

4.3 Algorithm Specific Instructions
To bridge the remaining gap, we must create instructions that can
execute 100s of operations in a single instruction. To achieve this
parallelism requires creating instructions that are tightly
connected to custom data storage elements with algorithm-
specific communication links to supply the large amounts of data
required, and thus tend to be very closely tied to the specific
algorithmic methods being optimized. These storage elements can
then be directly wired to custom designed multiple input and
possibly multiple output functional units, directly implementing
the required communication for the function in hardware.

Once this hardware is in place, the machine can issue “magic”
instructions that can accomplish large amounts of computation at
very low costs. This type of structure eliminates almost all the

Figure 4. Datapath energy breakdown for H.264. IF is instruction fetch/decode (including the I-cache). D-$ is the D-cache. Pip is the
pipeline registers, busses, and clocking. Ctl is random control. RF is the register file. FU is the functional elements. Only the top bar
(FU), or perhaps the top two (FU + RF) contribute useful work in the processor. For this application it is hard to achieve much more
than 10% of the power in the FU without adding custom hardware units. This data was estimated from processor simulations.

processor overheads for these functions by eliminating most of the
communication overhead (register file, bus, and instruction fetch)
associated with processors. We call these “magic” instructions,
since these operations can have a large effect on both the energy
and performance of an application and yet would be difficult to
derive directly from the code. They typically require an
understanding of the underlying algorithms and the capabilities
and limitations of existing hardware resources, thus requiring
greater effort on part of the designer. Since the IP stage uses some
techniques similar to FME the rest of the section will focus on
FME, IME and CABAC.

4.3.1 FME Strategy
To illustrate a “magic” instruction, we begin by returning to the
pixel upsampling example. In H.264, upsampling uses an FIR
filter that requires one new pixel per iteration. Thus after one
upsampling step, we can reuse pixels x-1 … x3, and only need to
load x4. Normal register files require us to do five register
transfers for each upsampling step, significantly increasing the
energy dissipated in the instruction fetch and decode logic and
also in the register file. While some machines have indexing
register files that help with this issue [6], we still need to read all
the operations from the register file to perform the computation.

To reduce instruction fetches and register file transfers, we
augment the processor register file with a custom 8-bit wide, six
entry shift register structure which works like a FIFO: every time
a new 8-bit value is loaded, all elements are shifted. This
eliminates the use of expensive register file accesses for either
data shifting or operand fetch, which are now both handled by
short local wires. Additionally, since all six entries can now be
accessed in parallel we create a six input multiplier/adder which
can be implemented much more efficiently (using carry-save
addition) than the composition of normal 2 input adders. Finally
since we need to perform the upsampling in 2-D, we build a shift
register structure that stores the horizontally upsampled data, and
feeds its outputs to a number of vertical upsampling units (see
Figure 6).

Figure 6. FME upsampling unit, showing merged storage and
computation. Customized shift registers directly wired to function
logic result in efficient upsampling. Ten integer pixels from local
memory are used for row upsampling in RFIR blocks. Half
upsampled pixels along with appropriate integer pixels are loaded
into shift registers. CFIR accesses six shift registers in each column
simultaneously to perform column upsampling.
This transformation yields large savings even beyond the savings
in instruction fetch energy. From a pure datapath perspective

(register file, pipeline registers, and functional units), this
approach dissipates less than 1/30th the energy of a traditional
approach.
The FME SIMD code highlights the advantages of this approach
over using larger SIMD arrays. The SIMD implementation suffers
from code replication and excessive local memory and register
file accesses, in addition to not having the most efficient
functional units. FME contains seven different sub-block sizes
ranging from 16x16 pixel blocks to 4x4 blocks, and not all of
them can fully exploit the 18-way SIMD datapath. Additionally,
to use the 18-way SIMD datapath, each sub-block requires a
slightly different code sequence, which results in code replication
and more I-fetch power because of the larger I-cache. Next, FME
fits a streaming data flow model where most of the intermediate
data has a short life and is consumed by instructions that are only
a few cycles behind; by storing such intermediate data in the
register file, energy is wasted on unnecessary register file
accesses. This intermediate data also leaves less space in the
register file for non-intermediate data, resulting in additional loads
and stores. Finally, not all computations are able to benefit from
fusion because our register files can only supply two operands at a
time.
To avoid these issues, our custom hardware upsampler processes
4x4 pixels. This allows us to reuse the same computation loop
repeatedly without any code replication, which, in turn, lets us
reduce the I-cache from a 16KB 4-way cache to a 2KB direct-
mapped cache. Due to the abundance of short-lived data, we
remove the vector register files and replace them with custom
storage buffers. The magic instruction reduces the instruction
cache energy by 54x and processor fetch and decode energy by
14x. Finally, as Figure 4 shows, 35% of the energy is now going
into the functional units.

4.3.2 IME Strategy
4x4 sum of absolute differences (SAD) calculations are important
for IME. Figure 7 shows the custom datapath elements added to
the IME processor to accelerate this function. The 16-way SIMD
SAD unit of the fusion-optimized processor has been replaced by
a 16x16 SAD unit, which can perform 256 SAD operations in one
cycle. Since our standard vector register files cannot feed enough
data to this unit per cycle, these registers have been replaced by
state registers, which allow parallel access to all 16-pixel rows
and enable this datapath to perform one 256-pixel computation
per cycle. The fetch overhead of SAD operations is thus reduced
by roughly 16x. Additionally, this custom storage structure has
support for parallel shifts in all four directions, thus allowing
much greater data reuse, and drastically reducing the cycles spent
on loads, shifts and pointer arithmetic operations as well as data
cache accesses. “Magic” instructions and storage elements are
also created for other major algorithmic functions in IME to
achieve similar gains. More than 65% of total IME cycles are
spent in overhead instructions. Thus, by reducing instruction
overheads and by amortizing the remaining overheads over larger
datapath widths, this strategy improves performance and energy
efficiency by 20-30x.

The large number of parallel operations means that this functional
unit finally consumes around 40% of the total instruction energy.
This would be even higher, but we further reduced energy
(approximately 30%) by employing reduced precision arithmetic
where only 5 pixel-bits are used in distortion calculations instead
of 8. This technique is also employed by our reference ASIC and

causes negligible drop in SNR [4]. These optimizations along with
a small set of other custom operations enable the IME processor
to match ASIC performance and come within 3x of ASIC energy

16-pixels 16-SAD units 16-pixels16-pixels

16-SAD units

16-SAD units

16-SAD units

12
8-

bi
t w

rit
e

po
rt

128-bit
load

128-bit
load Current pixel

registers

16
 ro

w
s

of
 R

ef
er

en
ce

 p
ix

el
 re

gi
st

er
s

Figure 7. Custom storage and compute blocks for IME’s 4x4 SAD
calculation. Current and reference-pixel register files allow parallel
access to all pixel values to feed the 16x16 SAD array. In addition, the
RefPixel Regfile supports operations to shift all pixel rows down by
one row or shift all pixel columns right by one pixel location.

4.3.3 CABAC Strategy
CABAC originally consumed less than 2% of the total energy.
However, after adding “magic” instructions for data parallel
components, CABAC dominates the total energy. However, it
requires a different set of optimizations because it is highly
control oriented and not data parallel. Thus, for CABAC, we are
more interested in control fusion than operation fusion.
A critical part of CABAC is the arithmetic encoding stage, which
is a highly serialized process with small amounts of computation,
but significant control flow. We break arithmetic coding down
into a simple pipeline and drastically change it from the reference
code implementation, reducing the binary encoding of each
symbol to five instructions. While there are several if-then-else
conditionals reduced to single instructions (or with several
compressed into one), the most significant reduction came in the
encoding loop, which is written as a while loop over every bit of
the RANGE in the reference code as shown in Figure 8. This loop
(including the implicit doubly nested loops in put_one_bit_
plus_outstanding) was reduced to a single constant time
instruction and a rarely executed small while loop by
fundamentally changing the algorithm as shown in Figure 9. Since
we now do buffering on a 64-bit basis, word1full is rarely true,
and wordsOustanding is almost never greater than 0.
The other critical part of CABAC is the conversion of non-binary
valued DCT coefficients to binary codes in the binarization stage.
To improve the efficiency of this step, we create a 16-entry LIFO
structure to store DCT coefficients. To each LIFO entry, we add a
single-bit flag to identify zero-valued DCT coefficients. These
structures, along with their corresponding logic, reduce register
file energy by bringing the most frequently used values out of the
register file and into custom storage buffers. Using “magic”
instructions we produce Unary and Exponential-Golomb codes
using simple operations, which help reduce datapath energy.
These modifications are inspired by the ASIC implementation
described in [15]. CABAC is optimized to achieve the bit rate
required for H.264 level 3.1 at 720p video resolution.

while (range < QUARTER) {
 if (low >= HALF) {
 put_one_bit_plus_outstanding(1);
 low -= HALF;
 } else if (low < QUARTER) {
 put_one_bit_plus_outstanding(0);
 } else {
 global_eep.Ebits_to_follow++;
 low -= QUARTER;
 }
 low <<= 1;
 range <<= 1;
}

 Figure 8. CABAC arithmetic encoding loop in H.264 reference code
looping over every bit of the “RANGE.”

word1full = BIARI_ENCODE_PIPE_5();
if (word1full){
 wordsOutstanding = WRITE_OUT_WORD1();
 while(wordsOutstanding){
 wordsOutstanding =
 WRITE_OUT_UNRESOLVED();
 }
}

Figure 9. CABAC arithmetic encoding loop after insertion of “magic”
instructions. The loop corresponding to RANGE has been reduced to
one single constant time instruction BIARI_ENCODE_PIPE_5.

ASIC-like efficiency required 2-3 special hardware units for each
sub-algorithm, which is significant customization work. After this
effort, the processors optimized for data-parallel algorithms have
a total speedup of up to 600x and an energy reduction of 60-350x
compared to our base CMP. For CABAC total performance gain
is 17x and energy gain is 8x. Figure 4 provides the final energy
breakdowns.
Table 6 - Area and area efficiency at various stages of customization

Area (mm2

Speedup

) Area
Efficiency
(Speedup/

Area)

 IME FME IP CABAC Total

RISC 1.39 1.39 1.39 1.39 5.56 1 0.18
RISC with
Memory

Cust.
0.80 1.39 1.06 1.44 4.69 1 0.21

GP Opt. 1.79 4.12 1.76 1.55 9.22 9.2 1.00
OP

Fusion
1.83 3.32 1.63 1.64 8.42 15.7 1.87

Magic 2.10 2.28 1.58 1.1 7.06 256 36.25
ASIC @
100MHz

2.82 3.33 1.47 0.27 7.89 243 30.81

ASIC @
435MHz

2.82 3.33 1.47 0.27 7.89 1057 133.97

4.4 Area Efficiency
Table 6 shows area in mm2 for the evaluated optimization
strategies. The last column shows the area efficiency for each
step, which is defined as speedup/area. Customizing cache sizes to

the requirements of each algorithm results in substantial area
savings as depicted by “RISC with Mem Cust”. General-purpose
optimizations increase the area substantially compared to vanilla
RISC versions, but they also help improve the area efficiency for
data-parallel algorithms. However, control-intensive CABAC
does not benefit from such optimizations. Further customization
of datapaths not only improves area efficiency tremendously but
also results in a smaller area compared to general-purpose
optimizations. Customizations not only reduce the number of
instructions, but also substantially improve data reuse inside the
processor, which in turn reduces cache sizes. This reduction in
memory area helps offset area increases due to addition of custom
units.
It might seem that the efficiency of our solution is higher than that
of an ASIC, but the ASIC is designed to run at 100MHz in
0.18um while our magic version is designed to run at 435MHz. If
we assume that the ASIC in 90nm can run at 435MHz without any
modifications, it can achieve 4.35x better performance and thus
4.35x better area efficiency, making it substantially more area
efficient than our solution.

4.5 Other Applications
While H.264 is representative of applications with very simple
compute operations, other applications, for example floating point
(FP) applications, have higher-energy operations. FP arithmetic
consumes 10x the energy of integer arithmetic; FP functional
units comprise a larger fraction of total instruction energy. Thus,
one might think less parallelization is required to amortize
instruction overheads for FP applications.

However FP operations comprise only 20% of the dynamic
instruction stream for representative applications [26][27]. For
this reason, FP energy will likely be a small fraction of total
application energy. To match the most efficient H.264 design
points, 35% or more of the total application energy should be in
the ALU. Thus, with an instruction overhead of approximately
130pJ, functional unit energy will need to be at least 70 pJ, which
is equivalent to 7 FP operations, or approximately 35 instructions
(given a 20% FP instruction mix). While this level of parallelism
might be possible for some applications with SIMD and operation
fusion, it seems likely that customizations will be needed to
achieve this number of ops/instruction for most applications.
This is especially true if some part of the application is control
and not data limited.

Finally, some applications are dominated by memory costs. In
truly memory-bound applications, computation is not the
bottleneck, so data path customizations will have little effect. For
these applications, it is the energy efficiency of bringing
application data to the core that fundamentally needs to be
improved. Co-optimization of the memory system and the
application can yield large savings in these situations [28], but the
advantages of application customization over a conventional
memory design with a few adjustable parameters still needs to be
explored.
5. ENERGY EFFICIENT COMPUTERS
It is now easy to see how an ASIC can be 2-3 orders of magnitude
lower energy than a processor. For many applications, and most of
the ones performed by ASICs, the basic operations being
performed are very low energy, using 8-16 bit integers like in
H.264. These applications are computation—and not data fetch—

limited, so the fundamental energy/operation bound is a couple
hundred femtojoules in a 90nm process, which is equivalent to
moving one bit less than a mm. All other costs in a processor—
instruction fetch, register fetch, data fetch, control, and pipeline
registers—are much larger (140pJ) and dominate overall power.

Standard SIMD and simple operation fusion instructions can only
go so far to improve the performance and energy efficiency. It is
hard to aggregate more than 10-20 operations into an instruction
without incurring growing inefficiencies, and with tens of
operations per cycle we still have a machine where around 90% of
the energy is going into overhead functions. In addition, some of
these overhead instructions are just to control or sequence the data
(e.g., CABAC).

Thus, the solution is “instructions” that perform hundreds of
operations each time they are executed, so the overhead of the
instruction is better balanced by the work performed.
Unfortunately this is hard to do in a general way, since bandwidth
requirements and utilization of a larger SIMD array would be
problematic. We solved this problem by building custom storage
units tailored to the application, and then directly connecting the
necessary functional units to these storage units. These custom
storage units greatly amplified the register fetch bandwidth, since
data in the storage units are used for many different computations.
In addition, since the intra-storage and functional unit
communications were fixed and local, they could be managed at
ASIC-like energy costs. The efficiencies found in these custom
datapaths are impressive, since, in H.264, at least, they take
advantage of data sharing patterns and create very efficient
multiple input operations. This means that even if researchers are
able to a create a processor which decreases the instruction and
data fetch parts of a processor by more than 10x, these solutions
will not be as efficient as solutions with “magic” instructions.

Of course including these “magic” instructions requires custom
hardware, and some might say we are just building an ASIC in
our processor. While we agree that creating “magic” instructions
requires a thorough understanding of the application as well as
hardware, we feel that adding this hardware in an extensible
processor framework has many advantages over just designing an
ASIC. These advantages come from the constrained processor
design environment and the software, compiler, and debugging
tools available in this environment.

For example, once the initial effort in understanding the
application and its characteristics was done, the extensible
processor allowed us to implement and verify the fully
customized “magic” configuration for each algorithm in two to
three man-months, which would not have been possible with an
ASIC flow. Many of the low-level issues, like interface design
and pipelining, are automatically handled. In addition, since all
hardware is wrapped in a general-purpose processor, the
application developer retains enough flexibility in the processor to
make future algorithmic modifications. In fact, in this type of
design environment, one might be tempted to make the new
hardware that supports the “magic” instructions a little more
flexible than required, providing some runtime flexibility just to
increase the probability of it still being useful if the algorithm
changes.

Yet an extensible processor alone is not a sufficient solution, since
one still needs to take one or more of these processors and create a
working chip system. Designing and validating a chip is an

extremely hard and expensive task. If application customization
will be needed for efficiency—and our data indicates it will be—
we need to start creating systems that will efficiently allow savvy
application experts to create these optimized chip level solutions.
This will require extending the ideas for extensible processors to
extensible full chip systems. We are currently working on this
creating this type of system.

6. CONCLUSION
Ideally, we would like ASIC-like energy efficiencies—100x to
1000x more energy efficient than general-purpose CPUs—on our
next generation processors. Our data, while not conclusive,
indicates that this goal will be hard to achieve. The basic problem
is that many applications include extremely simple, low energy
operations. Since the energy of these operations is very low, any
overhead, from the register fetch to the pipeline registers in a
processor, is likely to dominate. The good news is that this large
overhead per instruction makes estimating the energy savings
easy—you simply look at the performance gains—but the bad
news is that adding data parallel hardware like wide SIMD units
will still leave you far from an ASIC.

It is encouraging that we were able to achieve ASIC energy levels
in a customized processor by creating customized hardware that
easily fit inside a processor framework and executed 100s of
simple operations per instruction. Extending a processor instead
of building an ASIC seems like the correct approach; since it
provides a number of software development advantages and the
energy cost of this option seems small. The key challenge now is
to build a design system that lets application designers create
these types of customizations with much greater ease.

7. ACKNOWLEDGMENTS
This work would have not been possible without great support and
cooperation from many people at Tensilica including Chris
Rowen, Dror Maydan, Bill Huffman, Nenad Nedeljkovic, David
Heine, Govind Kamat and others. The authors acknowledge the
support of the C2S2 Focus Center, one of six research centers
funded under the Focus Center Research Program (FCRP), a
Semiconductor Research Corporation subsidiary, and earlier
support from DARPA. This material is based upon work partially
supported under a Sequoia Capital Stanford Graduate Fellowship.
The National Science Foundation under Grant #0937060 to the
Computing Research Association also supports this material for
the CIFellows Project. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the view of the National
Science Foundation or the Computing Research Association.

8. REFERENCES
[1] Horowitz, M., Alon, E., Patil, D., Naffziger, S., Kumar, R.,

Bernstein, K., "Scaling, Power and the Future of CMOS," 20th

[2] Solomatnikov, A, Firoozshahian, A., Qadeer,W., Shacham,
O., Kelley, K., Asgar, Z., Wachs, M., Hameed, R., Horowitz,
M., “Chip Multi-Processor Generator,” Proceedings of the
44th Annual Design Automation Conference, 2007, pp. 262–
263.

Int’l Conference on VLSI Design, 2007, held jointly with 6th
Int’l Conference on Embedded Systems, p. 23, 6-10 Jan. 2007.

[3] Iverson, V., McVeigh, J., Reese, B., “Real-time H.264/avc
Codec on Intel architectures,” IEEE Int. Conf. Image
Processing (ICIP'04), 2004.

[4] Chen, T.-C., et al., "Analysis and architecture design of an
HDTV720p 30 frames/s H.264/AVC encoder," Circuits and
Systems for Video Technology, IEEE Transactions on,
vol.16, no.6, pp. 673-688, June 2006.

[5] Davis, W.R., Zhang, N., Camera, K., Markovic, D.,
Smilkstein, T., Ammer, M.J., Yeo, E., Augsburger, S.,
Nikolic, B., Brodersen, R.W., "A design environment for
high-throughput low-power dedicated signal processing
systems," Solid-State Circuits, IEEE Journal of , vol.37, no.3,
pp.420-431, Mar 2002.

[6] Balfour, J., Dally, W.J., Black-Schaffer, D., Parikh, V., Park,
J.S., "An Energy-Efficient Processor Architecture for
Embedded Systems," Computer Architecture Letters, vol.7,
no.1, pp.29-32, January-June 2007.

[7] McCloud, S., “Catapult C Synthesis-Based Design Flow:
Speeding Implementation and Increasing Flexibility,”
Mentor Graphics Technical Library,
http://www.techonline.com/electronics_directory/techpaper/1
93102520, August 2004.

[8] Kathail,V., “Creating power-efficient application engines for
SoC design,” Synfora, Inc. SoC Central, Feb 1, 2005.

[9] Rowen, C., Leibson, S., "Flexible architectures for
engineering successful SOCs," Design Automation Conf,
2004. Proceedings. 41st , pp. 692-697, 2004.

[10] Woh, M., Seo, S., Mahlke, S., Mudge, T., Chakrabarti, C.,
and Flautner, K., “AnySP: anytime anywhere anyway signal
processing,” SIGARCH Comp. Arch. News 37, 3 (Jun.
2009), 128-139.

[11] Intel Corp., “Motion Estimation with Intel® Streaming
SIMD Extensions 4 (Intel® SSE4)” [Online]. Available:
http://software.intel.com/en-us/articles/motion-estimation-
with-intel-streaming-simd-extensions-4-intel-sse4/.

[12] Intel Corp., “Intel SSE4 Programming Reference” [Online].
Available:
http://softwarecommunity.intel.com/isn/Downloads/Intel%20
SSE4%20Programming%20Reference.pdf.

[13] Clark, N.T., Zhong, H., Mahlke, S.A., "Automated custom
instruction generation for domain-specific processor
acceleration," Computers, IEEE Transactions on, vol.54,
no.10, pp. 1258-1270, Oct. 2005.

[14] Cong, J., Fan, Y., Han, G., and Zhang, Z., “Application-
specific instruction generation for configurable processor
architectures,” Proceedings of the 2004 ACM/SIGDA 12th
international Symposium on Field Programmable Gate
Arrays (Monterey, California, USA, February 22 - 24, 2004).
FPGA '04. ACM, New York, NY, 183-189.

[15] Shojania, H., Sudharsanan, S., “A VLSI Architecture for
High-Performance CABAC Encoding,” Visual
Communications and Image Processing (SPIE), 2005.
Proceedings. vol. 5960, June 2005.

[16] Ienne, P., Leupers, R., “Customizable Embedded Processors:
Design Technologies and Applications (Systems on
Silicon),” Morgan Kaufmann Publishers Inc. 2006.

http://www.techonline.com/electronics_directory/techpaper/193102520�
http://www.techonline.com/electronics_directory/techpaper/193102520�

[17] Tensilica Inc., “Xtensa LX2 Benchmarks” [Online].
Available: http://www.tensilica.com/products/xtensa-
customizable/xtensa-lx2/benchmarks.htm.

[18] Tensilica Inc., “The What, Why, and How of Configurable
Processors” [Online]. Available:
http://www.tensilica.com/products/literature-docs/white-
papers/configurable-processors.htm.

[19] Tensilica Inc., “Implementing the Advanced Encryption
Standard on Xtensa® Processors”, Application note.
[Online]. Available: http://www.tensilica.com/products/
literature-docs/application-notes/tie-application-
notes/advanced-encryption-standard.htm.

[20] Tensilica Inc., “Implementing the Fast Fourier Transform
(FFT)”, Application note. [Online]. Available:
http://www.tensilica.com/products/literature-
docs/application-notes/tie-application-notes/fast-fourier-
transform-fft.htm.

[21] Tensilica Inc., “Xtensa Processor Extensions for Data
Encryption Standard (DES)” Application note. [Online].
Available: http://www.tensilica.com/products/literature-
docs/application-notes/tie-application-notes/data-encryption-
extensions.htm.

[22] Tensilica Inc., “How to Minimize Energy Consumption
while Maximizing ASIC and SOC Performance” White
Paper. Available:
http://www.tensilica.com/uploads/white_papers/Xenergy_Te
nsilica.pdf.

[23] Weigand, T., Sullivan, G., Bjontegaard, G., Luthra, A.,
“Overview of the H.264/AVC Coding Standard,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol 13, no 7, July 2003.

[24] Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification, Joint Video Team,
ITU-T Recommendation H.264 and ISO/IEC 14496-10
AVC, May 2003.

[25] Tensilica Inc., “Xtensa Energy Estimator (Xenergy) – User’s
Guide”.

[26] Cheveresan, R., Ramsay, M., Feucht, C., Sharapov, I.,
“Characteristics of workloads used in high performance and
technical computing,” Proceedings of the 21st annual
international conference on Supercomputing, June 17-21,
2007.

[27] Rupnow, K., Rodrigues A., Underwood, K., Compton, K.,
“Scientific applications vs. SPEC-FP: a comparison of
program behavior,” Proceedings of the 20th annual
international conference on Supercomputing, June 28-July
01, 2006.

[28] Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K. and
Demmel, J., ”Optimization of sparse matrix-vector
multiplication on emerging multicore platforms”,
Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, ACM New York, NY, USA, 2007.

[29] Lin, Y.-K., Li, D.-W., Lin, C.-C., Kuo, T.-Y., Wu, S.-J., Tai,
W.-C., Chang, W.-C. and Chang, T.-S., “A 242mw 10mm2

[30] Chang, H.-C., Chen, J.-W., Su, C.-L., Yang, Y.-C., Li, Y.,
Chang, C.-H., Chen, Z.-M., Yang, W.-S., Lin, C.-C., Chen,
C.-W., Wang, J.-S. and Guo, J.-I., “A 7mw-to-183mw
dynamic quality-scalable h.264 video encoder chip,”
Proceedings of 2007 IEEE ISSCC Dig. Tech. Papers.

1080p H.264/AVC high profile encoder chip,” Proceedings
of the 45th Design Automation Conference, 2008.

[31] ISO/IEC MPEG & ITU-T VCEG, “Fast Integer Pel and
Fractional Pel Motion Estimation for JVT,” JVT-F017, 2002.

[32] Yin, P, Tourapis, H.-Y. C., Tourapis, A. M., and Boyce, J.,
“Fast mode decision and motion estimation for JVT/H.264,”
Proceedings of IEEE International Conference on Image
Processing, 2003.

[33] Chen, C.-Y., Chien, S.-Y., Huang, Y.-W., Chen, T.-C.,
Wang, T. C. and Chen, L.-Y., “Analysis and Architecture
Design of Variable Block-Size Motion Estimation for
H.264/AVC,” IEEE Transactions on Circuits and Systems,
2006.

[34] Li, S., Wei, X., Ikenaga, T. and Goto, S., “A VLSI
architecture design of an edge based fast intra prediction
mode decision algorithm for h.264/avc,” Proceedings of the
17th ACM Great Lakes Symposium on VLSI.

[35] Chen, T-C., Huang, Y.-W. and Chen, L.-G., “Fully Utilized
And Reusable Architecture For Fractional Motion Estimation
Of H.264/Avc,” Proceedings of IEEE International
Conference On Acoustics Speech And Signal Processing,
2004.

[36] Osorio, R. R., Bruguera, J. D., “High-Throughput
Architecture for H.264/AVC CABAC Compression System,”
IEEE Transactions on Circuits and Systems for Video
Technology, 2006.

[37] Chen, Y.-K., Li, E. Q., Zhou, X. and Ge, S., “Implementation
of H.264 encoder and decoder on personal computers,”
Journal of Visual Communication and Image Representation,
April 2006.

[38] Joint Video Team Reference Software JM8.6, ITU-T.
[39] Firoozshahian, A., Solomatnikov, A., Shacham, O., Asgar,

Z., Richardson, S., Kozyrakis, C., Horowitz, M., “A memory
system design framework: creating smart memories,”
Proceedings of the 36th annual international symposium on
Computer architecture, 2009.

[40] Solomatnikov, A., Firoozshahian, A. Shacham, O., Asgar, Z.,
Wachs, M, Qadeer, W, Richardson, S. and Horowitz, M.,
“Using a Configurable Processor Generator for Computer
Architecture Prototyping,” Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture,
2009.

http://www.tensilica.com/products/�

	INTRODUCTION
	BACKGROUND
	Related Work in Efficient Computing
	H.264 Algorithm and Computational Motifs
	Current H.264 Implementations

	EXPERIMENTAL METHODOLOGY
	Baseline H.264 Implementation
	Customization Strategies

	RESULTS
	SIMD and VLIW Enhancements
	Operation Fusion
	Algorithm Specific Instructions
	FME Strategy
	To illustrate a “magic” instruction, we begin by returning to the pixel upsampling example. In H.264, upsampling uses an FIR filter that requires one new pixel per iteration. Thus after one upsampling step, we can reuse pixels x-1 … x3, and only need ...
	IME Strategy
	CABAC Strategy

	Area Efficiency
	Other Applications

	ENERGY EFFICIENT COMPUTERS
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

