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Abstract-A class of slotted ALOHA dynamic control 
strategies is considered. These strategies are simple to im- 
plement and can yield lossless and stable operation for arbi- 
trarily large user populations with aggregate arrival rates 
below e-l packets/slot. An ergodicity analysis is given 
that provides conditions on the system parameters, such 
that any specified set of control parameters that satisfies 
the given conditions is guaranteed to yield stable perfor- 
mance. The system state is modelled as a two-dimensional 
Markov chain that incorporates the backlog (the number 
of packets awaiting retransmission) and the estimate of the 
backlog. The geometrical concepts are illustrated by fig- 
ures corresponding to an example case. Simulation results 
are presented that compare alternative control schemes. 

I. INTRODUCTION 

ALOHA is a fundamental technique for multiaccess 
communication and forms the basis of a number of ma- 
jor protocols in modern computer communications, such as 
CSMA, CSMA/CD, and many reservation schemes. Ran- 
dom access protocols, of which ALOHA is arguably the 
simplest, are appropriate for sharing a channel among a 
large population of users with bursty traffic. However, use 
of ALOHA can result in unstable behavior, causing low 
throughput and excessive delays, unless an adequate con- 
trol procedure is employed. 

Although a number of dynamic control schemes have 
been offered in the past (e.g., [l]-[4]), only the scheme 
of Hajek and van Loon [5] appears to have been proven 
to be stable [6], where we define a system to be stable 
if it is ergodic for an arrival process that is independent 
of the system state. In this paper we consider a class of 
slotted ALOHA control procedures that include a number 
of schemes that can potentially offer superior performance 
compared to the procedures of Hajek and van Loon [5]. We 
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develop a stochastic model and formulate constraints on 
the control system parameters that are proven to guaran- 
tee stability. The method of proof for this application is 
new. A complete queueing analysis may be made based 
on the system model 171, although we concentrate on the 
stability results only here. 

In slotted ALOHA systems, users transmit information 
in the form of fixed-length packets. The users are synchro- 
nized to periodic instants of time, and packet transmissions 
must begin at one of these instants. The period, called a 
(‘slot,” is equal to the packet transmission time. If multiple 
packets are transmitted simultaneously, a “collision” occurs 
and none is successfully received. If a newly transmitted 
packet fails, it joins the set of users with packets that have 
failed at least once and are awaiting successful retransmis- 
sion. We refer to (the size of) this set as the backlog. When 
a user learns that his packet transmission failed, a decision 
must be made regarding when he should retransmit. We 
assume that this decision process can make use of feedback 
information that indicates whether none, one, or more than 
one packets were transmitted in the preceding slot. 

We consider a class of slotted ALOHA schemes in 
which the retransmission control mechanism is a function 
of a single variable, representing an estimate of the back- 
log, that depends only on the previous estimate and the 
current feedback. This not only makes the mechanism sim- 
ple to implement, but also implies that the vector process 
of the backlog and its estimate forms a Markov chain. This 
allows a characterization of the backlog process that can be 
used to determine stability. 

A considerable number of definitions for stability have 
been suggested for the slotted ALOHA system, some of 
which apply to the finite population model and to the sys- 
tem with a static control [s], [9]. Fayolle, et al. [lo] offered 
the definition of stability that is based upon the ergodicity 
of the backlog process, and showed that the infinite popu- 
lation slotted [LOHA system with a static control is un- 
stable. Other authors have presented alternative proofs of 
nonergodicity (Kaplan [ll], Rosenkrantz and Towsley (121). 

Fayolle, et al. 113) derived necessary conditions for a 
backlog-based slotted ALOHA system to be stable in the 
ergodic sense. They also considered the system in which the 
backlog was perfectly known to all users, and derived the 
“optimal” retransmission probability based on this knowl- 
edge. This nonrealizable system is useful because it is sta- 
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ble, easy to analyze and perform computations for, and can 
be used to establish bounds on performance. 

The retransmission control procedure of Hajek and 
van Loon [5] is simple to implement and, as proved by 
Hajek 161, can be made stable for any arrival rate )r below 
e-i with the appropriate choice of control system param- 
eters. The control mechanism is such that the retransmis- 
sion probability is updated directly based on the feedback 
information. This retransmission probability can be asso- 
ciated with a comparable “backlog estimate” (see equation 
(1) in the next section). In so doing, the “backlog estimate” 
update mechanism is primarily multiplicative, which is in 
contrast to the additive structure that we will consider. 

Thomopoulos [15] has investigated the dynamic con- 
trol procedure based on the minimum mean-squared error 
(MMSE) estimator of the backlog. He identified a simpli- 
fied control scheme [16] that is the asymptotic limit of the 
MMSE estimator as the backlog tends to infinity; this sim- 
plified scheme is included in the class of control schemes we 
consider here. Thomopoulos has shown that the asymptotic 
MMSE scheme is stable [17] under a somewhat different 
definition than that used in this paper. 

The approach in this paper is based on consideration 
of the drift of the underlying Markov chain. Based on geo- 
metrical reasoning, we construct a nonnegative-valued test 
function on the state space and demonstrate the test func- 
tion drift is bounded strictly below zero. We conclude that 
the process is ergodic, i.e., the system is stable. The re- 
mainder of this paper is organized as follows. In the next 
section, we define the control structure and system param- 
eters. In Section III we derive the transition matrix for the 
Markov chain of the backlog and its estimate, and define 
the associated drift vector field. The stability analysis is 
presented in Section IV. Some numerical results are given 
in Section V. Finally, conclusions and suggestions for future 
work are given. 

II. SYSTEM MODEL AND CONTROL STRUCTIJRE 

As indicated in the Introduction, slotted ALOHA is 
an inherently discrete-time system. We will refer to the tth 
slot as occurring from time t to t + 1, t = 1,2,3,. , i.e., 
time is measured in units of slots. ‘Ne assume that each 
user is capable of buffering at most one packet at a time. 

New packets arrive only at slot boundaries. The num- 
ber of new packets (aggregated over all users) arriving 
at time t is denoted At, t = 1,2,. . . . We assume {At} 
forms an independent and identically distributed sequence, 
and in particular, it is independent of the system state. 
Let X [packets/slot] represent the mean of At and denote 
ei = P(At = ;), i = 0,1,2,. _ . . Although the results to be 
presented are applicable to any such “white noise” arrival 
sequence, we will typically assume that At is Poisson; thus, 

a; = e -v/i! ) i=o,1,2 ,“.. 

This is the “infinite user population” assumption, which 
arises from the fact that the superposition of a large num- 
ber M of sufficiently independent point processes (each cor- 
responding to an individual user) tends to be a Poisson pro- 
cess as M ---) oo; the “slotting” then yields the discrete-time 
process above. 

A successful transmission occurs if and only if exactly 
one user transmits in that slot; we will also refer to this as a 
departure occurrence. We define the feedback Ft for the tth 
slot as the following ternary-valued function of the number 
of users transmitting during the tth slot: for t = 1,2,. . . , 

{ 

0 if no user transmits in the tth slot, 
Fe = 1 if one user transmits in the tth slot, and 

c if two or more users transmit in the tth slot. 

We assume that Ft is known and available for use in the 
retransmission decision process for the (t + l)th (next) slot. 

We assume an Immediate First Transmission proto- 
col is employed, i.e., as soon as a new packet arrives, it is 
transmitted. If a new packet fails, it joins the backlog. The 
backlog at time t, denoted &, is the number of packets that 
have been transmitted at least once but have not yet been 
successful. The total number of packets requiring trans- 
mission during slot t is At + Bt. Thus, Bt does not count 
a departure that just occurred, and it does not count any 
arrivals just about to occur at time t. A timing diagram 
is provided in Figure 1, where we introduce fictitious time 
intervals between system measurements for mathematical 
clarity. 

% 1 -tTH SLoTS( 
. 

At At+ 1 

NOTE. AT TIME 1. 9, AND pt ARE DETERMINED FROM f,., AND Ft., 

Figure 1. Timing diagram of system variables. 

Each of the B$ backlogged packets will retransmit in 
the tth slot with the m but independent probability, de- 
noted by ,&, t = 1,2,. . . . We let & denote the number 
of backlogged packets that retransmit during the tth slot. 
Then & is binomially distributed with parameters Bt and 
pt ~ being the sum of & independent Bernoulli random vari- 
ables. Note that Ft is a deterministic function of At + &, 
the number of transmissions in the tth slot. The depar- 
ture process is identified by defining the success indicator 
at time t as St = I(At + R( = l), where I is the indicator 
function 

40 = ( 1 if event & occurs, and 
0 otherwise. 

We define the throughput at time t to be the probability of 
success P(S, = 1). 

The syste_m is controlled by the use of a backlog esti- 
mate. We let & denote the estimate (at time t) of the back- 
log at time t, t = 1,2,. . The retransmissio_n probability is 
assumed to be a deterministic function of &: /3t = p(&): 
and should be chosen to maximize the throughput. Condi- 
tioned on the backlog estimate B, the throughput is 
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P(S = 1 [ E) = EIXemA(l -j3)B +e-‘B@(l -p)B-” 131, 

In general, determination of the value of p that maximizes 
the throughput wouldlequire knowledge of the distribution 
of B conditioned on B. If our estimate of B were perfect, 
then 2 = B almost surely and we may easily deduce that 
the optimal p is given by 1131 

I@) = { 1 (1 -X)/(E--A) if B> 1, and 
ifO<G<l. 

(1) 

Although a perfect estimator is not possible, we neverthe- 
less expect that (1) is a reasonable form for the function /.9. 
We therefore define the function p by (1) for the remainder 
of this paper. Note that (I) has been analytically extended 

to allow noninteger 3 2 0. 
The form of the backlog estimate update mechanism 

will be chosen such that each estimate depends only upon 
the previous estimate and the current feedback information. 
We express the update mechanism as follows: 

$+1 = $ + z@,$). (21 

We choose the update function U to have the following 
simple form: 

U(f, i) = maX(&, - i, Uf), i>B*iny f=O,l,C, 

(3) 
where B,i, is a lower boundary constraint on g, and where 
uo, u1 and uL, are real constants that completely specify 
the control mechanism via (l)-(3). For later convenience 

in bookkeeping we restrict imrn 2 1. 
Unless there is a rational relationship between the con- 

trol parameters uo, ur and uCr the state space for the com- 
ponent g is uncountable. An ergodicity analysis for the un- 
countable case seems possible using the results of Tweedie 
[H] for general state-space Markov chains; however, we 
will avoid the technical details that would be required, and 
make the assumption that the control parameters are ra- 
tionally related. This is a minor constraint since any real 
number can be approximated arbitrarily closely by a ratio- 
nal number. We mention that it is possible to force the state 
space to be countabIe (e.g., fi integer) without sacrificing 
complete generality on the choice of the control parameters 
by use of a randomized update rule; see [7] for more details. 

III. THE BACKLOG PROCESS AND DRIFT 

The system state is d@ned as the backlog B! and the 
estimate of the backlog &. The process { (B, J3)) is an 
irreducible time-homogeneous Markov chain by virtue of 
the control structure (l)-(3). We will use the following 
notation: for b, b’ 1 0 and 6, &’ 2 &in, 

nt(b, 6) = P(Bt = b, $ = &), and 

p(b’,k 1 b,i) = P(Z?t+l = b’,&+l = i’ 1 Bt = b,$ = b). 

Because (B, g) is a Markov chain, we have for b’ 2 0 and 

L 1 imrn that 

rt+l (b’, i’) = c a(4 bW$ I hi). (4) 
. I 

bZQ,b%,~n 

Thus, the system state process is completely characterized 
by the initial system state density ~1 and the transition 
matrix p. 

We denote r,,(b, 6) = P(& = n ] & = b, $ = 6) and 

(i) = max(&,&,t,). For i 2 &min we find that the only 
nonzero terms of the transition matrix are given by 

p(b - 1, (b+ w) I b,6) = aorl(b,6), b 2 1, (5) 

p(b, 6’ 1 b, 6) = aoro(b, i)Z[V(O, 6) = 6’ - i] 

+ alro(b,&)ZIU(l, i) = 6 -i] 

+a~,(1 -r~(b,h) -rl(b,b))Z[U(c,b) = p-61, 

b 2 0, h’ 2 8,i,, 

(‘5) 
p(b+l,(6+u,)Ib,6)=a~(l-ro(b,@), b20, (7) 

and for integer m 2 2 

p(b + m, (b + ue) 1 b,k) = a,, b 2 0, 63) 

where for b 2 0 , 6 > imrn, because R is binomial, 

ro(b, 5) = [I -p(S)]’ and (9) 

rl(b,h) = b,8(6)[1 -p(6)lb-‘. (10) 

(Equation (6) is left in a form that permits UI = uff for 

distinct f,f’ E {O,l, c}.) If either b or & is large then we 
may use the approximation [5] 

ro(b, i) = eecc and (11) 

rl (b, 6) = pew-P, where Q-4 

p(b, i) = bp = p. (13) 

The drift at state (b,&), where b 2 0 and 6 2 &in, is 
defined as the mean conditional state differential: 

d(b,i) = ZIC[(&+~ - &,&+I - &) I Et = b, $ = 81. 

The drift d is a vector field and may be derived using (5)- 
(8). For our purposes it will suffice to assume b or i is large 
so that (ll)-( 13) applies, in which case we find (for Poisson 
arrivals) 

d= dlrda 
( > 

= A - (A + p)emAdp, uoe-‘-lr + ul(X + j4)emA-” 
( 

+ u,[l -es’+ - (A + p)emx-@]). 

(141 
An example of a drift vector field will be seen in Figures 2 
and 3 of Section V. 
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If the control mechanism is chosen so as to be stable, 
then the stationary distribution of (B, B’) exists, which we 

bounded region. More specifically, we will find a test func- 
tion L(B,B) and derive constraints that imply that for all 

denote by b+i>Nwehave 

r,(b,&) = lirnmnr(b,6), b>O, i+id,,. 

We may obtain { rr, (b, 8)) by iterating (4) until conver- 
gence occurs, or by solving the linear system of equations 

qw%+1, $+,)-L(b,~)IBt=b,$=~] 5-e (17) 

for some constant E > 0 and for some (large) number N. 
We then apply Theorem 6.1 of Tweedie [IS] to conclude 
that the process is ergodic. 

(15) 

n,(b’,h’) = Crm(b,k)p(b’,% 1 b,6), b’ 10, i) 2 6min. 

bj 

(16) 

IV. STABILITY ANALYSIS 

We look for a test function for which each level set en- 
closes a bounded region, and where the level sets are nested 
inside one another, with smaller test function values corre- 
sponding to level sets that are closer to the origin. The test 
function will be chosen such that the process tends to drift 
from larger-valued level sets to smaller-yalued level sets. 
Paraphrasing Kingman [20], the drift d(b, b) must point into 

the region enclosed by the level surface through (b, h). 

In this section we will generate criteria on the system 
parameters that will ensure stability. We begin by study- 
ing the properties of the drift components d1 and da. We 
consider each component as a function of p, p 2 0, given 
by (13), since we will be interested only in the case where 

B or g is large. The component 

The general technique of constructing a test function 
on a multidimensional state space has been used previously 

WI, POI, Pll); h owever, none of these test functions is 
adequate for our needs here. For example, inspection of 
Figures 2 and 3 of the next section reveals that the Eu- 
clidean norm [19] will not satisfy our needs since the level 
sets for this function are partial circles with the origin at 
the center, and for large /J the tendency would be outward. d,(p) = X - (A + p)emA-” 

decreases monotonically to X - e-l at h = 1 - X, and then 
increases monotonically to X as p increases. We assume 
that X < e-l. Define p* and cc* as the smaller and larger 
roots respectively of dr = 0. We can think of the state 
space as being divided into the two “bad” regions ~1 < p. 
and /.L 2 p* and the “good” region p, < p < I’, since only 
in the “good” region will the backlog decrease. 

Now consider the component 

da(P) = UC + (Uo - u,)e-A-p + (ul - uc)(X + p)emA-“. 

When c.r is very small then the backlog estimate is too large 
(see (13)), so that we would like the estimate to be de- 
creased, i.e., & < 0. Similarly, we would like de > 0 when 
p is large. Thus we have the constraints 

Cl : da(O) < 0, and 

c2 : dz(oo) = u, > 0. 

It is straightforward to check that ds has at most one crit- 
ical point, and therefore Cl and C2 imply the existence of 
a unique p > 0 such that da(p) = 0; we denote this unique 
root of ds as cc’. To prevent the field lines of the vector field 
d from diverging to infinity, we must impose the following 
additional constraint: 

The remaining constraints that will ensure stability 
will be developed with the following approach: We con- 
struct a nonnegative-valued test function (also called a 
Liapunov function) L(B, 2)) and to show the drift of the 
test function is strictly negative for all (B, E) outside a 

We instead choose a test function with level sets that 
are partial ellipses tangent to the lines b = 0 (a coordinate 
axis) and 5 = X. Such a test function is of the following 
form: 

L(b, il) = b + cl (ii - X) - j/z, 

where cl and cs are constants that satisfy 

(18) 

Cl 2 C-J 2 0. (19) 

Computation of the Taylor series expansion of L given 
by (18) yields 

L(b+Ab, 6 + Ai) = L(b, i) + VL . (b + Ab, i + Ai) 

+ .(&Abj2 + GAbA& + &(A6)a), (20) 

where the test function gradient VL is given by 

VL(b,&) = (l-d-, cr -4x). (21) 

Since the change in backlog in one slot is stochastically 
dominated by a Poisson variable A of fixed rate X 

and (unlike Hajek and van Loon’s scheme [5]) the change 
in backlog estimate is bounded 

it is straightforward to show that as long as b + b > N 
and N is chosen to be large, the higher order (than linear) 



terms of the expansion (20) are negligible. The condition 
for ergodicity (17) may therefore be replaced by 

VL(b, 6) . d(b, 6) 5 -e, 6 > 0, b + in > N, (22) 

where N is chosen sufficiently large that the linear approx- 
imation of L is valid as well as the Poisson approximation 
(ll)-(13). This form of the condition for ergodicity was 
given by Kingman [ZO]. In words, at each point outside 
some bounded region, the drift d must be obtuse to the 
outward-pointing normal to the level set VL at that point. 
We note from (14) and (21) that both d and VL (and hence 
their dot product) may be considered as functions of the 
single variable /J given by (13). 

There are a number of ways to choose the constants cl 
and cs: We choose them so that the normal components 
VL = (nt,nz) satisfy nl = 0 at cc* and na = 0 at $. This 
will then guarantee that VL . d c 0 for all p 5 /.I*. The 
choice of cl and cs is then given by 

(23) 

P* 
ca=xX’ (24) 

(Note that (19) is implied by C3, (23) and (24).) The 
gradient of L is then given by 

/J* VL= l- -, 
cd- 

(Ji;T-Jr;)* . 
1-x > 

(25) 
P 

An example of such a test function will be seen in Figures 4 
and 5 of the next section. 

Because of (25), we are guaranteed that the system is 
stable if we can show 

C4 : VL . d 5 --E for some constant e > 0, VP > cc*. 

In practice, the function VL . d is quite smooth and it is 
therefore a simple matter to evaluate it over the entire do- 
main and check that it remains negative. An example of 
such a computation will be provided by Figure 6 of the next 
section. Since one may not consider it mathematically rig- 
orous to have a constraint that involves pointwise verifica- 
tion over a continuous domain of values, we now develop 
a finite set of sufficient conditions for C4. The sufficient 
conditions derived below are met for a nonempty range of 
system parameter values, but are not necessary for C4 to 
be satisfied for all choices of control parameters. We leave 
the rigorous treatment of other cases that do not meet the 
constraints below for later development. 

We will find conditions that imply VL . d is mono- 
tonically decreasing for p > /,J*. We impose the following 
constraints, which will imply in particular that da is mono- 
tonically increasing on p 2 0: 

c5 : UC > Ul, and 

C6 : (10 <A. 
UC - Ul 

We consider the derivative of VL . d: 

VL.d) = dl$nl + d”, 
d d 

nl-dl + da--n2 + na--da. 
dp @ 

It is easy to show that, because of the monotonicity prop- 
erties of dl and da, 

dab’) -- l-x , P>P*, I 
which is nonpositive provided 

Now consider the remaining terms tar &dl + na$da. Let 

s(Jir) =(nl $1 + m$C)/(F~e-“-“1 
=(fi-lG3P+P-l) 

+$i4d2-da 
x [Ul - uo + (UC - Ul)(X +col, 

(26) 

i.e., treat the function g(z) as a fourth-degree polynomial 
of z = &i. We may force this polynomial to be convex n 

by forcing 2 to not have distinct real roots; this is found 
by the quadratic formula to be equivalent to 

C8 : 3[- -+( 
6 

UC - Ul,@y 

I8(uc - ua)[l - A + 01 - t&J + X(u, - ur)]. 

The function g(s) is then monotone decreasing provided 
g(p*) 5 0, which is found to be equivalent to 

c9: 022fl(Jj?-fi)+(/L*+X-l) 

+ g&/P- 2dF)[Ul - uo + (UC - Ul)(A + $11 

+ 2p*(&- dP)(% - WI). 

Finally, we may conclude that g(z) 5 0 for all z 2 J1u” if 

00 : !7(dia 5 0, 

where g is given by (26). This then completes the derivation 
of the constraints that prove stability. 

We point out that the technique given in this section 
is constructive and can be applied to determine whether a 
specified set of control parameters yields stable performance 
for a given X. This is in contrast to Hajek’s proof [6]; his 
proof shows the existence of a stable control scheme with 
that control structure, but it is difficult to see how one could 
prove stability for a specific choice of control parameters. 
In particular, verification that the example scheme used in 
[5] is stable is not obvious. 
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V. NUMERICAL RESULTS 

We illustrate the theory of the previous sections by 
selecting a specific dynamic control scheme. All figures in 
this section are based upon the control strategy of the form 
(l)-(3) in which the control parameters are chosen as ue = 
2 - e Y -.7183, u1 = 0, and uC = 1 (or more precisely, u. 
is chosen as a rational approximation to 2 -e). The offered 
load is assumed to be A = .32; since the system is stable 
this also represents the throughput. The particular choice 
of control parameters above is somewhat arbitrary, with ur 
and uL, chosen to be simple, and then ue chosen to yield 
&(l - X) = 0. This latter constraint is similar to that of 
Hajek and van Loon ([5], equation (4.2)). 

Figure 2. Drift vector field d. A = .32, u. = 2 - e, u1 = 0, 
and uC = 1. 

0 30 60 90 120 150 
BACKLOG 

Figure 3. Drift field lines. X = .32, u. = 2 - e, u1 = 0, 

and u, = I. 

An example of the drift vector field d is illustrated in 
Figure 2. The arrows in the figure indicate the direction of 
the drift at that point, and their size is proportional to the 
magnitude of the drift there. The field lines for this same 
case are illustrated in Figure 3 and are indicative of the 
average trajectories one might expect the process (B, s) to 
follow. 

0 

0 30 60 90 120 150 

BACKLOG 

Figure 4. Test function level sets L =constant. 

0 30 60 90 120 150 

BACKLOG 

Figure 5. Test function gradient VL field lines. 

Figure 4 illustrates the level sets for the test function 
(18) that arises from the use of (23) and (24) and the given 
parameter values. For this case one finds that y, E! “2405, 
p* g 1.304, and p’ = 1 - X = .68. The gradient vector field 
VL consists of vectors that are normal to the level sets. 
Figure 5 illustrates the field lines for VL. The field lines of 
Figures 3 and 5 intersect at obtuse angles. 
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Figure 6 illustrates the test function drift VL . d com- 
puted versus the parameter 0 = tan-‘((1 - X)/p), where 
in the figure 8 is indicated in units of degrees. This sim- 
ple graph demonstrates that the process is stable. It is 
straightforward to verify that this case satisfies all of the 
conditions Cl-ClO. 

0.00 
1 

-0.02 -j 

t 
z 
P 

p 
-0.04 - 

-0.08 

1 
-0.10 -I 

0 

I I 

18 36 54 72 90 

THETA (degrees) 

Figure 6. Test function drift VL . d versus B, 
B = tan-I((1 - A)/p). 

The problem of analytically determining the optimal 
choice of control parameters uo, u1 and uc for a given traf- 
fic X, where we wish to (for example) minimize the mean 
delay, appears to be quite difficult. Exact evaluation of the 
stationary distribution is possible, but computationally de- 
manding. More efficient algorithms for this computation 
are being investigated, which should help in the numerical 
search for the optimal control values. Similar problerns are 
present in finding the optimal scheme within the class of 
strategies of the type of Hajek and van Loon (51. Thus a 
precise comparison is difficult. 

Nevertheless, we have simulated what appear to be 
representative cases. We simulated the specific case pre- 
sented by Hajek and van Loon [S], and compared the results 
to a number of stable cases of the type (l)-(3). All cases 
were run for a traffic load of X = .32, and, as suggested 
by Hajek and van Loon, used &in = 2. We include the 
example case considered in the figures, as well as a some- 
what better performing case that also uses t(l = 0. We 
have also simulated the asymptotic MMSE scheme of Tho- 
mopoulos [17], which is distinguished by using u. = 0. We 
also include a case with uo = ~1, corresponding to the “Col- 
lision/No Collision” binary feedback channel. Confidence 
intervals for the mean delay (total time in system) were 
generated using the regenerative properties of the process 
$221. Each simulation was run for a duration of 100,000 
slots. The results of the simulations are given in Table I. 
Because of the significant variance in the statistics, one can- 
not assert with certainty the relative merit of each scheme 
based on the results of Table I. However, it does suggest 
that schemes of the type (l)-(3) may yield somewhat bet- 
ter performance than the strategy of Hajek and van Loon. 

(UO,Ul,UC) Mean Delay 95% Conf. Int. 

H & vL* 13.2 [10.9, 15.21 

(2 - 50, 1) 12.3 [10.4, 14.41 

(-.8,0,1.2) 11.8 I10.2, 13.31 

(0, -.664, .797)** 12.0 [lO.O, 13.61 

(-.4,-.4,.9) 11.7 19.8, 13.31 

Table I. Simulation comparison: A = .32; 100,000 slots. 

* Hajek and van Loon’s scheme (7 = .3 in (51) 
** Thomopoulos’ asymptotic MMSE scheme 1161 

VI. CONCLUSIONS 

We have presented a stability analysis for a broad class 
of dynamic control strategies for slotted ALOHA systems. 
This class includes schemes that are stable for through- 
puts X < e-‘. The control structure is simple to imple- 
ment and allows the underlying system process to be mod- 
elled as a two-dimensional Markov chain. Conditions on 
the control system parameters were generated that guar- 
antee stability in the sense that the limiting distribution 
of the system process exists for an arrival process that is 
independent of the system state (i.e., for an infinite pop- 
ulation of users with aggregate arrival rate below e-l). 
Stability was proven by constructing a test function that 
satisfies sufficient drift properties. Simulation comparisons 
of alternative dynamic control procedures were tabulated, 
and suggest that schemes of the type investigated here will 
yield performance superior to alternative strategies; how- 
ever, further analytical and/or simulation work is needed. 
Determination Of the optimal control parameter values for 
~0, ~1, U, and bmin, for a given throughput X, is an open 
problem. 

Directions for further work are abundant. For exam- 
ple, one may consider the performance for a more compli- 
cated form of update than (3). Relaxation of system as- 
sumptions, such as the assumption of single packet buffers 
per user, will also lead to interesting areas of research. Ad- 
ditionally, it would be fruitful to extend these results to 
CSMA and other ALOHA-based protocols. 
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