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Abstract 

This paper shows how Groebner bases theory could be used in invariant theory. It 
presents algorithms for representation, basis-construction and -test for the ring Inv, .  
of Gn-invariant polynomials over the field K for any given group Gn of permutations. 

1 Introduct ion  

Bases for rings of G,~-invariant polynomials for any given group Gn of permutations could 
be easly computed using the results of E. Noether [Noetherl6] or [GSbe192]. 

Moreover, the theorem of E. Noether as well as the results of [GSbe192] provides an al- 
gorithm to find a representation of a polynomial f E Invg~ as a polynomial in a subset 
of the Gn-invariant polynomials of a basis. Both algorithms have been implemented in a 
computer algebra system and have proven to perform well. Their only lack is, that they do 
not use the knowledge of the basis, i.e. they find the needed subset of basis polynomials 
for the representation of a polynomial f E I n v ~  in every computation once again. This 
note presents an algorithm to find the representation of a given polynomial f E Invg. by 
using the explicit given basis polynomials through GrSbner bases theory [Becket93]. 

The plan of the paper is as follow: Section 2 presents the basic definitions and gives a short 
overview over the above mentioned reduction methods. Section 3 contains the details of the 
representation algorithm and algorithms for basis-construction and -test. Finally, section 4 
illustrates the methods by a few examples obtained by an implementation of the algorithms 
in the computer algebra system MAS [Kredel91]. 

A part of the results of this note were obtained during the authors time at the university 
of Passau. The author would like to thank Prof. Dr. Weispfenning (Passau) and Prof. Dr. 
Kiichlin (Tfibingen) for the support of this work. 

2 Basics  

N is the set Of all natural numbers including zero, R is a commutative ring with 1, K is 
field, K[X1,. . . ,  Xn] is the commutative polynomial ring over K in the indeterminantes 
Xi, Tn is the sets of terms (= power-products of the Xi) in K[X1,. . . ,  Xn], Mn = {at I 
a E K, t E T~} is the set of monomials in K[X1,. . . ,  Xn], and Tn(f), M,( f )  is the set of 
terms and monomials in f E K[X1,.. . ,  X,~] with non-zero coefficients, respectively, deg(t) 
(deg(f)) is the total degree of t E Tn (f E K[X1,. . . ,  X,~]). 

-3-  

http://crossmark.crossref.org/dialog/?doi=10.1145%2F182125.182127&domain=pdf&date_stamp=1993-12-01


Manfred G6bel 

An admissible order on T, is a linear order < on T, which turns (Tn, 1,-, <) into an ordered 
multiplicative monoid with smallest element 1. AO(Tn) is the  set of all admissible orders 
on T,. Any admissible order on T, extends the divisibility relation on T,; moreover, it 
induces in a natural  way a linear quasiorder < on K[X, , . . . ,  Xn]: f < g iff there exists 
t 6 T,(g) \ Tn(f) such that  for all { > t, { 6 T,( f)  iff { • Tn(g). Both the admissible 
order on T,~ and the induced quasiorder on K[X1,.. . ,  Xn] are well-founded (Noetherian),  
i.e. admit  no infinite, strictly decreasing chain. This is a consequence of the fundamental 
li~mma that  is due to Dickson (1913) [Becket93]. 

For a fixed admissible order < on Tn and f • K[X1,.. . ,  X,], we let HT(f) ,  HC(f) ,  
HM( f )  (the highest monomial, highest term, highest coefficient of f )  denote the highest 
term t w.r.t. < in T,~(f), the coefficient a of t in f and the monimal at of f, respectively. 
desc(X[ 1 . . .X~")= X[ ' . . .X~" with { f l , . . . , f , }  = {el, . . . ,e ,~} and el _> . . .  _> e,~. 

Gn is any finite permutation group operating on n indeterminates. The order of G .  is deno- 
ted by [ Gn [. Sn, A.,  Dn and Z,, are the symmetric, alternating, dieder and cyclic permuta- 
tion groups, f • K[Xi, . . .  ,Xn] is G,-invariant, if f = ~-(f) := f(Tr(X1), l r (X2) , . . . ,  7r(X.)) 
for all 7r • G,~. Then ~r(a) = a,- ~r(-f)  = -Tr(f), 7r(fl + ,~) = ~r(fl) + ~r(f2) and 
7r(fl • f2) = ~( f , ) "  7r(f2) for f ,  fl,f2 6 K[Zx,.. .  ,X.], a 6 K and v • Gn. 

orbite.(t) = ~,e{,~(t)l,eV.} s is the G.-invariant orbit of t • T,~. Then orbitv.(t) is G.-  
invariant, deg(orbitc.(t)) = deg(t), and if f 6 Invag and at • M,(f) ,  then Mn(a" 
orbited(t)) C Mn(f). f 6 Inv , .  iff f is a finite K-hnearc0mbination of Gn-invariant 
orbits. 

f)G. is the symmetry operator for the group G.  with ~a~ (f)  = 1 Ia.I ~ e a .  ~r(f). Then 
~G.(fl -4- f2) = ~G.(fx) -4- f)G.(f2~ and fla.(af) = a~a.(f), for f ,  f l ,f2 6 K[X1, . . .  ,X,~] 
and a 6 K. It is obvious, that f • Inv , .  ~ f = f l c . ( f )  and that  deg(f) = deg(~c.(f)). 
Invag is the commutative ring with 1 of G,,-invariant polynomials in K[Xi , . . . ,  X,]. A 
finite subset {¢1 , . - . ,  Ck} of Gn-invariant orbits of Inv , .  \ K is a finite basis of I nv , . ,  if 
I n v , .  = {f (¢ l , . . . ,~bk)  I f • K[X1,...,Xk]}. Inv , .  is finitely generated, if I nv , .  has a 
finite basis. 

The theorem of E. Noether shows, that Inv , .  has a finite basis, if char(K) = O. This basis 
is the set of all G,~-invariant orbits with total degree < [G~ [. The proof of the theorem is 
constructive and provides therefore a method based on comparsion of coefficients for the 
computation of a represention of any G.-invariant orbit in I n v , .  The theorem does not 
hold for polynomial rings over fields with char(K) # 0 and even more, it is wrong over an 
arbitrary ground ring R. 

The work reported in [Ghbe192] presents a top-down-reduction method and shows, that  
Invag has a finite basis. This basis is the set of all special G.-invariant orbits with maximal 
variable degree < max{1 ,n -  1} and total degree < max{n ,n (n -  1)/2}. The standard 
algorithm reduces every non speciaiorbit, and furthermore, the method works for arbitrary 
ground rings R. Special G,~-invariant orbits are defined as follow: Let t = X[ 1 . . .  X~" • Tn 
and let I C { 1 , . . . , n }  a set of indices. Then t is k-connected w.r.t. I, if the following 
conditions are satisfied: 

1. II[ = k and max{el,. . . ,en} =max{e, ] i 6 I} 

2. The absolute difference between the decreasing ordered elements of the set {ei I i 6 I} 
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is less than one. 

t is maximal k-connected, if t  is not (k+l)-connected or k = n. f E K[X1 , . . . ,  X.] is (maxi- 
mal) k-connected, if t is (maximal) k-connected for all t E Tn(f). Let t = X[ '  . . .  X~- E T. 
maximal n-connected and let ei = 0 for a 1 < i < n or ex = . . .  = e.  = 1. Then t 
is a special term and orbitc. (t) is a special G.-invariant orbit. It is obvious, that  every 
special G.-invariant orbit has a maximal variable degree _< max{l ,  n - 1} and total degree 
< max{n, n(n - 1)/2} and that there exists only a finite number of special G,-invariant 
orbits. 

RGB(.) (ERGB(.))  is the (extended) Buchberger algorithm. Then for any finite C = 
{ fy , . . . , f t }  C K[X1, . . . ,Xn]  {pl , . . . ,p r}  = RGB(C) ({Pl = ~ g l i f i , . . . , p r  = ~9ri f i}  = 
ERGB(C))  is the (extended) reduced Groebner basis of the finitely generated ideal Id(C) 
w.r.t, a given term order < E AO(T.).  

3 Representation, basis-construction a n d - t e s t  

L e m m a  3.1 Let B = {¢1 , . . . , ¢ t}  a finite basis of Invvg and P = RGB(B) .  Then 
f E I n v ~ .  .'- f e ld(B) and f e lnv~g ~ f ~ 0 .  

P r o o f  f E Inv , .  :" f = P ( ¢ I , . . . , ¢ t ) , p  E K[X1, . . . ,X i]  : . r e i d ( B ) .  ~. f -.-~ 0. O 

L e m m a  3.2 Let B1 = {¢a , - . . , ¢h} ,  B2 = {71,.-.,712} finite bases of I n v , .  Then 
Id(B1) = Id(S2). 

P r o o f  

1. Id(B1) C Id(B2): f E Id(B1) ,. f ', ,1 t2 - -  " = Y ' ~ ' i = i  gi~bi - -  ~ " ~ i = 1  9iPi(71,.  • • , 7 / 2 )  = Y ~ - i = l  hi'Yi 
',- / E Id(B2). 

2. Id(B2) C_ Id(B1): f E Id(B2) ." f = ~t~x gi~ = ~12=1 gi/~,(¢l, " - ,  ¢ ' , )  = ~,=1'1 £,¢~ 
" > f E Id(B1). O 

L e m m a  3.3 There exists an algorithm for every finite basis B of Inv , . ,  which represents 
any f E InvGg as a polynomial over the field K in the polynomials of the finite basis B. 

P r o o f  We present such an algorithm: 

A l g o r i t h m  3.4 

1. INPUT f E Inv, . ;  finite basis B = {¢1 . ,¢ ,}  of Inv , . ;  {py t 
' ' "  = E i = l g l i , C i , . . - , P r  = l 

~2i=1 9r~¢i} = ERGB(B));  term order < E AO(T,~); 

2. IF f E K THEN q := f; RETURN; ENDIF; 

3. / := E~=1 giPi = Eti=l Oiffyi; 

4. f := f~c,(f)  t 
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Recursive call [ q~ E 
5. FOR i = 1 TO l DO for g/G.(~0i) L f/G.(g~) = 

t 6. q ;= ~i=l qiX{; 

7. O U T P U T  q e K [ X 1 , . . . , X , ]  with f = q(¢1 , . - . ,¢ , ) ;  

K[Xt,...,Xtl ] ; 

T e r m i n a t i o n  ~ c o r r e c t n e s s  Termination is obvious, because deg(~a.  (~i)) < deg(f)  for 
1 <_ i _< I. The algorithm is correct, because every f E IncA. has a representation as a 
polynomial over the field K in the G,~-invariant orbits of the finite basis B. 

This proves lemma 3.3. [] 

C o r o l l a r y  3.5 Let B a finite basis of Invvg and /~ C IncA. \ K finite with RGB(t~)  = 
R G B ( B )  w.r.t. < E AO(T.) .  Then /~  is a finite basis of I n v , .  

P r o o f  This is a direct consequence of lemma 3.3 and algorithm 3.4. [] 

Corollary 3.5 enables us to decide 

• if any arbitrary finite subset of Inv , .  \ K is a basis of Invvr, and furthermore, 

• if a subset of a finite basis of I nv , .  is a finite basis of IncA.  

L e m m a  3.6 There exists an algorithm to. decide, if a finite subset B C Invvr \ K is a 
basis of I n v , .  

P r o o f  We present such an algorithm: 

A l g o r i t h m  3.7 

1. INPUT B = {¢1, . - . ,  ¢l} C Inv , .  \ K; term order < E AO(T.);  

2. I S o r N O T  := R G B ( B )  = RGB({orbi tc . ( t )  [ t E T.  special}); 

3. O U T P U T  I S o r N O T  := true (false), if B is (not) a finite basis of Inv , . ;  

T e r m i n a t i o n  &: c o r r e c t n e s s  Termination is obvious. Correctness is a consequence of 
corollary 3.5, because {orbitc.(t) I t E T,~ special} is a basis of I n v , .  

This proves lemma 3.6. D 

D e f i n i t i o n  3.8 

1. Let B = {¢1, - . . ,  ¢t} a finite basis of I n v , .  Then B is called reduced, if B \ {¢~} is 
not a finite basis of InvGg for 1 < i < I. 

2. Let < e AO(T,~) and B = { f l , . - - , .~}  with .~ e K[X1, . . . ,X ,~] ,  1 < i < I. Then C 
-- (gy,g2, . . . ,g , )  :-- ord(B, <), if {gl , . . - ,g l}  = S and gl _< . . .  <_ gl, gl := f i r s t (C)  
and (g2, . . . ,  gz) := red(C). 

3. Let < e AO(T,~) and Bt = ( f t l , . . . , f l h ) ,  B2 -- ( f21 , . . . , f 2h )wi th .h i  E K[X1, .  ..,X,~], 
1 < i < 2 ,  1 < j  <11,12. T h e n B l < M  B2, i f ( f l i = f 2 i f o r  1 < i < j  a n d f l j  < f2j 
for a j e {1 , . . . ,  min{/t,/2}}) or (fli = f2i for 1 < i < It and ll </2) .  
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L e m m a  3.9 Let < E AO(T,) and B a finite basis ofInv~ . Then there exists an algorithm, 
which computes a finiie basis/~ C B, such that  ord(13, <) <M ord(C, <) for every reduced 
finite basis C C B of InvGg with C ~ B. 

Furthermore, the finite basis /3 is reduced, if (~1,...,71) = ord(B,<) and deg(Tk,) <_ 
deg(~2) for all 1 _< kl _< k2 _< I. 

P r o o f  We present such an algorithm: 

A l g o r i t h m  3.10 

1. I N P U T  B = {¢1 , . . . ,  ¢1} finite basis of Inv , . ;  term order < E AO(T,); 

2. 13:=0;P:=0;  

3. L := ord(B, <); 

4. WHILE L ¢ 0 DO 

5. 7 := .first(L); L := red(L); 

6. ~ --~ h; 

7. I F h ~ O T H E N I 3 : = t 3 U { 7 } ; P : = R G B ( P u { h } ) ; E N D I F ;  

8. ENDWHILE; 

9. OUTPUT finite basis /3 with ord(t3, <) <M ord(C, <) for every reduced finite basis 
C C_ B of Inv , .  with C ¢ / 3 ;  

T e r m i n a t i o n  & c o r r e c t n e s s  The algorithm terminates, because B is a finite set of Gn- 
invariant orbits. For the correctness assume, that  there exists a reduced finite basis C C B 
with C ¢ /3 such that  (~l , . . . ,~h) = oral(C,<) <M oral(B,<) = (¢1, . . .¢t2) .  Then 
there exists a 1 < j < 12 with ?i = ¢i for 1 < i < j and ~j < Cj. Then 7j ~ 0 

with P = RGB({71,. . . ,Tj-1}) = RGB({¢i , . . .¢ j_i}) .  '.- C \ {Tj} is a finite basis 
(contradiction). 

Assume now, that  (71, . . .  ,fl'l) = ord(B, <) such that deg(Tk,) _< deg(Tk~) for all 1 _< kl _< 
k2 _< l and ./3 with (¢x,..-¢z2) = ord(B, <) is not reduced. Then there exists a max. j < 12 
such t h a t / 3  \ {¢j} is a basis of I n v , .  

',- = Ei<j h, ,i + E,>j h &  

'.. hi e K for i > j and deg(~,i) = deg(~,j) 

'.- hi = 0 for i > j and deg(¢i) > deg(¢j) 

~- S k > j with Ck = ~i<kgi¢i 

:" ~k e Id(¢l , . . . ,  Ck-1) ~ Ck ¢ 13 (contradiction) 

This proves lemma 3.9. [] 
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4 E x a m p l e s  

Defini t ion 4.1 Let tl,t2 • T,. Then orbita,,(tl) < ~  orbita,~(t2), if (desc(tl) <l¢, desc(t2)) 
or (desc(tl)--~ desc(t2) and orbita,(tl) <t,, orbita,,(t2)). 

R e m a r k  4.2 Algorithm 3.10 computes for every n with <lex as term order a smallest 
finite basis S of InvsQ (InvAQ) for B--- {orbits,,(t) lt  • T, special} (B--  {orbitA.,(t) It • 
T,~ special}) and L := ord(B, <z~x). The polynomials in B are the elementary symmetric 
polynomials (and " .--1 n-2 orbztA,(X1 X2 ...X,~_2X,)). 

Example s  4.3 The following complete lists of highest terms of Gn-invariant orbits of a 
finite basis of InvQa. as well as the numbers of G,-invariant orbits in the tables below where 
obtained by using algorithm 3.10 with <lex as term order, B = {orbita.,(t) ] t E T, special} 
and L := ord(B, </*~). 

O 

Inv~, 
InvQz2, 

InvzQ3: 

InvzQ,: 

InvzQ 5: 
x x,, 
InvQD3: 

InvQD,: 

InvQnl : X1 

InvQo2: X1, X1X2 

X1, X1X2, X1X2X3, X~Xa 

Xl, X1X3, X1X2, XiX2X3, XlX2X3X4, X12X4, Xl2X3X4 

Xl, XlX3, XlX2, X1X2X4, XlX2X3, X1X2X3X4, XlX2X3X4X5, X1225, 
XzX , XzX, x2x,  

XI, XiX2, X1X2X3 

X1, XlX3, X1X2, X1X2Xa, XIX2XaX4 

InvQos: X1, XlX3, XlX2, XlX2X4, XlX2X3, X1X2X3X4, X1X2X3X4Xs, Xl2X3X4, 
X~X2X3X5 
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n special 
1 1 
2 2 
3 4 
4 8 
5 16 
6 '32 

Number of Sn-invariant orbits over Q 
total degree -<1Sn I special/total degree -<l Sn I 

1 1 
3 2 

22 4 
1291 8 
. . .  16 
. . .  32 

basis 
1 
2 
3 
4 
5 
6 

Number of A~-invariant orbits over Q 
special total degree <[ Am [ special/total degree <[ An [ basis 

1 1 1 1 
3 2 2 2 
5 7 5 4 
9 181 9 5 
17 . . .  17 6 
33 . . .  33 7 

Number of D,~-invariant orbits over Q 
special total degree -<l D ,  1 special/total degree -<1Dn I basis 

1 1 1 1 
2 3 2 2 
4 22 4 3 
14 91 14 5 
61 346 61 9 

414 1724 294 12 
3416 8576 1481 26 

Number of Zn-invariant orbits over Q 
special total degree -<1Z,, l special/total degree -<1Zn I basis 

1 1 1 1 
2 3 2 2 
5 7 5 4 

L 

20 19 11 7 
109 51 27 15 
784 159 89 20 

6757 491 266 49 

n 

1 
2 
3 
4 
5 
6 
7 

n 

1 
2 
3 
4 
5 
6 
7 
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