
Computer lab work on theory

Emma Enström
School of Computer Science and

Communication, KTH
Lindstedtsvägen 3

SE-100 44, Stockholm, Sweden
emmaen@csc.kth.se

Viggo Kann
School of Computer Science and

Communication, KTH
Lindstedtsvägen 3

SE-100 44, Stockholm, Sweden
viggo@nada.kth.se

ABSTRACT
This paper describes an attempt to introduce computer lab
exercises on NP-completeness proofs in a class already con-
taining computer lab exercises on algorithms and data struc-
tures. In the article we are interested in the answer of the
following question: Can the students feel that their under-
standing of theoretical computer science is improved by per-
forming a computer lab exercise on the subject?

The class is mandatory for students in a computer science
program, and is taken by about 130 students each year. The-
ory of NP-completeness proofs with reductions has previous
years been examined on an individual assignment with writ-
ten solutions handed in and later explained orally by the
student to a teacher. The new assignment is performed as a
computer lab exercise where students are working in small
groups of two. This exercise is placed before the individual
assignment, and is examined first by running automated test
cases and later by an oral presentation in lab to a teacher.

An improvement can be observed of the students’ aver-
age results since the new assignment was introduced. This
is not enough to prove the benefit of using the new assign-
ment. However, the responses to questionnaires at course
evaluations show that almost all students think that the as-
signment really gave them better understanding of polyno-
mial reductions in NP completeness proofs. The students’
result on the new assignment corresponds closely to their
results on the following individual assignment. Seemingly,
the new assignment predicts accurately who is going to pass
the following assignment.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science education

General Terms
Experimentation, Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE 2010
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
reductions, learning theoretical computer science, computer
lab work

1. INTRODUCTION
Computer lab assignments in computer science education

are a common and successful way to get students to train
their ability to solve programming problems, to program,
and to make them learn different constructions in program-
ming languages and concepts of programming. They are
nowadays used in almost every computer science course ex-
cept in plain theory courses. We think that there are ele-
ments of theoretical computer science that may be trained in
computer lab assignments, which is traditionally not done,
except for algorithms and automata simulations [8].

Algorithms, Data structures and Complexity is a compul-
sory course in the second year of the Computer Science and
Engineering Master of Science program. The course is taken
by about 130 students each year. Two thirds of the course
is theoretical and one third consists of lab assignments. The
theory of NP-completeness proofs and reductions has pre-
viously been examined mainly in an individual home as-
signment, where the student hands in written solutions and
later explains them to a teacher. Since this assignment was
considered difficult by many students we invented a new
computer lab assignment, on a basic difficulty level, which
students work with in small groups of two. This assignment
is placed before the individual assignment, so that the stu-
dents should be better prepared to solve the harder problem.
In this paper we describe this new assignment and evaluate
it using student feedback, and we also try to measure how
the student performances have changed. The computer lab
assignment is aided by an automated “judge”, a system orig-
inally constructed for running test suites on submissions to
programming contests, the same judge that is used for other
lab assignments in this course.

Among the other exams for this class are two individ-
ual home assignments, one on algorithms and the one on
NP completeness proofs mentioned above, a final written
mandatory exam on the basics of theory, and an optional
oral exam for higher grades. The class was a class that the
students needed to work continuously with from start, al-
ready before the new assignment was added. Perhaps it is
so that they worked continuously with other things than the
theory of NP previously.

Parallel to the introduction of the new assignment, the
grading system was adapted to the European Credit Trans-
fer System ECTS with rewritten criteria and the structure



of the existing written exams slightly altered. Because of
this it is problematic to compare results from the periods
before and after the introduction.

2. PREVIOUS STUDIES
Reductions as a “habit of mind” is a concept dealt with

by education research [3](p 133) . In the context of proving
NP-hardness the originally “hard” subject of reductions is
complicated by using reductions backwards or as a thought
experiment. You do not solve a new problem by using a
previously known solution of another problem, you assume
that you can solve the new problem and show that then you
would also be able to solve a known NP-hard problem. It
is possible that all proofs by contradiction are considered
unnatural by the students, but here the principle only re-
sembles proof by contradiction. (Assuming you can do this,
you would also be able to do that). Reductions could be
considered to be a threshold concept [7], proving hard to
learn by many students, but once mastered a new level of
understanding of complexity is reached.

Higgins and Bligh implemented an assignment in a “dia-
gram based” domain with automatic assessment [5], includ-
ing producing certain components for the diagrams for stu-
dents to use. They argue that one of the benefits is that the
students can practise an unlimited number of times before
committing on a final version of their diagram, increasing
their performance considerably. They also argue that forma-
tive assessment is considered expensive or resource-intense
and automatic assessment is considered the opposite, mak-
ing it ideal to perform formative assessment by automatic
assessment methods and tools. The less positive findings
were that some parameters are completely left aside of the
process, for instance the readability of the diagram pro-
duced, good overall feedback on the students’ performance
and meaningful naming of the diagram components. Also
there could be too much focus on shortcomings as the feed-
back is associated with failing test cases. The authors ac-
count for several criteria of good formative feedback [5].

These criteria are that good formative feedback should
facilitate self-assessment, encourage dialogue between stu-
dents and with teachers, clarifying what is to be considered
“good performance”, provide opportunities to improve, pro-
vide information to students about their progress, encour-
age positive beliefs, and provide information to the teacher
about how the teaching was working.

In [9] Suleman describes a system, resembling the one used
in this study, for automatic assessment. Among the conclu-
sions are that some students set off to try to outwit the
system rather than solving the problem, and actually some-
times believe that they have solved the problem in their
assignment while the system is still making trouble. Other
findings are similar to [5], the inability of the system to
“correct” the solution aesthetically, for instance concerning
variable names, and also the inability to deal with almost
successful solutions.

Often presumed benefits from lab exercises in science, or
rather arguments that are used to recommend lab exercises
since they are presuming beneficial effects on learning, are
described by Hult [6](p 48) as giving support for learning
that is meaningful, socializing the student into the scientific
society, providing skills, and motivating the students.

Hult’s attitude towards these presumed benefits is critical.
It cannot be taken for granted that the laboratory exercises

really fits into the class at all. He argues that the students
learn specific techniques and methods, without even having
a fair chance of understanding them. A majority of the stu-
dents can leave the lab without understanding what they
have been doing. In addition to that, the exercises are de-
signed to reinvent knowledge or illustrate theories instead
of, as in research, to invent and discover new knowledge. He
also means that post-lab activities should be used more often
to show the connection between lab exercises and theory.

Hemmi [4] writes about two aspects of the concept of
proof, explanation and conviction, and that they can oc-
cur separately. Students who meet proof only to explain
theories are not as familiar with the aspect of convincing
an audience of the truth in some claim, and therefore rather
use more intuitive approaches to get convinced. This is done
also among mathematicians, but they use the intuitive feel-
ing of something being true as an excuse for constructing a
proof.

3. THE NEW ASSIGNMENT
The design of the new exercise was motivated by the wish

to give the students tools for evaluating their solutions and
get some feedback before presenting their solutions to the
teacher, in a part of the course that each year revealed a
need for more practicing among many students: the subject
of NP-completeness proofs. This should be done without
causing extra work load on the teachers. Standard benefits
of formative and automated assessment are valid in this sit-
uation. The need for an extra assignment was dealt with by
translating an existing “algorithm” for proving NP-hardness
to an exercise in transforming input from one problem to
input for another. Given that problem A is known to be NP
complete and problem B is a problem previously unknown,
then for any instance x of A you can represent the reduction
as

A(A’s input x) =

y ← some transformation of x

return B(B’s input y),

where B(y) has the same answer as A(x). Correctness of
the reduction, and that the problem is actually in NP, is
proven by the students in an oral presentation after they
have worked in pairs with the exercise. We provide input
specifications for the problems involved, and the students
write programs that via standard in and standard out per-
form necessary operations on inputs of one problem to trans-
form it to an instance of another problem. During their
work, they are allowed unlimited number of submissions of
their program to an automated assessment system, that runs
a test suite and complains by email if the test cases fail. The
system was designed to aid programming contests but is also
used for checking correctness of other laboratory exercises
of this particular course. It is relatively similar in function
as the system web-based system architecture described by
[1]. The system can either compare output of the students’
program with output from a reference solution, or test the
output of the students’ program for certain criteria. There
are mainly two things that the students can get help with
from the system in this case: if they are trying to reduce
the wrong problem, they will produce illegal data format
and get complaints that reveal what kind of data the sys-
tem expected, and if there are special cases that they have
not thought about, the instance of problem B could have



Figure 1: Overview of the task and the reductions

the wrong answer and then they know that they are not
finished yet. To know, before presenting the solution to a
teacher, that the solution meets with all criteria that the
test case constructor could come up with, is supposedly re-
leasing some pressure on the students as their thoughts can
not be completely wrong.

The assignment considered the computational complexity
of a “Casting problem”. Given a set of actors, a set of roles
with lists of possible actors for the role, and a set of scenes
where different roles played together and hence was not al-
lowed to be occupied by the same actor, the problem is to
determine whether it is possible to fill all roles according to
the restrictions. An additional restriction is that two of the
actors are very valuable to the people responsible of casting
and should always be assigned at least one role each. Since
they hate each other, these divas are never allowed to play
in the same scene. The task was to show the NP-hardness of
the Casting problem by implementing a reduction of either
Graph coloring or Hamiltonian circuit to it. The reduction
is straightforward from Graph coloring, which the students
are supposed to realize.

Test cases for the automated testing are instances of graph
coloring where the system knows the answer. Since the cast-
ing problem instances, that the programs of the students
produced, cannot be predicted, we have reduced the cast-
ing problem to SAT and an existing SAT solver handles the
problem instances, see Fig. 1.

There is one technical complication in the setup, namely
that the students might very well produce instances of the
casting problem that reduced to SAT cannot be solved by
the SAT solver in reasonable time. This mainly happens
when the students perform unnecessary or dysfunctional op-
erations in their program. Then the system will abort and
report that it is not capable of checking this submission. The
students then have the choice to try changing their program
to make it pass all tests in the stipulated time, or , convinced
that they are right, still present their solution to a teacher.

The main didactical complication is that the students can
perceive the assignment as a marked trail, where they by
trial and error are supposed to get the system to accept their
solution. The risk of this is meant to be reduced by the fact
that there are two problems to choose from, but in reality a
student can go for the same choice as everyone else. There is
also a wish from the students’ side to get more details of the
test cases, which in this assignment would support the trial-
and-error strategy that would place the correctness proof
construction less in focus. Therefore, the error messages
from the system are deliberately sparse. At the same time,
it would be convenient to give more detailed hints at some
point during the process.

The assignment was presented as an experiment in 2007
and some students volunteered to try it. After that, another
group of students were required to solve the same problem
as compensation for previous failures at or lack of results
for the individual assignment on the subject. All students’

results, questions and assignment and course evaluation an-
swers with comments were collected and analyzed qualita-
tively, and some improvements were made to the assignment.
After this, it became a mandatory part of the class and
has been used as such for two years. The students’ grades
on different exams before and after the assignment becom-
ing mandatory have been compared, and course evaluations
have been analyzed.

4. RESULTS
The results were observed more attentively in 2007, and

the internet evaluation was more extensive that year. Main
differences between the different years is that a larger group
of students claimed that they learned from the assignment
in 2008 and 2009. The way the students behaved and the
type of questions they often asked were similar. Some stu-
dents were trying to write a program to solve the casting
problem. This resulted in error messages on the data for-
mat, which at least could help the students to understand
that something was wrong. The students as a group could
be considered to have a practical orientation towards the as-
signment. Some questions were emailed to teachers where
students asked about the data formatting, both as a result
of trying to reduce the wrong problem and for other reasons.
The data formatting issues seemed to be considered the key
to success.

4.1 Interaction with the system
When they submitted solutions to the system, the stu-

dents often continued doing this repeatedly even after their
solution was accepted. Their interaction with the system
running the test suite was iterative. The design clearly pro-
motes competition. They competed for the shortest running
times as this was the only quality criteria returned when a
solution was accepted.

4.2 Connection with reality
Comments from a few students about “not introducing

any scenes that did not exist in the first place” as a reason
for not dealing with the reduction in the simplest possible
way showed that they expected a little too much from the re-
duction. They actually wanted a direct connection, perhaps
1-1, between the problems. When you have an arbitrary in-
stance of graph coloring, you need not to be concerned with
whether there were any scenes in that instance. The scenes
are part of the instances of casting. The students were not
comparing structures, they were seeking for the “right” way
to represent graph coloring as casting.

Others tried to get rid of unnecessary information that was
allowed in both graph coloring and casting, for instance dou-
ble edges, or attempted to first find out which roles where all
in the same scenes as one another. That would correspond
to solving another NP complete problem, clique, which is
not allowed when performing a reduction that has to have
polynomial running time.

Some comments from students during exams revealed that
they interpreted the method as “showing equivalence be-
tween problems” not on a structure level but on a concrete
level – all instances of the new problem would need to get
(at least or exactly) one instance of the known problem
“mapped” on it in order for this idea to work. Trying to
get convinced that this will happen includes something sim-
ilar to trying to reduce in both directions between problems.



This is typically more complicated than designated by the
assignment constructor, and the student that attempts this
will indeed feel bothered by the problem.

4.3 Evaluation of the assignment
A moderate try to evaluate the results of year 2008 and

2009 shows that the average grade for the second individual
assignment, on the topic of NP completeness proofs, had in-
creased slightly compared to the grade on the first individual
assignment (on algorithms), suggesting that the assignment
on NP completeness proofs was these years not perceived as
more difficult than the rest of the course, as it was in 2007.
Results are shown in Table 1.

Year Assignment 1 Assignment 2 failed2
failed1avg. grade failed avg. grade failed

2007 3.3 9% 3.2 13% 1.4
2008 1.5 22% 1.8 21% 0.95
2009 2.2 17% 2.3 14% 0.82

Table 1: Average grades on the individual assign-
ments. Absolute values of grades are not compara-
ble between years.

Since there could be other causes for the difference in per-
formance, these results need to be accompanied by other
indications. In the evaluations 2008 and 2009 as many as
78% and 69%, respectively, answered that the lab assign-
ment gave them better understanding of NP reductions, and
only 6% and 3%, respectively, did not know NP reductions
beforehand and did not get better understanding.

There is also a correlation between the students’ results
on the computer lab assignment and the following individual
assignment on the same subject. If nothing else, the results
on the lab assignment seem to predict whether or not the
student will pass the next assignment.

5. DISCUSSION
How do the descriptions by Hult [6] translate to computer

science, and theoretical computer science in particular? By
meaningful we can refer to learning of general skills and
habits of mind. The term can be explained by opposing it
to learning details about problems or algorithms, or scaf-
folding for learning the specific details about how to solve
the casting problem instead of the concerns to deal with
while constructing a NP completeness proof. The socializa-
tion process relevant for theoretical computer science can
also be thought of as assimilating habits of mind. It could
be gradual adaptation of the way of expecting, dealing with
and producing formal proofs along the practical work, or
thinking of reductions as a general method for solving prob-
lems as well as for proving. The skills relevant in computer
lab exercises in general are programming and problem solv-
ing skills, but in theoretical computer science also proving
skills are relevant. The motivational part of the new exer-
cise seems to be the automated testing system. Interaction
with the system, that is, iterative submissions of code to it,
is frequent even after the system accepting the solution.

The examination demands that the student understands
what has been showed by the testing system and where to
give complementary information to fulfill the proof. The
process, however, is not likely to stress all parts of the proof
equally. Few students think it is relevant to formally state

why their solution has a particular design, even if they give
vague arguments that shows what they have been consider-
ing during the design process.

What students already know of when starting with the
assignment is firstly the system. This could give them a push
in the right direction. Further, they have been participating
in classes where NP-completeness is discussed and have, if
they are ambitious, practised on several problems provided
by the teachers.

5.1 Framing of the assignment
Framing of the assignment is essential for its ability to ful-

fill its purposes. During the first year, the framing was not
the desired one. The framing of the assignment once it be-
came mandatory fits to the description of pre- and post-lab
activities described by [6]. With questions on theory hint-
ing important features to take into account, the assignment
being placed where its learning outcome supposedly is high
and it becoming a mandatory part of the examination, the
assignments fits into the class and can also be used at a time
where it can support learning.

5.2 The criteria of good formative feedback
The assignment described in this article matches some of

the criteria accounted for by [5]. It encourages to dialogue
since the students are working in pairs and it provides op-
portunities to improve since there is no limit of submissions
to the assessment system. The information to the students
is not considered high-qualitative by the students, but it is
not clear whether they are comparing the information in the
feedback to intended purposes or to expectations of feedback
far beyond what we want to provide. The teacher gets in-
formation on the students succeeding or not, but no specific
information about how to improve teaching. Positive beliefs
are probably only encouraged by the students that are suc-
cessful in their task, but on the other hand this is meant
to be, and is, a vast majority. However the failure in sub-
mitting a program that is accepted might enforce negative
beliefs, especially if “everyone else” apparently manages it
well. The assignment is not flexible in what is requested by
the students to get certain feedback, and this is one point
on which improvements would be desirable but difficult.

5.3 Clashing of purposes
That students were eager to have more information about

the data formatting maybe depended on the way the sys-
tem gave its error messages – it mainly complained about
data formatting. Complaints occurred when the students
tried to do something less correct and the system was unable
to interpret that. Students were also concerned about the
feedback. Since the error messages contained information
on what the system expected to read, this ought to result in
the student finding out about his or her mistake. Of course,
the system will not be able to give feedback on the origi-
nal idea of the students’, it can only tell whether the data
supplied by the students’ programs is a valid instance of the
casting problem. If so, it solves the instance produced by
the program and compares the solution to the known solu-
tion of the problem instance of graph coloring. When these
match, the program is accepted. This does not mean that
anything goes at the presentation – if there are severe errors
the students will not pass the presentation even if the sys-
tem accepted their program. However, this was not the issue



that the students were complaining about. They wanted to
know the test case specifications, they wanted information
like “you failed on this particular test case”. The level of
detail that we would like to supply is between the current
level (wrong format or direction of reduction/fail/pass) and
test case specifications.

The iterative interaction combined with the requests for
more information about the test suite can be interpreted
as attempts to use the system for test-driven development.
This might be a useful strategy for professionals, but in that
case they also have to construct their own test cases. Here,
two aims of the assignment clash, namely the aim to give
feedback through the process and the aim to give the stu-
dents an opportunity to practise reductions in the context of
NP before the individual assignment. Proving a reduction
is correct can hardly be handled by an unknown automated
test suite, it lies in the design of test cases. Our findings
here are consistent with those of Suleman [9] – students can
be working on outwitting the system, with the assignment
only as side-scene if they solely wish to get acceptance from
the system.

At least two different approaches are possible to avoid the
clash between different aspects of an assignment. One ori-
gins from programming contests, where students interaction
pattern differs very much from when used in class. In a
programming contest, submitting a solution that is not ac-
cepted renders penalty. This feature is not used in class be-
cause it would make it impossible to aim for feedback during
the process, and the findings of Higgins and Bligh [5] sup-
port this choice as they have seen students’ results improve
when allowed to practise in interaction with an assessment
system an unlimited amount of iterations. The other alter-
native, that could keep the students from requesting more
test info, is to simply ask them another question: to pro-
vide a test suite that can be compared to the present one
by the system. Instead of performing the reduction, the
task would be designing test cases that could be used for
determining whether a solution is likely to be OK. Perhaps
this better resembles the task to perform a reduction with
its correctness proof. The black box would not contain test
cases, rather different programs designed to (not) perform
the task of reducing in various levels of success. As a second
step, the students could do the present assignment, reducing
with support from a system.

5.4 The expectations of “reality”
The tendency to treat the reduction as a connection be-

tween problems, or instances of problems, already existing
can be compared to the conclusions of [2, 3], that students
tended to reduce abstraction. Some students that tried to
solve the casting problem instead of reducing graph color-
ing, perhaps considered it “cheating” not to solve it, as the
students of Armoni et al. If you are merely stating that in-
stances of one problem can be transformed to a subset of the
instances of the new problem, this does not seem enough to
some students.

5.5 Further evaluation
It is well-known that it is troublesome to obtain certain

proof of this assignment being successful. If we consider the
new assignment useful and important, it would not be ethi-
cal to not give it to all students, so there can be no control
group. One other idea could be producing a different type

of assignment, that we also believe is beneficial. Then the
students could be divided into groups presenting different
assignments and their results could be compared. Unfor-
tunately, if neither of the assignments would be good, this
would not be visible in that comparison. It is possible to ar-
gue that the mere addition of an assignment makes the stu-
dents study harder, and therefore increases their knowledge.
In that case, we can assume that any assignment added to
the class would have provided an opportunity to learn more
for the students. This makes it somewhat more interesting
to compare assignments without being able to measure the
benefit.

6. CONCLUSIONS
We have shown that the addition of a computer lab exer-

cise on theory is likely to improve the possibilities of learning
theory in class. However, it is obviously a difficult task to
evaluate teaching methods, especially if they are supposedly
beneficial for the students and already running.

7. REFERENCES
[1] M. Amelung, P. Forbrig, and D. Rösner. Towards

generic and flexible web services for e-assessment. In
ITiCSE ’08: Proceedings of the 13th annual conference
on Innovation and technology in computer science
education, pages 219–224, New York, NY, USA, 2008.
ACM.

[2] M. Armoni. Reductive thinking in a quantitative
perspective: the case of the algorithm course. In
ITiCSE ’08: Proceedings of the 13th annual conference
on Innovation and technology in computer science
education, pages 53–57, New York, NY, USA, 2008.
ACM.

[3] M. Armoni, J. Gal-Ezer, and O. Hazzan. Reductive
thinking in undergraduate CS courses. In ITICSE ’06:
Proc. 11th ann. SIGCSE conf. on Innovation and
technology in Comp. Sci. education, pages 133–137,
New York, NY, USA, 2006. ACM.

[4] K. Hemmi. Approaching Proof in an Community of
Mathematical Practice. PhD thesis, Stockholm
University, Dep. of Mathematics, Stockholm, 2006.

[5] C. A. Higgins and B. Bligh. Formative computer based
assessment in diagram based domains. In ITICSE ’06:
Proc, 11th ann. SIGCSE conf. on Innovation and
technology in Comp. Sci. education, pages 98–102, New
York, NY, USA, 2006. ACM.

[6] H. Hult. Laborationen – myt och verklighet. CUP:s
rapportserie 6, Linköpings universitet, 2000. Critical
review of different arguments for including laboratory
exercises in science classes.

[7] J. Meyer and R. Land. Overcoming Barriers to Student
Understanding: Threshold concepts and troublesome
knowledge. Routledge, 2006.

[8] S. Rodger and T. Finley. JFLAP – An Interactive
Formal Languages and Automata Package. Jones and
Bartlett, 2006.

[9] H. Suleman. Automatic marking with Sakai. In
SAICSIT ’08: Proc. 2008 ann. research conf. of the
South African Inst. of Comp. Sci. and Information
Technologists on IT research in developing countries,
pages 229–236, New York, NY, USA, 2008. ACM.


