
Broadening Accessibility to Computer
Science for K-12 Education

Mark K. Gardner
Virginia Tech

Blacksburg, Virginia USA
mkg@vt.edu

Wu-chun Feng
Virginia Tech

Blacksburg, Virginia USA
feng@cs.vt.edu

ABSTRACT
Enrollments in computer science and computer engineering
have decreased dramatically since the dot-com bubble burst
in 2000 even though it is projected that nearly three quar-
ters of all science and engineering jobs in the future will be
in these fields. Meeting this demand will require a substan-
tial effort to inspire and motivate students as early as in the
elementary school years. The challenge is to provide moti-
vational access to computer science training, particularly for
women and minorities in disadvantaged areas.

We consider three approaches for broadening accessibil-
ity to software that teaches computer science fundamentals:
(1) virtualization, (2) self-contained live CDs, and (3) web
browser-based deployment. While the work is ongoing, ini-
tial results are quite promising. Next steps include a more
formal and much wider deployment to 3rd–5th grade classes
in ten elementary schools in rural Virginia.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in
Education; K.3.2 [Computers and Education]: Com-
puter and Information Science Education

General Terms
Human Factors, Languages, Legal Aspects

Keywords
K-12, Storytelling Alice, Virtual Computing, Live CD

1. INTRODUCTION
The bursting of the dot-com bubble in 2000 led to a mas-

sive hemorrhage in students majoring in computer science
(CS) and computer engineering (CE). After peaking in 1999-
2000, interest in CS as a major dropped by a whopping 70%
between 2000 and 2005 and has since flattened to a point
where just over 1% of incoming freshmen indicate CS as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE 2010 Bilkent, Ankara, Turkey
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

their probably major [9]. The above numbers are in spite of
the fact that the U.S. Bureau of Labor & Statistics projects
that 71% of all science and engineering jobs will be for com-
puter scientists and engineers [8]. Thus, it is imperative that
we train the next generation of computer scientists and get
them started early, in particular, in elementary school and
middle school [13].

One way that many school districts have addressed the
above is to improve physical accessibility by increasing their
number of computers, thus reducing the student-to-computer
ratio. (The U.S. national average is 3.1 students per com-
puter [5].) However, improved physical access does not nec-
essarily translate to improved access to educational soft-
ware because we argue that school districts largely use the
computers as glorified electronic typewriters, e.g., Microsoft
Word and Microsoft PowerPoint, that have access to the
Internet via a web browser.

Furthermore, increasing the number of computers in schools
can dramatically increase the overall cost to the schools due
to the acquisition and recurring operational costs for the
computer but also the software that runs on it. Thus, from
a socio-economic standpoint, the divide between the “haves”
and “have nots” continues to grow. For instance, at a ru-
ral K-8 school in Virginia, the student-to-computer ratio
is over three times worse than the national average. As a
consequence, there exists a need to be able to deliver educa-
tional software to economically disadvantaged areas, which
in many cases, means being able to reach out and engage
underrepresented minorities.

On a related note, focusing on K-8 students also provides
the opportunity to engage, and more importantly, retain the
interest of females in science and engineering as it is typically
in the middle-school years that females decide that science
and engineering is “not cool” [6]. This is circumstantially
supported by the fact that 39% of the information technol-
ogy (IT), i.e., computing, workforce was female in 1980; in
2007, it had dropped to 13%.

To address the need for earlier computer science train-
ing, both to interest more students in pursuing careers in
computing related fields and to attract more women and
minorities into the profession, we propose broadening acces-
sibility to computer science software at home and at school.
Specifically, we address the issue of making it easier to gain
access to the software while simultaneously eliminating im-
pediments to deployment so teachers have the software avail-
able for teaching and students have the software accessible
to them at home for experimentation. We also briefly dis-
cuss several issues that should be considered in making such
software accessible.

Figure 1: Storytelling Alice Running in VirtualBox.

2. INCREASING ACCESSIBILITY
In this study, we consider three ways to increase accessi-

bility of software and materials to inspire future computer
scientists.

2.1 Virtualization
Students need access to hardware, software, and training

in order to be prepared to function well in today’s society.
One successful solution to the problem is accomplished by
providing remote access to resources and software through
virtualization. The outreach of universities utilizing the Vir-
tual Computing Laboratory (VCL) model [1], developed by
North Carolina State University, has been shown to be ef-
fective in increasing access to computing resources and soft-
ware, particularly for under represented minorities. Virtual-
ization enables experts in a field to create virtual machines
on behalf of others, dramatically reducing the effort required
to provide teachers with materials to support the education
of students in disadvantaged regions.

We are developing a framework for deploying virtual ma-
chines for use in K-12 schools in rural Virginia. We call the
framework SERViCE – a Scalable, Extensible, and Reliable
Virtual Computing Environment [7]. It has been used to
teach fundamental computer sciences concepts to elemen-
tary age students at two local schools using Storytelling Al-
ice (shown running in a virtual machine in Figure 1).

Previous versions of SERViCE utilized VMware Server as
the virtualization technology. As we have begun to consider
other topics of instruction, we quickly realized that only sup-
porting a single virtualization technology would inhibit the
organic growth of a community to create and share virtual
machines for education. An approach that accommodates
more homogeneity is needed.

By re-factoring and extending the SERViCE framework,
we are able to support many, if not all, virtualization op-
tions. The framework serves as a prototype of how to sup-
port heterogeneous virtualization technologies in other vir-
tual computing environments, such as NC State’s VCL.

Currently, support for VMware Server and VirtualBox
is implemented and undergoing testing. Support for Xen,
KVM, and Qemu is in the design or implementation phases.
Other technologies will be supported on an as needed basis.

Experience Report: Our experience using virtualization
to teach computer science via Storytelling Alice [11] to K-8
students suggests that slow software startup times inhibit
the engagement and attention of the students.

The time between user invocation in a virtual computing

environment and when Storytelling Alice is ready to use de-
pends on four broad factors: network communication time,
time to prepare a virtual machine, time to start the virtual
machine, and time to start Storytelling Alice. In the results
that follow, we do not measure the network latency as it
can be highly variable and is outside our control. The laten-
cies associated with the remaining operations were measured
in seconds. The test platform is our deployed SERViCE
environment, a desktop system with an AMD Athlon 64
X2 3800+ processor and 2GB RAM running the SERViCE
framework using VirtualBox.

Initial measurements on a virtual machine with a fresh
installation of Windows XP, including the Java runtime en-
vironment and Storytelling Alice, show a latency of 175 sec-
onds, of which 144 seconds is spent cloning the virtual ma-
chine from the master image. Additional experiments in-
dicate that the time to clone the image is proportional to
the size of the image. Thus, the best way to decrease the
startup latency is to reduce the time it takes to clone the
image. While a Windows installation can be stripped down
somewhat, doing so is tedious and time consuming.

Another way in which to reduce the time to clone the
virtual machine image is to configure VirtualBox to use a
shared copy-on-write image. Copy-on-write does not copy
the data. It only sets up some data structures in order
to access the pre-existing data. The startup latency after
configuring VirtualBox to utilize a copy-on-write image is
29 seconds, a six-fold improvement in performance.

To summarize, smaller images can be cloned faster and
hence exhibit lower latency. However, copy-on-write elim-
inates much of the impact of size. Copy-on-write images
provide the additional benefit of preventing “configuration
creep”. Thus, the use of copy-on-write is highly recom-
mended.

2.2 Live CD
While extremely attractive, virtualization many not meet

the needs of all the students in rural areas, primarily be-
cause it depends upon adequate network connectivity which
are less likely than in metropolitan areas. One attractive
alternative is the creation of live CDs which contain every-
thing needed to run the software.

Figure 2 shows that a live CD is an installation of an op-
erating system, support software and education applications
on a read-only compact disk. Everything that is required to
run education applications is included on the CD and con-
figured to run without user intervention. Although expertise
is required to create a live CD, only general computer skils
are required to use one. Inserting the CD into the CD-ROM
drive and rebooting the computer is all that is required to
gain access to the packaged software.1

One of the advantages of using a live CD is the fact that
it is a read-only medium and hence cannot be inadvertently
misconfigured. This alone dramatically reduces the amount
of support required to ensure that the software works as it
should in a computer lab or home environment. It is also
forgiving of the students’ explorations and encourages them

1The computer BIOS boot order must also be set to try the
CD-ROM before the hard drive. While permanently chang-
ing this setting is not overly difficult, it can be intimidating.
Fortunately, many manufacturers, such as Dell, use BIOSs
that can temporarily boot from a CD-ROM if a specific key
is pressed during the boot sequence.

Operating

Systems

OpenStarLogo

VMware

Educational

Software

Supporting

Software

Live CD

Figure 2: Anatomy of a live CD.

to take chances which enhances learning. Any mistakes can
be reverted by rebooting the computer.

Because it is read-only, however, a live CD does not allow
a student to save partial work. There are at least three solu-
tions to this problem. First, the live CD can be configured to
mount the computer’s hard drive so students can save their
work as before. Alternatively, the live CD can be configured
to allow their work to be saved to a network file share. The
former is probably more appropriate for live CDs intended
to be taken home while the later may be more appropriate
for school use. Finally, the complete environment can be
installed on one partition of a USB flash drive instead of a
compact disk to create a live USB drive. A second partition
can then be used to store the student’s data.

Experience Report: We have created a live CD contain-
ing Storytelling Alice to teach elementary and middle-school
students computer science concepts. We chose Storytelling
Alice because the story board format engages the students
in those age groups better than traditional approaches, es-
pecially for female students.

Storytelling Alice can be freely distributed but previously
only ran on Windows which cannot. We have ported Sto-
rytelling Alice to Linux to avoid any issues of copyright in-
fringement. We are in the process of folding those changes
back into the mainline software distribution. We are also
porting the changes made to create Storytelling Alice back
onto the mainline Alice 2 distribution.

Concerning startup latency, the time it takes to boot a live
CD is longer that the time it takes to boot a copy-on-write
virtual machine. Depending on the speed of the computer
and the CD-ROM drive, it can be as much as 1–3 minutes.
The speed of the CD-ROM drive appears to be the limiting
factor.

2.3 Java Network Launching Protocol
The Java Network Launching Protocol (JNLP), also known

as “Java Web Start” (JWS), enables applications to be pro-
visioned over the web, simply by clicking a link on a web
site or even a desktop icon, as shown in Figure 3. JWS,
defined via an XML schema, specifies how to launch JWS
applications via a set of rules that define how to implement
the launching mechanism.

We considered using JWS to make the software accessible
since our application of interest, Storytelling Alice, is written

Figure 3: How Java Web Start Works [12].

in Java. It appears to be a natural fit. However, there are
two problems.

First, Java Web Start requires a reasonably current Java
runtime environment from Sun to operate successfully. We
discovered that many of the machines likely to be available
to students had old versions of the runtime that would not
work for JWS. Installing any software can be intimidating,
particularly for elementary and middle-school students or
their teachers, because software installation often has un-
intended consequences.2 Also, learning is greatly enhanced
by self-guided discovery and hence the software needs to be
available at home. Asking rural parents, many of whom are
not computer literate, to download and install the Java run-
time from Sun’s web site is a high barrier to entry. The
difficulty in installing the Java runtime environment is the
primary motivation for creating a live CD with Java prein-
stalled.

Second, although Storytelling Alice is written in Java and
hence JWS appears to be a natural fit, it requires the soft-
ware to have a particular architecture which Storytelling
Alice does possess. Modifying Storytelling Alice to use Java
Web Start as a deployment mechanism requires a significant
overhaul of the system, is going to take a while. It will also
require significant effort to maintain since a major restruc-
turing would cause it to be distinct from the mainline code
base.

As a proof of concept, we rapidly prototyped such a sys-
tem. The prototype is fragile but does serve as a proof-
of-concept. It will require more effort to become a robust
solution. However, we plan to further develop this approach
as it easily makes software available via the click of web page
link for those machines with access to the World Wide Web
and a reasonably up to date Java runtime.

3. ISSUES TO CONSIDER
Increased accessibility of educational software to train fu-

ture computer scientists requires more than the selection
of deployment technologies. Three other important issues
to consider are the proper licensing of the software to be
deployed, the curriculum that will be used, and building a
community to share expertise, implementations and curricu-
lum.

2In many rural schools, system administration is performed
by teachers. Even when a dedicated system administrator is
available in a school district, self-contained software without
unintended consequences is greatly appreciated.

3.1 Licensing
One of the challenges in making software for computer

science more readily available is the issue of licensing. Soft-
ware cannot legally be distributed by anyone other than the
license holder unless authorized to do so. As a result, there
are at least three types of licenses that must be kept in
mind: (1) educational software licenses, (2) licenses for the
support software, and (3) licenses for the operating system
upon which all the software runs.

The need to obtain licenses for commercial software has
a tendency to dampen its use to create self-contained live
CDs or virtual machine images for wide spread deployment.
Acquiring the legal right to distribute commercial software
can become an expensive proposition. Alternatively, open-
source software can be used for which permission has already
been given in the license.

It is because of licensing issues that we have decided to
exclusively use open-source software for the images we pro-
duce. The main educational software we use, Storytelling
Alice, is freely available. It is written in Java and requires a
Java runtime environment to execute. An open source ver-
sion of the Java runtime environment, called OpenJDK, is
available from Sun.

Storytelling Alice originally required the Windows operat-
ing system, which we cannot distribute. To solve this prob-
lem, we ported Storytelling Alice to Linux. We are in the
process of making the changes available to the Alice devel-
opers for incorporation into the main distribution.

Finally, we have restricted our attention to open source
virtualization technologies for the creation and execution of
virtual machine images. Our preferred choices right now are
Sun’s VirtualBox or RedHat’s KVM.

3.2 Curriculum
The primary focus of our teaching efforts has been on Sto-

rytelling Alice, created to motivate middle school students,
particularly young women, to be interested in computer sci-
ence [10]. It is an extension of the Alice educational soft-
ware which greatly simplifies the steps that students must go
through to create a 3-D “story,” thereby making computer
science more approachable to children at a younger age.
Since we are focusing our teaching efforts on elementary-
and middle school-age children, it is an appropriate choice.
Experience teaching children as young as third grade vali-
dates the choice.

Although there are several books for teaching program-
ming using Alice, for example [4], we are not aware of any
materials for teaching programming with Storytelling Alice.
We are in the process of developing such a curriculum with
the aid of some exceptional undergraduate students.

We are also preparing to teach 3rd–5th grade students in
ten elementary schools during the first quarter of 2010. The
teaching opportunities are being organized under the aus-
pices of the Computer Science Community Service (CS2)
club at Virginia Tech, which perform various computer ser-
vice activities for the community. Several of our undergrad-
uate assistants are officers or members.

Also ongoing is our effort to port Storytelling Alice back
to pure Alice. Storytelling Alice branched off from Alice
2.0. Since then, bugs have been fixed in Alice and additional
features have been developed. We are working with the main
Alice 2.x developer to make sure our changes, both with
Storytelling Alice and with the Linux port, will be included

in the main distribution for the benefit of all.

3.3 Community
One of the by-products of the open source software move-

ment is a renewed realization of the power of a group of
like-minded individuals working for a common goal. Large
businesses, such as IBM, have contributed to and leveraged
the collective might of open-source volunteers. We envi-
sion a community surrounding the development and use
of educational software which would bring together like-
minded technologists and educators support discussion, de-
velopment, and deployment of educational software for the
benefit of students, teachers, and us all. Towards this end,
we announce the Free Repository of Educational Software
and Curriculum Archive (FRESCA) http://service.cs.
vt.edu/fresca.

The goals for FRESCA are to serve as the gathering place
for education professionals and technologists, to provide a
catalog of available software pre-packaged as live CDs or
virtual machine images, and to build a community for de-
veloping lesson plans and other educational materials needed
to make effective use of the software.

It is envisioned that all of the software and lesson materi-
als referenced from the FRESCA site will be freely available,
probably under an open source license (or under a Creative
Commons license in the case of lesson materials). However,
it is also possible that versions of commercial software and
materials that cannot be freely distributed may also be made
available under a “free for academic use” license.

4. RELATED WORK
The SERViCE framework is most similar to the Virtual

Computing Laboratory at North Carolina State University [1].
The source code for the VCL is open-source software and
the first author is a registered developer on the project. A
pilot deployment of the VCL software at Virginia Tech is
also underway. However, the authors continue to extend the
SERViCE framework as it is a much smaller, less complex
code base from which to try various ideas that may or may
not prove useful to the VCL project.

Cloud computing also leverages virtualization to enable
economies of scale and dynamic reprovisioning of physical
resources amortized across many organizations. Viewed in
a certain way, VCL or SERViCE can be considered clouds
specialized to education. While there are definitely some
vocal proponents advocating cloud computing, even for ed-
ucation [2, 3], it is still to early to tell whether generic cloud
services will adequately meet the specialized needs of aca-
demic organizations. Important services, e.g., integration
with student records, are not provide by cloud vendors. And
it is still an open question in the minds of many whether con-
fidential information should even be processed in the cloud.

There are many sites hosting virtual machine images. The
largest is VMWare’s Virtual Appliance Marketplace which
hosts images intended for its products. Many images are
available at these sites. However, few of them are geared to-
wards supporting education. It is due to the lack of a site fo-
cused specifically on education that we developed FRESCA.

5. CONCLUSION
While science and engineering jobs are projected to grow

dramatically, especially jobs related to computing, enroll-
ments in computer science and computer engineering pro-

grams have flattened or decreased. In addition, enrollments
of women and minorities in the field continue to decrease.
Since studies have shown that the middle-school years are
very important for inspiring students to pursue careers in
computing, we are developing ways to expose students to
computer science fundamentals earlier by increasing acces-
sibility to computer science educational software.

We have explored three different approaches for making
it easier for teachers and students to gain access. With the
rapid maturation of the technology, virtualization is an ef-
fective way to make software accessible. First, we have de-
veloped a virtual computing environment called SERViCE
that has been used to teach computer science fundamentals
to elementary students using the Storytelling Alice applica-
tion. Students are excited about and wish to continue their
explorations at home.

Second, the student’s desire to take the software with
them led to the development of a live CD with everything
needed to run the software at home without the need to in-
stall or configure anything. Inserting the software disk into
the CD-ROM drive and rebooting is all that is required to
enter the learning environment. A very important side ben-
efit to the use of a read-only deployment mechanism like a
live CD is that students are able to freely experiment know-
ing that they can correct their mistakes no matter how bad
by rebooting the machine. Initial results looks encouraging.
We will have more data to report this spring after we teach
3rd–5th grade students at ten local elementary schools.

Third, we have explored the use of the Java Network
Launch Protocol, also called Java Web Start, as a means
of deploying the software. We have a prototype working but
have not yet used it in teaching. The plan is to improve the
prototype this summer and begin using it as a deployment
mechanism in the fall.

We note that these delivery mechanisms are not exclu-
sively for computer science software, but can be used to
make software from any other disciplines more accessible to
teachers and students.

Finally, we are in the process of developing a curriculum
for Storytelling Alice for use in the teaching of classes this
coming spring.

6. ACKNOWLEDGMENTS
We express our gratitude to Caitlin Kelleher for develop-

ing the Storytelling Alice environment, for providing invalu-
able feedback, and for her inspiring remarks at Kids Tech
University 2008. We also express our gratitude to the Di-
versity Committee in Department of Computer Science at
Virginia Tech for supporting this work.

We would like to thank Whitney Edmister of C-Tech2 for
providing the opportunity to reach out to 30 female high
school juniors and seniors this past summer and get them
excited about computer science.

Finally, we gratefully acknowledge the assistance of Adam
Herr (Xen; FRESCA), David Mazary (port to of Storytelling
Alice 2.0 Linux; FRESCA), Heshan Lin (mentor), Thomas
Scogland (enabling infrastructure and logistics), and Gabriel
Martinez (Storytelling Alice live CD). We also acknowledge
the ongoing work of Michelle Datoc, Scott Fernandez, and
Sahil Talwar in creating a Storytelling Alice K-12 curricu-
lum.

7. REFERENCES

[1] S. Averitt, M. Bugaev, A. Peeler, H. Shaffer, E. Sills,
S. Stein, J. Thompson, and M. Vouk. Virtual
Computing Laboratory (VCL). In Proc. 1st Int. Conf.
on Virtual Computing Initiative (ICVCI-1), pages
1–16, Research Triangle Park, NC, May 7–8 2007.
IBM Corp.

[2] T. Bittman. Cloud Computing and K-12 Education.
http://blogs.gartner.com/thomas_bittman/2008/
11/26/cloud-computing-and-%k-12-education/,
2009. Last checked 2009-10-13.

[3] K. Bunchuck. Cloud Computing for K-12 Schools.
http://bunchuck.blogspot.com/2008/10/
cloud-computing-for-k-12-schools.h%tml, 2009.
Last checked 2009-10-13.

[4] W. Dann, S. Cooper, and R. Pausch. Learning to
Program with Alice. Prentice Hall, 2005. ISBN-10:
0131872893; ISBN-13: 978-0131872899.

[5] Education Week. Technology Counts 2008 — STEM:
The Push to Improve Science, Technology,
Engineering, and Mathematics, 2008. Online
suppliment containing statistics for Virginia available
at http://www.edweek.org/ew/articles/2008/03/
27/30dsr.h27.html.

[6] K. A. Frenkel. Women and Computing.
Communications of the ACM, 33(11):34–46, Nov 1990.

[7] M. K. Gardner and W. Feng. Towards a Virtual
Ecosystem for K-8 Education. In Proc. 2nd
International Conference on Virtual Computing
Initiative (ICVCI-2), Research Triangle Park, NC,
May 15–16 2008. IBM Corp.

[8] D. E. Hecker. Occupational Employment Projections
To 2014. Monthly Labor Review, 128(11):70–101, Nov
2005.

[9] Higher Education Research Institute (HERI) at the
University of California at Los Angeles (UCLA). Low
Interest in CS and CE Among Incoming Freshmen,
Feb 2007.

[10] C. Kelleher. Motivating Programming: Using
Storytelling to make Computer Programming
Attractive to Middle School Girls. PhD thesis,
Carnegie Mellon University, 2006. Technical Report
CMU-CS-06-171.

[11] C. Kelleher and R. Pausch. Using Storytelling to
Motivate Programming. Commun. ACM, 50(7):58–64,
2007.

[12] Sun Microsystems, Inc. Technical Articles and Tips:
Java Web Start Architecture.
http://java.sun.com/javase/technologies/
desktop/javawebstart/architectu%re.html. Last
checked 2010-01-11.

[13] A. Tucker, F. Deek, J. Jones, D. McCowan,
C. Stephenson, and A. Verno, editors. A Model
Curriculum for K-12 Computer Science. Final Report
of the ACM K-12 Task Force Curriculum Committee,
Oct 2003.

