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ABSTRACT

Incorporating the individual and collective problem solv-
ing skills of non-experts into the scientific discovery pro-
cess could potentially accelerate the advancement of science.
This paper discusses the design process used for Foldit, a
multiplayer online biochemistry game that presents players
with computationally difficult protein folding problems in
the form of puzzles, allowing ordinary players to gain ex-
pertise and help solve these problems. The principle chal-
lenge of designing such scientific discovery games is harness-
ing the enormous collective problem-solving potential of the
game playing population, who have not been previously in-
troduced to the specific problem, or, often, the entire scien-
tific discipline. To address this challenge, we took an itera-
tive approach to designing the game, incorporating feedback
from players and biochemical experts alike. Feedback was
gathered both before and after releasing the game, to create
the rules, interactions, and visualizations in Foldit that max-
imize contributions from game players. We present several
examples of how this approach guided the game’s design,
and allowed us to improve both the quality of the gameplay
and the application of player problem-solving.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; K.8.0 [Personal Computing]: General—games

1. INTRODUCTION

Games have recently been used to aid science by leveraging
human image-recognition abilities, for example, to locate
celestial objects [11]. This paper introduces a more gen-
eral class of scientific discovery games that focus on lever-
aging human problem solving ability to solve computation-
ally difficult scientific problems. A scientific discovery game
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translates a class of computationally difficult scientific prob-
lems into puzzles, and provides a game-like mechanism for
non-expert players to help solve these problems. Many tra-
ditional aspects of game design apply to scientific discov-
ery games, including the design of introductory levels to
draw newcomers and explain game mechanics, the use of a
client-server architecture for competition and collaboration,
and the requirement that the game be fun. However, un-
like games whose goal is entertainment or education, scien-
tific discovery games introduce a unique challenge: enabling
non-expert natural problem solvers to advance a specific sci-
entific domain. This challenge influences all aspects of the
game design. First, visualization and graphics need to pro-
mote human ability to see complex solutions and convey
accurate scientific information while remaining accessible to
beginners. Second, interaction design must optimize for nat-
ural interactions suitable for the human exploration process,
while still respecting scientific constraints. Finally, the scor-
ing mechanism needs to be informative enough to promote
multiple human strategies, while remaining true to the lat-
est models of the underlying scientific phenomenon. Perhaps
the most distinguishing feature and the greatest difficulty of
design for this type of game is that the solution to the sci-
entific problem, and thus the solution to the corresponding
puzzles, is unknown. Since we do not know the solution a
priori, we cannot design the game with specific solutions in
mind.

To explore this space, we focused on human ability to rea-
son about 3D structures and on the biochemistry domain,
where many problems tend to be structural. We developed
Foldit, a biochemical discovery game. In this paper, we
discuss Foldit’s initial focus on protein structure prediction
— determining a protein’s shape given its sequence of con-
stituent amino acids. Protein structure prediction involves
finding favorable interactions that form when the protein’s
chemical groups come into contact — essentially a 3D jigsaw
puzzle. We believe that humans’ innate spatial reasoning
ability makes it possible for non-experts to make useful con-
tributions to this problem. We leverage expert knowledge to
shape the rules of the game, thus enabling a much larger pool
of non-experts to make make discoveries within this frame-
work. Over the first two years since Foldit’s public release
in May 2008, we have run roughly 600 structure prediction



Puzzles

-_—

Open problems

‘v Aggregate
solutions

Solution analysis

Scientists

Servers

Infrastructure

Puzzles
and updates

——
—

Solutions

aseqejeq

[ A e
(SIS AR S

Game clients

Players

Figure 1: Overview of our architecture for scientific discovery games. The biochemistry team provides
structure prediction and design problems for the server. These problems become puzzles and are sent to
each player’s client. Players collaborate and compete to solve these problems and upload their solutions to
the server, where they are aggregated and sent back to the biochemistry team for analysis. This analysis can
then be used to improve the design of the game and puzzles.

puzzles and had over 57,000 players from a wide variety of
backgrounds participate.

The rest of this paper describes our experience designing
Foldit, with a special emphasis on the unique challenges
posed by making biochemistry problems accessible to any-
one. The creation of Foldit was a challenging and multidis-
ciplinary project, drawing together computer science, art,
game design and biochemistry. Moreover, we did not know
ahead of time which parts of the problem players would be
best at solving, or which in-game manipulation tools they
would use most effectively. The only way to find out was
to have people play Foldit. In order to deal with these and
other uncertainties, we took an iterative approach both be-
fore and after releasing the game to the public. We have
continually evolved the gameplay in response to massive
gameplay traces, player feedback and expert analysis, and
continue even now with this iterative process as we add fea-
tures and expand the set of biochemical problems to which
the Foldit community can contribute.

2. RELATED WORK

Games are often designed with an iterative approach, which
involves designing, testing, and evaluating repeatedly until
the player’s experience meets some criteria [10]. For most
games, the main criterion for the player’s experience is sim-
ply to have fun. Player feedback and playtesting are an inte-
gral part of the process, and there are a number of methods
of gathering and incorporating this information from play-
ers [1]. We have also continued the design process after the
game’s release, to incorporate data gathered from the play-
ers in a continual process of evolutionary redesigning [12].
Our work differs from the standard iterative approach in
that the game design space is constrained to conform with
existing physical models, and we include the input of scien-
tific experts in the evaluation of the game.

Recently, there has been much interest in using games as a
means of motivating people to perform tasks that are cur-
rently difficult for computers. Games such as the ESP game
[23] and Peekaboom [24] use human image-recognition abil-
ity to produce labeled images from gameplay. Image recog-
nition has also been used for finding particular features of in-
terest in scientific data, such as looking for signs of interstel-
lar dust [25], measuring and aligning features on a planet’s
surface [15], and classifying galaxy shapes [11]. Most such
work is heavily image-based, and these projects have been
successful in motivating players to sift through large image
sets, which would otherwise be a mundane task. Some games
have taken a slightly different approach, such as looking for
solutions to graph based problems [7]. Our work is different
because it leverages a deeper human problem solving ability
to create novel scientific results.

More generally, all serious games have a purpose beyond
entertainment that ranges from fitness and health [26], to
training [4], to social change [22]. In our work, the main goal
is to generate useful scientific discoveries; however, other
aspects of game design, such as the requirement that the
game be fun, contribute to achieving this goal, as the results
rely on players playing the game.

There have been many purely computational approaches to
protein structure prediction, including distributed comput-
ing projects such as Rosetta@home [21] (built on top of the
BOINC distributed computing interface [2]). Atomic simu-
lations of proteins have also been performed by distributed
computing [9, 16].

3. OVERVIEW
3.1 Background

Predicting protein structures computationally is a central
goal for computational biochemists because so much can be



understood about a protein’s function once its structure is
known, and because it is so challenging to observe a protein’s
structure directly. Proteins are central to biochemistry be-
cause they are the primary chemical for almost all cellular
processes. DNA, a perhaps more widely recognized cellu-
lar chemical, derives its entire purpose in encoding protein
sequences.

DNA encodes a protein by describing the linear sequence of
amino acids that compose the protein. Cells translate a se-
quence of DNA into a sequence of amino acids, and then the
resulting amino acid chain (the protein) folds into a unique,
compact structure — often called the protein’s native struc-
ture. It is well known that sequence determines structure
[3].

The native structure is one that is lowest in free energy —
it has the most favorable set of chemical interactions. Some
interactions involving the backbone — the repeating pattern
of atoms that connects all the amino acids in the chain — oc-
cur so frequently that the structures they form have special
names. These so called secondary structures include tightly
wound helices and extended sheets. The remaining inter-
actions involve amino acid sidechains, which stick out from
the backbone and differentiate the various amino acids.

Foldit is built on top of the Rosetta molecular modeling suite
which has proven useful at a wide variety of protein model-
ing tasks [20, 5, 17, 13]. The suite contains an energy func-
tion which captures the interaction energies between protein
elements, as well as a set of structural optimization subrou-
tines. For protein structure prediction, structures closer to
the native structure will have a lower energy than structures
further away from it. Foldit uses this state-of-the-art energy
function to compute player’s scores, and also takes advan-
tage of the optimization routines Rosetta makes available.

3.2 Architecture

Here we give an overview of the architecture of Foldit, which
can be seen at a high level in Figure 1. Foldit generally uses a
client-server architecture. Each user downloads and installs
the client, which then communicates with a central server to
send information about the local player and get information
about other players.

Scientists post problems to the server; in the case of Foldit,
these are protein structures for which the players are meant
to find the native structures. An initial protein structure
is associated with metadata such as a title and description,
and parametrization such as which energy function terms
to use. We call these puzzles, and they are posted on the
server for a fixed amount of time (usually a week). While
a puzzle is active, players can download it and interactively
reshape the protein to try to achieve the best score. This
often requires significant changes to the puzzle structures,
which are given in various partially-folded states, and in
some cases need to be completely refolded from a straight
line. Players’ structures, or solutions, are reported back to
the server, and players are ranked against other players who
are playing the same puzzle. Players can form groups with
which to share their solutions through the server, allowing
them to work together to find even better solutions than they
could working alone. When one player shares a solution by
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Figure 2: An overview of the interactions between
the three groups.

uploading it to the server, other players in the same group
are able to see it and download it. The social aspect of the
game is supported by in-game chat, a website with forums,
and a player-created wiki. At the close of a puzzle, the
solution data is aggregated, and presented to the scientists
for analysis.

The game is designed to be flexible, and the client allows
automatic updating so that we can continually evolve the
gameplay. The puzzle posting cycle and automatic updates
allow us to respond to not only player feedback, but also
to expert analysis, as we introduce and refine gameplay ele-
ments.

3.3 [Iterative Strategy

In order to arrive at the current state of Foldit, we took an
iterative approach to the game’s design. Given the complex-
ity of this undertaking, we realized that it was unlikely that
all our initial decisions would be the best. There are three
major groups relevant to our approach: 1) the scientific ex-
perts whose problems the game is meant to help solve; 2)
the players; and 3) the game development team. The devel-
opment team must incorporate feedback from the players to
make sure the game is understandable and fun, and from the
experts to make sure that the results produced will be use-
ful to them. An overview of the interactions between these
three groups is given in Figure 2.

During the game’s initial development, the development team
and experts must work together closely to determine an ini-
tial direction. This involves defining what problems to ap-
proach, what the fundamental gameplay mechanics needed
are, and what the desired results are. Once possible games
have been prototyped, player feedback can begin to be incor-
porated. Early playtesting helps to uncover what elements
of the problem are fun and which can be most confusing
and difficult to understand. This can help to both focus the
gameplay and narrow the scope of the game to where players
will most likely be able to contribute.

After making the game available to the public, a large amount
of data and feedback can become available to help improve
the game. As in a traditional game, data on gameplay can
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be gathered from players for an objective analysis of what
players are doing, and feedback from the player community
is extremely useful in determining new features. However,
in a scientific discovery game, as scientists post puzzles and
player solutions are analyzed, this analysis must then be in-
corporated in the design of the game, progressing towards
ever better results.

Following this pattern, Foldit has evolved significantly since
its initial release. A timeline of significant events in the
evolution of the game are given in Figure 3.

4. DESIGN CHALLENGES

4.1 Visualizations

The visualizations in a scientific discovery game must achieve
several purposes in order to allow players to apply their
problem-solving skills. They must reflect and illuminate
the natural rules of the system, in a way that makes state
of the system evident to the player and directs them to where
their contribution will be most useful. At the same time, the
visualizations need to manage and hide the complexity
of the system, so that players are not immediately over-
whelmed by information. They must be approachable by
players who have no knowledge of the scientific problem
at hand. Thus, they should look inviting and fun, and not
bring back memories of high school textbooks. Ideally, they
should be customizable, because as with other aspects of
the game, it is not clear from the outset what the best vi-
sualization will be, and different players may have different
preferences.

In order to make the visualization of Foldit reflect and illu-
minate the fundamental properties of proteins, we worked
with experts to distill simple rules upon which to base them.
The first rule is to avoid clashes. Clashes occur when atoms
are unrealistically close to each other, causing a large repul-
sive force. These can be prevented by keeping the atoms
from overlapping, and are represented by spiky, rotating
spheres that float between the overlapping atoms. The sec-
ond rule is to fill voids, or empty spaces in the protein. Pack-
ing the protein tightly will remove voids. Voids are repre-
sented as bubble-like objects that pop when they come in
contact with the protein. Clashes and voids appear red, as

natural proteins should not generally have any. The third
rule is to bury exposed hydrophobics. Hydrophobics are
sidechains whose chemical properties are such that it is fa-
vorable for them to be on the interior of the protein. Ex-
posed hydrophobics are represented as small, pulsing spheres
that move along their sidechain. These are drawn in yellow,
rather than red, because natural proteins may have some
exposed hydrophobics. The fourth rule is to maintain and
create hydrogen bonds, which form between particular pairs
of atoms and hold the protein together. Hydrogen bonds
appear as undulating bars between the bonded atoms, and
are drawn in blue, because they are good.

Due to the spatial nature of the problem, the visualization
of the protein closely matches the actual geometry of the
protein. To make the overall structure stand out, sheets,
helices, and loops are stylized, similar to many expert vi-
sualization tools [8]. Sheets appear with a zig-zag pattern
that will form hydrogen bonds when properly fit together.
Color also plays a large role in the visualization of the pro-
tein. The backbone color reflects the score of the protein
in a particular region — going from red in poor scoring re-
gions to green in good scoring regions — so players can see
where they can gain the most points. The sidechains are
colored by hydrophobicity, so players can quickly see if they
are extending them in the preferred direction. By coloring
backbone and sidechain independently we can display more
information while not introducing too much visual clutter.

Foldit takes a number of approaches to manage and hide
the complexity of huge networks of interconnected atoms
that make up a protein. Many unimportant details are hid-
den. Hydrogen atoms, which are plentiful on the protein
but do not add a lot of structural information, are hidden.
However, hidden information will reappear if it becomes im-
portant to the player: sidechains can disappear entirely to
make the overall structure of the protein’s backbone clearer,
but will reappear if they are causing a problem, such as if
they are involved in a clash. Many actual clashes them-
selves are also hidden: only the worst clash is shown on a
per-amino acid basis. This prevents the player from being
overwhelmed by the number of clashes if the protein is com-
pressed too tightly.
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To make the game approachable, we gave the protein itself
a bright, cartoonish look. Many pieces of the visualizations
move playfully around the protein. There are a wide variety
of visualization options available in the game as well, such as
alternative colorings and geometries for the protein. These
can be accessed through a special menu option that is turned
off by default. This approach allows more advanced players
the ability to customize their view in the view options menu,
but keeps things simple for newcomers.

Visualizations such as voids and exposed hydrophobics can
be computationally expensive to compute. To keep the game
interactive, we compute such visualizations in a separate
thread, which will update the visualization after a delay.

4.2 Interactions
The interactions in a scientific discovery game must also

achieve several purposes. They must respect the constraints

of the system required. However, they must also be suf-
ficient to explore the space of solutions enough to be able
to solve the problem. They should also be as intuitive and
fun as possible.

To ensure that the player interactions respect the con-
straints of protein folding, we developed a number of tools
for players to use based on the powerful set of optimizations
offered by Rosetta. By using Rosetta as a model for our
interactions, we could ensure that they would result in plau-
sible for protein structures. However, these optimizations
only formed the basis for the moves, and they all needed to
be adapted for interactive and intuitive use by players. The
primary method of interaction in Foldit is directly manipu-
lating the protein through pulling, by clicking and dragging
the mouse. Depending on the location of the pull, this per-
forms various Rosetta-based optimizations with the player’s
pull as a soft constraint. There are also buttons to launch au-
tomatic algorithms for continuous energy minimization (wig-
gle); discrete sidechain energy optimization (shake); frag-
ment insertion (rebuild); and the ability to rigidly rotate,
translate, and shift sections of the protein (tweak). Players
are able to achieve fine-grained control over these optimiza-
tion through two methods. First, freezing, which prevents
parts of the protein from moving, and second, bands, which
can connect amino acids and pull on them independently
of the player. When making large restructuring operations,
the repulsion force between atoms can overpower what the
player is trying to do and make it more difficult to interact

with the protein. To get around this, we have added a be-
havior menu, with a slider that allows player to adjust the
strength of the repulsion during interactions.

There are additional modes for interaction that define what
the mouse buttons do when the user clicks on the protein.
The primary mode is the pull mode, described above. The
structure mode allows the player to redefine the secondary
structure labeling of the protein. This is done by directly
assigning from a menu, or dragging existing labels across
the protein. The note mode allows players to add their own
notes and remarks to sections of the protein. These can be
used by an individual or to communicate between players
sharing solutions.

In order to confirm that the interactions available in Foldit
were sufficient to explore enough protein structures to
allow the players to make a discovery, we ran several puzzles
in which the native structure was visible as a guide. With
this native guide, players were able to use the tools in Foldit
to get close to the native structure. The fact that players
were able to do this suggested that the interactions would be
sufficient to reach the native structure on unknown proteins
as well.

Further, to encourage players to use the available interac-
tions to explore the space in new ways, we added an ezplo-
ration map. The exploration map plots every Foldit solution
for a puzzle based on its score and how different it is from the
puzzle’s starting structure. The map gives players a rough
idea of the solution landscape: the different areas other play-
ers are exploring, and the scores they found there. Players
might be exploring a new region on the map that initially
gives a worse score, but by working hard in this new unex-
plored region, they might find a better shape and get the
highest score.

In order to make the interactions more tntuitive and fun,
we followed the concept of touchability — being able to di-
rectly interact with the protein as though you could actu-
ally touch it. Before embracing this concept, our designs
only manipulated the protein though indirect sliders, but-
tons, and plots. However, we soon changed the design to
cause thing to occur by clicking on the protein itself. While
the major optimizations are still launched by buttons, ac-
tions like pulling, attaching bands, freezing, tweaking, and
others are performed directly on the protein. This also led



us to the mode-based interface, which allowed us to use the
mouse buttons for more operations by changing what they
did in different modes.

The goals of interactivity and accuracy can sometimes con-
flict. The shake tool uses a discrete optimization over pos-
sible sidechain positions called rotamers. However, as the
number of rotamers becomes large, running the optimiza-
tion over all of them at once becomes too slow to be usable.
Therefore, we rewrote the high level algorithm to run on
small, spatially coherent sets of rotamers, rather than all at
once. By running many shorter optimizations in sequence
rather than one long one, players can see partial results and
cancel the optimization early, while also getting the advan-
tage of finer sampling from a larger number of rotamers.

Also, in order to allow local modifications to the backbone
at interactive rates, we found it necessary to allow small
non-idealities to occur in the protein structure — allowing de-
grees of freedom to vary that typically would remain fixed.
A small amount of non-ideality was acceptable, so we al-
lowed it, but subtracted a penalty from the score. We found
that, initially, the level of non-ideality in the solutions was
unacceptably high. After increasing the penalties, the non-
idealities fell into a range that was acceptable to the experts,
while still maintaining the desired player experience.

4.3 Scoring

By definition, the final outcome in a scientific discovery game
is unknown. Therefore, we cannot base the goal of the game
on reaching a particular known state. The goal must be
one that will direct players toward the solution to the
problem and encourages players to explore the space.

In Foldit, we want to motivate the players to find the best
possible protein structures, yet we do not know what those
structures are. To do this, we organize the game in the
form of a competition, where a player’s goal is to do better
than other players. In a sense, this allows players who find
good structures to set the goal for the other players. To
make sure that better scores will direct players toward the
solution, we base scoring on the Rosetta energy function,
which reports a lower energy for structures nearer the native.
However, we negate the energy so players are competing for a
higher score. The energy function is broken up into several
terms — such as clashing or hydrogen bonding — based on
where the contribution to the score is coming from, and this
information is made available to the players.

In each puzzle, players are ranked by the score of the best
solution they have found, and at the close of a puzzle, global
points are assigned based on ranking. These global points
are accumulated over time, allowing players to have an over-
all ranking against all other players. Groups of players are
also ranked and scored in a similar fashion. Initially all
players were ranked together in a single leaderboard. How-
ever, feedback from the players indicated that the solution
sharing architecture was unfair to individuals working alone
who had to compete against players in groups who could
simply take another group member’s solution and move to
the top of the rankings. To prevent this unfairness, we sepa-
rated rankings into soloists, for players who worked without
trading solutions, and evolvers, for players who worked by
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Figure 5: The completion percentage for each in-
troductory level per day over a two month period.
New players must start with the first level, ‘One
Small Clash’, and have to successfully complete it
before attempting the next level, ‘Swing it Around’,
and so on until the last level: ‘Rubber Band Re-
versal’. On 03/21 all the intro levels were changed
to use text bubble hints; the ‘Close the Gap’ level
was removed and ‘Nudge it Along’ was added as a
level. This closed the space between the blue levels,
but created a large gap in the green levels. The re-
moval of the level between the red and green lines
seemed to be the main culprit, therefore on 04/06
‘Close the Gap’ was restored and ‘Nudge it Along’
was removed. This fixed the large gap in the green
levels while maintaining the overall shift upwards;
the linear trend of new players completing all the in-
tro levels increases over this two month period (grey
line at the bottom).

improving other players’ solutions. This dealt with the is-
sue of unfairness while allowing us to reward specialization.
However, it did cause players to have to divide their efforts
if they were interested in ranking highly in both.

4.4 Introductory Levels

We do not expect players to have a background in the sci-
entific problem, or even be familiar with it. Thus, if players
are to be successful, it is necessary to teach players the
system and how the gameplay, visualizations, interactions,
and scoring work.

In Foldit, we teach gameplay concepts through a series of
introductory levels — offline puzzles that have an associated
goal score, which, when reached, will complete the level,
unlocking the next one. Each level introduces the player to
new problem related concepts as though they are the rules
of a game. These concepts are introduced through an event-
driven system of “text-bubble” hints, where short text hints
appear to guide the player based on what they are doing.
The levels are designed such that using the newly introduced
concepts is the easiest way to reach the goal score. The levels
are organized into sets, each dealing with a particular high-
level concept, such as hydrogen bonding. An example of the
flow through an of an introductory level is shown in Figure



4.

We refined these levels using both qualitative feedback from
playtesting and quantitative data gathered from gameplay.
First, before releasing levels, we performed think-alouds,
where we would invite players to play through the levels
and say out loud what they were thinking [19]; this would
help us to determine where players were confused and what
worked well, as well as what adjustments could be made
to the gameplay to be more fun. In each round, we in-
terviewed 3-5 people and collected the top complaints and
points of confusion. Speaking with additional people each
round would have led to diminishing returns where players
would repeat the issues found by other players. After each
round, we quickly made improvements to the game and ran
another set of think-alouds, until the major issues were re-
solved.

Second, once the levels were released, we gathered data on
how far players progressed through them. This gave us a
good high-level view of where the most troublesome places
were for most people. We could then focus our efforts on
levels that caused the largest drop-off in players, make ad-
justments, and observe the results. An example of this pro-
cess is given in Figure 5. We are able to aggregate data over
a period of time, instead of looking at just a single day.

New players are not required to finish any introductory levels
before trying out the online puzzles. To help bridge the gap
between the levels and the online puzzles and keep players
from being completely overwhelmed by a potentially com-
plicated or difficult puzzle that has recently been posted, we
include beginner online puzzles. These are similar to the
other online puzzles, but available only to new Foldit play-
ers, who have fewer than 150 global points. Beginner puzzles
are posted for one month and involve known solved proteins
whose native fold has been randomly modified and is also
shown as a transparent guide superimposed with the current
solution. This native guide serves to give newer players an
attainable goal, as well as an idea of what native protein
folds look like.

5. EVALUATION

To evaluate if players could use the current design of Foldit
to find the solutions to unknown scientific problems, we
made several entries into the CASP8 competition in 2008
[14]. CASP is a semi-annual competition of protein structure
prediction methods [6]. Sequences (called targets) whose
structures are unpublished, but have or will soon be ex-
perimentally determined, are posted, and teams make their
predictions of the native structure. This ensures that pre-
dictions are blind - no one entering the competition knows
the solution to the problem. In CASP8, we participated
primarily in homology modeling targets. The sequences of
these targets (with unknown structure) are similar to se-
quences with known structures, and homology information
from related structures can be useful for making predictions.

To prepare for CASP8, we ran several puzzles using ho-
mology targets from CASP7 in order to refine our meth-
ods. Because these targets were from the previous CASP,
we had access to the native structures for evaluation. In
the first CASP7 puzzles we ran, we found that the play-

Table 1: Rankings of predictions in CASP8 from the
DBAKER team for targets which included Foldit
solutions. Rankings for the remaining DBAKER
prediction, which did not use Foldit, are also given.
Rankings were based on the GDT_TS metric[27].

Target Foldit Other DBAKER | Total entry
rankings team rankings count
(all teams)
TR389 3,7,21 4, 18 71
TR432 | 14, 37, 48 1,8 83
TR453 | 23, 46, 69 28, 50 85
TRA461 2,12, 19 1, 26 83
TR469 | 2, 3, 45, 50 4 74
TRA488 1, 3, 26 2, 18 7
TS423 | 12, 42, 43 2, 31 496
TS492 2, 96 1, 3, 448 527
TS499 59, 107 33, 455, 504 519

ers would often find solutions further from the native than
the puzzle’s starting structure. Moving away from the na-
tive is typical problem in homology modeling when refining
structures. Consulting with biochemists, we decided to add
expert-defined penalty constraints to the scoring of the puz-
zles. These constraints integrated homology information to
prevent the structures from moving in less plausible ways.
After running puzzles with these constraints, we found that
players could improve on the quality of the starting struc-
tures.

Foldit player solutions were submitted for nine different CASP8

targets as part of the DBAKER team. For each target, sev-
eral puzzles were run with various parameters and starting
structures derived from homology information, in order to
give the players a variety of places to start from in their
search. The solutions from these puzzles, often numbering
in the thousands, were aggregated and presented to the ex-
perts. From this pool, the experts selected submissions by
a process of clustering the lowest energy structures, then
selecting from those based on cluster size, energy, and vi-
sual inspection. This is similar to the process used to select
automated prediction submissions from a large pool [18].

The resulting rankings are given in Table 1, for both the sub-
missions that came from Foldit player solutions and the re-
maining DBAKER submissions that did not involve Foldit.
It is worth pointing out that this ranking (by the GDT_TS
metric [27]) is just one of many possible for CASP assess-
ment; for all but one of these targets the majority of predic-
tion from the DBAKER team involved Foldit, and the puz-
zle constraints placed significant limits on what the players
were able to do. However, we believe these results support
the conclusion that the game has been designed in such a
way that players can use it to solve scientific problems.

6. CONCLUSION

Unlike most video games, where entertainment is the main
goal and the design is entirely up to the creators, the design
of Foldit was guided primarily by enabling anyone with a PC
to take part in scientific problem solving. One of the most
difficult aspects of development was that we were designing
a game in which the final outcome was not known. Even



in Foldit puzzles where the best structure is unknown, the
game has to guide the player toward that structure.

We have described how we overcame these unique challenges
and the iterative approach we took to designing the Foldit.
We applied this approach to the visualizations and inter-
actions in the game, as well as introducing the necessary
concepts to players.

In designing Foldit, we have learned the importance of in-
cluding iterative adjustments to the game in the process
of design, as the initial decisions can always be improved
upon. We have also learned not to expect the way that
expert scientists view the problem to be the best way for
players. Exploring different avenues for looking at scientific
problems can lead to new and useful opportunities for prob-
lem solving. Thus, we have also found that it is possible to
make a fun experience by focusing on the exciting aspects
of scientific problems, as opposed to the textbook details.
We can take lessons from traditional game design to do this:
rewarding players and keeping them interested are necessary
for any game.

We plan to continue improving Foldit and applying this ap-
proach to allow discoveries in biochemistry and even more
scientific domains. Further, we believe this approach can be
applied to other spatial reasoning problems, allowing players
to contribute to advancing the frontiers of knowledge.
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