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Abstract

We present a local algorithm for finding dense subgraphs of bipartite
graphs, according to the definition of density proposed by Kannan and
Vinay. Our algorithm takes as input a bipartite graph with a specified
starting vertex, and attempts to find a dense subgraph near that vertex.
We prove that for any subgraph S with k vertices and density θ, there are
a significant number of starting vertices within S for which our algorithm
produces a subgraph S′ with density Ω(θ/ log n) on at most O(∆k2) ver-
tices, where ∆ is the maximum degree. The running time of the algorithm
is O(∆k2), independent of the number of vertices in the graph.

1 Introduction

Identifying dense subgraphs has become an important task in the analysis of
large networks, and a collection of dense subgraphs may reveal a wealth of
information about a graph. In particular, dense subgraphs often form the cores
of larger communities or clusters in the graph [9].

Kannan and Vinay [8] introduced a notion of density that is well-suited to
bipartite graphs representing incidence matrices. As an example, consider a
bipartite graph describing the incidences between a set of groups G and a set
of group members M. The density of the subgraph induced by a set of groups
S ⊆ G and a set of members T ⊆ M, is defined to be

d(S, T ) =
e(S, T )
√

|S|
√

|T |
,

which is the total number of incidences between the groups and members in the
subgraph, divided by the geometric mean of the number of groups and number of
members in the subgraph. There are a variety of efficient algorithms for finding
a subgraph with nearly optimal density according to this definition. Kannan and
Vinay gave a spectral algorithm that produces from the largest eigenvector of A
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a subgraph whose density is within an O(log n) factor of optimal. Charikar [2]
showed that a subgraph with optimal density can be identified in polynomial
time by solving a linear program, and also gave a greedy algorithm that produces
a 2-approximation of the densest subgraph in linear time.

In this paper, we present a local algorithm for finding dense subgraphs.
Our algorithm takes as input a graph with a specified starting vertex, and
attempts to find a dense subgraph near that vertex. We prove the following
local approximation guarantee for our algorithm: for any subgraph H with
density θ, there are a significant number of starting vertices within H for which
our algorithm produces a subgraph with density Ω(θ/ logn). The running time
of the algorithm is O(∆k2), where k is the number of vertices in H , and where
∆ is the maximum degree in the graph.

There are two principal tasks that our local algorithm can perform which,
to our knowledge, can not be accomplished by other known algorithms for the
densest subgraph problem. The first is to find a dense subgraph near a vertex
of interest, while examining only a portion of the entire graph. The second is
to find many small dense subgraphs in parallel, which we can accomplish by
applying the local algorithm at many different starting vertices. In addition,
our algorithm provides an upper bound on the size of the subgraph it produces,
which might make it a useful theoretical tool for producing a dense subgraph of
a specified size.

To analyze our algorithm, we build upon the spectral techniques developed
by Kannan and Vinay, exploiting the close relationship between the densest
subgraph of a graph and the largest eigenvalue of the graph’s adjacency matrix.
We define a deterministic process called the ‘pruned growth process’, which
produces a sequence of vectors, and show that by computing those vectors we
can identify a subgraph with high density. We show that these vectors can be
rounded at each step to ensure that the number of nonzero elements is small,
which decreases the time required to compute them. A similar type of local
approximation algorithm has been developed for the related problem of graph
partitioning [10, 1]. The densest subgraph problem is the second problem for
which this type of local spectral algorithm has been developed.

In Section 2, we state the definition of density introduced by Kannan and
Vinay, compare this definition with others that have appeared in the literature,
and survey known algorithms for the densest subgraph problem. In Section 3,
we define the ‘pruned growth process’. In Section 4, we state our local algorithm
and analyze its running time and approximation guarantee. In Section 5, we
describe an efficient global approximation algorithm for the densest subgraph
problem, which will follow easily from our work in the previous sections.
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2 Preliminaries and Related Work

Let G = (V,E) be an undirected bipartite graph with adjacency matrix A, and
let L and R be the left and right sides of a fixed bipartition. The edges of the
graph may be weighted, in which case the entry Ai,j is the weight of edge {i, j}.
For any two sets S ⊆ L and T ⊆ R, we let (S, T ) denote the induced bipartite
subgraph of G on the set of vertices S ∪ T , and we define e(S, T ) to be the sum
of the weights of the edges between S and T . We will sometimes use the inner
product notation e(S, T ) = 〈1SA, 1T 〉, where 1S is the indicator function for
membership in S. We define the support of a vector x to be the set of vertices
on which x is nonzero.

We will identify induced subgraphs of G which are dense according the fol-
lowing definition, which was introduced by Kannan and Vinay [8].

Definition 1. For any induced subgraph (S, T ), we define

d(S, T ) =
e(S, T )
√

|S|
√

|T |
.

We define d(A) to be the maximum value of d(S, T ) over all induced subgraphs.

Our algorithm may also be applied to an arbitrary directed graph, using the
following trick. Given a directed graph with vertex set X , define a bipartite
graph where L = R = X . For each edge x → y in the directed graph, place an
undirected edge between the copy of x in L and the copy of y in R.

2.1 Related work

A different definition of density was considered in [7, 5, 2].

Definition 2. Let G = (V,E) be an undirected graph (not necessarily bipartite).
For any set S ⊆ V , we define

g(S) =
e(S, S)

|S| .

We define g(A) to be the maximum value of g(S) over all subsets of V .

Both d(A) and g(A) can be computed exactly in polynomial time. Goldberg
showed that a set S achieving g(S) = g(A) can be found using maximum flow
computations [7]. Such a set can also be found using the parametric flow algo-
rithm of Gallo, Grigoriadis, and Tarjan [5]. Charikar showed that a subgraph
(S, T ) achieving d(S, T ) = d(A) can be found by solving a linear program [2].

Charikar gave greedy 2-approximation algorithms for both g(A) and d(A)
[2]. The running time of these algorithms is O(m) in an unweighted graph, and
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O(m + n logn) in a weighted graph. Kannan and Vinay gave a spectral ap-
proximation algorithm for d(A), which produces a subgraph (S, T ) with density
d(S, T ) = Ω(d(A)/ log n) from the top singular vectors of A.

The closely related densest k-subgraph problem is to identify the subgraph
with the largest number of edges among all subgraphs of exactly k vertices.
This problem is considerably more difficult, and there is a large gap between
the best approximation algorithms and hardness results known for the problem
(see [4, 3]).

2.2 Comparison of d(S, T ) and g(S)

It is easier to compare the two objective functions d(S, T ) and g(S) if we restrict
g(S) to bipartite graphs. In this case, g(S) takes the following form.

Definition 3. For any subgraph (S, T ), we define

g(S, T ) =
e(S, T )

|S| + |T | .

We define g(A) to be the maximum value of g(S, T ) over all induced subgraphs.

The two objective functions d(S, T ) and g(S, T ) are far apart when S and T
have very different sizes. The quantities d(A) and g(A) can also be far apart. In
the complete bipartite graphKa,b, we have d(A) =

√
ab, while g(A) = ab/(a+ b).

In the case where a = 1, we have d(A) =
√
b while g(A) = b/(b+ 1) ∼ 1.

The relative merits of d(S, T ) and g(S) as objective functions for density
were discussed in [2, 8]. In this paper, we consider d(S, T ) because it is more
amenable to approximation by spectral algorithms than g(S), not because we
prefer it as an objective function. The largest eigenvalue of the adjacency matrix
A is closely related to d(A). We know of no similar result for g(A), and we do
not know how to produce a local algorithm for the objective function g(S).

3 The pruned growth process

We now define the deterministic process that will be the basis for our local
algorithm. The process generates a sequence of vectors x0, . . . , xT from a start-
ing vector x0. The main operation performed at each step is multiplication by
the adjacency matrix A, as in the power method. The resulting vector is then
rounded by making each entry a power of 2, and then pruned by setting to
zero each entry whose value is below a certain threshold. These steps reduce
the number of possible values in the vector and reduce the size of the support,
minimizing the amount of computation required.
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Definition 4. Given a vector z, we define round(z) to be the vector obtained
by rounding each entry of the vector z up to the nearest power of 2,

[round(z)](u) = 2i, where i is the smallest integer such that 2i ≥ z(u).

Given a vector z and a nonnegative real number ǫ, we define pruneǫ(z) to
be the vector obtained by setting to zero any entry of z whose value is at most
ǫ‖z‖,

[pruneǫ(z)](u) =

{

z(u) if z(u) > ǫ‖z‖,
0 otherwise.

Definition 5. Given a starting vector x0 with entries from {0, 1}, and a se-
quence of real numbers ǫt ∈ [0, 1], we define the pruned growth process to be the
sequence of vectors x0, . . . , xT defined by the following rule:

xt+1 = pruneǫt+1
(round(xtA)).

Notice that each entry of xt+1 is either zero or a power of two.

Definition 6. Given the vectors x0, . . . , xT of the pruned growth process, we
define Xt

i to be the set of vertices where xt(v) = 2i, and define Y t
i to be the set

of vertices where round(xtA)(v) = 2i.

We will eventually show that a subgraph with high density can be found
whenever the norms ‖xi‖ of the pruned growth process vectors grow quickly.
The following lemma shows that if none of the subgraphs (Xt

i , Y
t
j ) has high

density, then ‖xt‖ is not much larger than ‖xt−1‖.
Lemma 1. If d(Xt

i , Y
t
j ) ≤ θ for all i, j, then,

‖xt+1‖ ≤ ‖ round(xtA)‖ ≤ 2θ‖xt‖ log
2∆

ǫt
.

Proof. We will write ‖ round(xtA)‖2 in terms of the densities d(Xt
i , Y

t
j ).

‖ round(xtA)‖2 = 〈round(xtA), round(xtA)〉
≤ 〈2xtA, round(xtA)〉

=

〈

2
∑

i

2i1Xt
i
A,
∑

j

2j1Y t
j

〉

= 2
∑

i,j

2i2j
〈

1Xt
i
A, 1Y t

j

〉

= 2
∑

i,j

2i2jd(Xt
i , Y

t
j )
√

|Xt
i |
√

|Y t
j |

≤ 2θ

(

∑

i

√

|Xt
i |2i

)





∑

j

√

|Y t
j |2j



 .
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In the sum above, we need only sum over those i where Xt
i is nonempty. There

are at most log 1
ǫt

such values, because every nonzero value in xt is at most ‖xt‖
and at least ǫt‖xt‖. We now apply the Cauchy-Schwarz inequality to show

∑

i

√

|Xt
i |2i ≤

(

∑

i

|Xt
i |22i

)1/2(
∑

i

1

)1/2

≤ ‖xt‖
√

log
1

ǫt
.

Similarly, we need only sum over those j where Y t
j is nonempty. There are at

most log 2∆
ǫt

such values, because every nonzero value of round(xtA) is at most
‖round(xtA)‖ ≤ 2∆‖xt‖, and at least ǫt‖xt−1‖. We apply the Cauchy-Schwarz
inequality again to show

∑

j

√

|Y t
j |2j ≤





∑

j

|Y t
j |22j





1/2



∑

j

1





1/2

≤ ‖ round(xtA)‖
√

log
2∆

ǫt
.

Then,

‖ round(xtA)‖2 ≤ 2θ‖xt‖‖ round(xtA)‖
√

log
1

ǫt

√

log
2∆

ǫt

≤ 2θ‖xt‖‖ round(xtA)‖ log
2∆

ǫt
.

The lemma follows.

4 Local approximation algorithm

In this section, we will state and analyze a local algorithm for finding dense
subgraphs. The input to the algorithm is a graph, along with a starting vertex
v and a target size K. We will prove that the running time of the algorithm
depends mainly on the target size K, and is independent of the number of
vertices in the graph. We will prove that for any subgraph (S, T ), there are a
significant number of starting vertices in S for which the algorithm produces a
subgraph whose density is within an O(log n) factor of d(S, T ).

LocalDensity(v, K)
Input: A vertex v and a target size K.
Output: A subgraph (X,Y ).

1. Let x0 = 1v, let T = log(
√

2|K|), and let ǫt = 1
8K 2−t.

2. Compute the vectors x0, . . . , xT of the pruned growth process.

3. Compute d(Xt
i , Y

t
j ) for each pair i, j and each time t < T .

4. Output the subgraph (Xt
i , Y

t
j ) with the highest density.
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Theorem 1. Let (S, T ) be a subgraph such that d(S, T ) ≥ 2θ. Then there exists
a set Sθ ⊆ S, with the following properties.

1. e(Sθ, T ) ≥ e(S, T ),

2. If v ∈ Sθ and K ≥ max(|S|, |T |), then LocalDensity(v, K) outputs a sub-
graph (X,Y ) such that

d(X,Y ) ≥ θ

8 log 16∆K
= Ω(

θ

logn
).

Theorem 2. LocalDensity(v, K) runs in time O(∆K2).

The proofs of Theorems 1 and 2 are given in section 4.2.

4.1 Lower bounds on growth within a dense subgraph

The main step in analyzing the algorithm LocalDensity is to prove a lower
bound on the growth of the norms ‖xt‖. We will use the fact that the maximum
density d(A) gives a lower bound on the largest eigenvalue of A.

Fact 1. Let A be the adjacency matrix of an undirected graph, and let λ be the
largest eigenvalue of A. Then, λ ≥ d(A). Furthermore, there is an eigenvector
φ with eigenvalue λ whose entries are nonnegative.

Proof. To prove that λ ≥ d(A), notice that for any sets S ⊆ L and T ⊆ R,

λ ≥ max
x,y

〈xA, y〉
‖x‖‖y‖ ≥

〈

1S
√

|S|
A,

1T
√

|T |

〉

=
e(S, T )
√

|S|
√

|T |
= d(S, T ).

It is not hard to see that if φ is an eigenvector with eigenvalue λ, then the vector
whose entries are the absolute values of the entries of φ is also an eigenvector
with eigenvalue λ.

The fact above implies the lower bound ‖x0A
t‖ ≥ 〈φ, x0〉 d(A)t, which de-

pends on the maximum density d(A). To analyze the local algorithm, we will
give a lower bound that depends on the density of a particular subgraph (S, T )
containing the starting vertex. Specifically, we will show that for many vertices
in the set S, we can give a bound of the form ‖x0A

t‖ = Ω(d(S, T )t) with a not-
too-small constant term. We will do so by considering how the pruned growth
process would behave if it were restricted to the induced subgraph (S, T ).

Definition 7. For any induced subgraph (S, T ), we define A(S,T ) to be the
restriction of the adjacency matrix A to (S, T ),

A(S,T )(x, y) =

{

A(x, y) if x ∈ S and y ∈ T , or if x ∈ T and y ∈ S.

0 otherwise.
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The following lemma identifies, for any subgraph (S, T ), a set of starting
vertices for which we can give a good lower bound on the norms ‖xt‖. This
set of good starting vertices touches at least half of the edges in the induced
subgraph (S, T ).

Lemma 2. If (S, T ) is a subgraph such that d(S, T ) ≥ 2θ, then there exists a
subset Sθ ⊆ S with the following properties:

1. e(Sθ, T ) ≥ e(S, T )/2

2. For each v ∈ Sθ, there is a nonnegative unit vector ψ such that

(a) Support(ψ) ⊆ S ∪ T ,

(b) ψA ≥ θψ,

(c) ψ(v) ≥ 1√
2|S|

.

Proof. Let Sθ be the largest subset of S for which property (2) holds, and
consider the set S′ = S \ Sθ. If Sθ does not satisfy property (1), then

e(S′, T ) = e(S, T ) − e(Sθ, T ) ≥ e(S, T )

2
,

and so d(S′, T ) ≥ d(S, T )/2 ≥ θ.

Let λ be the largest eigenvalue of A(S′,T ). We know from fact 1 that there
is an eigenvector ψ of A(S′,T ) whose entries are all nonnegative, and whose
corresponding eigenvalue λ satisfies

λ ≥ d(S′, T ) ≥ θ.

It is easy to see that ψ satisfies properties (a) and (b). We will now identify a
vertex in S′ for which ψ(v) ≥ 1/

√

2|S|. This will imply that v is in Sθ, which
will show that Sθ must satisfy property (1), and thus complete the proof.

Let ψS′ and ψT be the projections of ψ onto S′ and T , and observe that
‖ψS′‖ = ‖ψT ‖ = 1√

2
. This is true because ψS′A(S′,T ) = λψT , which implies that

λ‖ψS′‖ ≥ ‖ψS′A(S′,T )‖ = λ‖ψT ‖. There must at least one vertex v in S′ which

satisfies ψ(v) ≥ 1/
√

2|S′|, since otherwise we would have ‖ψS′‖2 < 1/2.

4.2 Analysis of the local algorithm

Proof of Theorem 1. We will prove that for each vertex v in the set Sθ, which
was described in Lemma 2, the algorithm LocalDensity(v, K) outputs a sub-
graph with density at least θ/8L, where L = log(2∆/ǫ0) ≤ (log 16∆K), provided
that K ≥ max(|S|, |T |). The theorem will follow.

8



Let x0, . . . , xT be the pruned growth process vectors computed by the algo-
rithm. We will assume that the algorithm does not find a subgraph with the
desired density, and derive a contradiction. That is, we assume that for each
i, j, and each time t < T , we have d(Xt

i , Y
t
j ) < θ

8L . Under this assumption,
Lemma 1 shows that for every t ≤ T ,

‖xt+1‖ ≤ ‖ round(xtA)‖

<

(

2 log
2∆

ǫt

)(

θ

8L

)

‖xt‖

≤
(

θ

4

)

‖xt‖.

Since ‖x0‖ = 1, this implies

‖xt‖ ≤ ‖ round(xt−1A)‖ <
(

θ

4

)t

for every t ≤ T . (1)

Since v ∈ Sθ, there exists a nonnegative vector ψ such that ψA ≥ θψ, such
that Support(ψ) ⊆ S ∪ T , and such that ψ(v) ≥ 1√

2|S|
, as stated in Lemma 2.

We will prove the following lower bound on the inner product of xt with ψ.

〈xt, ψ〉 ≥
1

√

2|S|
(θ/2)t for every t ≤ T . (2)

When we prove equation (2), it will contradict equation (1) when t = T =
log(

√

2|S|), and we will be done.

We will prove that equation (2) holds by induction. We know it holds for
t = 0. The only difficulty in the induction step is to bound the effect of the
pruning step on the projection of xt onto ψ. We define rt to be the vector that
is removed during the pruning step.

rt = round(xt−1A) − xt

= round(xt−1A) − pruneǫt(round(xt−1A)).

The value of rt at any given vertex is at most ǫt‖round(xt−1A)‖. Since the
support of ψ is contained in S ∪ T , and the support of rt is contained in either
L or R, the intersection of the two supports contains at most max(|S|, |T |)
vertices. The inner product of rt and ψ can then be bounded as follows.

〈rt, ψ〉 ≤ ǫt‖round(xt−1A)‖
√

Support(rt) ∩ Support(ψ)

≤ ǫt‖round(xt−1A)‖
√
K.
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We can now bound 〈xt, ψ〉 in terms of 〈xt−1, ψ〉.

〈xt, ψ〉 = 〈round(xt−1A) − rt, ψ〉
= 〈round(xt−1A), ψ〉 − 〈rt, ψ〉
≥ θ 〈xt−1, ψ〉 − ǫt‖round(xt−1A‖)

√
K.

We now assume that the induction hypothesis holds for t − 1, which means
〈xt−1, ψ〉 ≥ (1/

√

2|S|)(θ/2)t−1. Recall that we have assumed for the sake of

contradiction that ‖xt‖ ≤ ‖ round(xt−1A)‖ < (θ/4)
t
. We will now show that

the induction hypothesis holds for t.

〈xt, ψ〉 ≥
(

θ
√

2|S|

(

θ

2

)t−1
)

−
(

ǫt
√
K

(

θ

4

)t
)

≥
(

θ

2

)t
(

2
√

2|S|
− 4ǫt2

−t
√
K

)

≥
(

θ

2

)t
1

√

2|S|
.

The last step follows because we have set ǫt so that

ǫt =
2−t

8K
.

This completes the proof.

Proof of Theorem 2. We bound the running time of LocalDensity(v, K) by
bounding the number of vertices in the support of xt at each step. Since xt is
at least ǫ‖xt‖ wherever it is nonzero, we have

‖xt‖2 ≥ |Support(xt)|ǫ2‖xt‖2,

and so

|Support(xt)| ≤
1

ǫ2
.

We can compute xt+1 from xt and compute the density of each subgraph
(Xt

i , Y
t
j ) in time proportional to the sum of the degrees of the vertices in

Support(xt), which is at most

O(∆|Support(xt)|) = O(∆/ǫ2t ) = O(∆K22−2t).

The total running time is therefore

T
∑

t=0

O(∆K22−2t) = O(∆K2).
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5 An approximation algorithm for d(A)

As a simple application of the techniques developed in the previous sections,
we give an O(log n)-approximation algorithm for the globally optimum density
d(A) by simulating the pruned growth process for O(logn) steps. The algorithm
produces a subgraph (S, T ) with density Ω(d(A)/ logn) in time O(m log ∆/d),
where ∆ is the maximum degree in the graph, and d is the average degree.
The algorithm requires O(log n) passes through the collection of adjacency lists
describing the graph, and requires only O(n log logn) bits of additional storage.
This provides an efficient way to implement the spectral approximation algo-
rithm of Kannan and Vinay [8], which has the same O(log n) approximation
guarantee and requires computing the largest eigenvalue of A.

Density:
Run the following procedure twice with x0 = 1L and x0 = 1R:

1. Let T = log 2
√
n and ǫt = 2t

8
√

n
.

2. Compute the pruned growth process vectors x0, . . . , xT .

3. Compute d(Xt
i , Y

t
j ) for each pair i, j and each time t < T .

4. Output the densest subgraph among the sets (Xt
i , Y

t
j ).

Theorem 3. For at least one of the two starting vectors 1L and 1R, there exists
a time t ≤ T and two indices i and j such that the subgraph (X,Y ) output by
the algorithm satisfies

d(X,Y ) ≥ λ

(8 + 4 logn)
≥ d(A)

(8 + 4 logn)
.

Theorem 4. Density runs in time O(m(1 + log ∆
d )), where ∆ is the maxi-

mum degree in the graph, and d is the average degree. The algorithm requires
O(n log logn) bits of additional storage.

Proof of Theorem 3. Let λ be the largest eigenvalue of A, and let φ be an
eigenvector with eigenvalue λ whose entries are nonnegative. Because φ is non-
negative, 〈1V , φ〉 ≥ 1. We will assume that 1L has a larger inner product with
φ than 1R, so that 〈1L, φ〉 ≥ (1/2) 〈1V , φ〉 ≥ 1/2. We let x0 = 1L, and consider
the vectors x0, . . . , xT computed by the algorithm.

We assume that d(Xt
i , Y

t
j ) < λ/8 log(2∆/ǫ0) ≤ λ/(8 + 4 logn) for every i, j,

and t ≤ T , and derive a contradiction. Under this assumption, Lemma 1 shows

11



that for every t ≤ T ,

‖xt+1‖ ≤ ‖ round(xtA)‖

<

(

2 log
2∆

ǫt

)(

λ

8 log(2∆/ǫ0)

)

‖xt‖

≤
(

λ

4

)

‖xt‖.

Since ‖x0‖ ≤ √
n, this implies

‖xt‖ <
√
n

(

λ

4

)t

for every t ≤ T . (3)

We will soon prove the following lower bound.

〈xt, φ〉 ≥ 〈1L, φ〉 (λ/2)t for every t ≤ T . (4)

When t = T = log(2
√
n), this will imply

‖xT ‖ ≥ 〈xT , φ〉 ≥
1

2
(λ/2)T ≥

√
n(λ/4)T ,

which will contradict equation (3), completing the proof.

We will prove by induction that equation (4) holds for every t ≤ T . It holds
trivially for t = 0. We define rt to be the vector lost in the pruning step,

rt = round(xt−1A) − xt

= round(xt−1A) − pruneǫt(round(xt−1A)).

The value of rt at any given vertex is at most ǫt‖round(xt−1A)‖ ≤ 2λǫt‖xt−1‖.
Because φ is nonnegative, 〈rt, φ〉 ≤ 2λǫt‖xt−1‖ 〈1V , φ〉. In fact, we have the
slightly stronger statement 〈rt, φ〉 ≤ 2λǫt‖xt−1‖ 〈1L, φ〉, because the support of
rt is contained in either L or R, and 1L has a larger inner product with φ. We
can now bound 〈xt, φ〉 in terms of 〈xt−1, φ〉.

〈xt, φ〉 = 〈round(xt−1A) − rt, φ〉
= 〈round(xt−1A), φ〉 − 〈rt, φ〉
≥ λ 〈xt−1, φ〉 − 2λǫt‖xt−1‖ 〈1L, φ〉 .

We will assume that the induction hypothesis holds for t− 1, which means that
〈xt−1, φ〉 ≥ 〈1L, φ〉 (λ/2)t−1, and we have already assumed for the sake of con-
tradiction that ‖xt‖ <

√
n (λ/4)

t
. We now show that the induction hypothesis

holds for t.

〈xt, φ〉 ≥ λ 〈1L, φ〉 (λ/2)t−1 − 2λǫt 〈1L, φ〉
√
n(λ/4)t−1

≥ 〈x0, φ〉 (λ/2)t(2 − 8ǫt2
−t
√
n)

≥ 〈x0, φ〉 (λ/2)t.
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The last step follows because we have set ǫt so that

ǫt =
2t

8
√
n
.

This completes the proof.

Proof of Theorem 4. We can bound the running time of the algorithm by
bounding the number of vertices in the support of xt. Since xt is at least ǫt‖xt‖
wherever it is nonzero, we have

‖xt‖2 ≥ |Support(xt)|ǫ2t‖xt‖2,

and so

|Support(xt)| ≤
1

ǫ2t
≤ n2−2(t−3).

We can compute xt+1 from xt and compute the density of each subgraph
(Xt

i , Y
t
j ) in time proportional to the number of edges incident with Support(xt),

|e(Support(xt), V )| ≤ min(m,∆|Support(xt)|)
≤ min(m,∆n2−2(t−3)).

The total running time over all T steps is at most

T
∑

t=0

min(m,∆n2−2(t−3)) ≤
(

1

2
log(n∆/m) + 3

)

m+

T
∑

t= 1
2

log(n∆/m)+3

∆n2−2(t−3)

≤
(

1

2
log(n∆/m) + 3

)

m+ 2m

= O(m log(∆/d) +m).

To bound the amount of space used by the algorithm, notice that storing the
vector xt requires n log log 1

ǫ = O(n log log n) bits, since each vertex takes one
of log 1

ǫ possible values. We need only store two vectors at a given time, xt and
round(xtA), so the total amount of storage required is O(n log logn) bits.

6 Conclusion

We have shown that it is possible to find a dense subgraph near a given vertex
without examining the entire graph. The running time of our local algorithm
is quadratic in terms of the target size K, where K must be at least as large as
|S| + |T | to produce an approximation of the subgraph (S, T ). We conjecture
that a better local algorithm exists. In particular, it would be nice to have an
algorithm whose running time depends on the size of the subgraph (X,Y ) that
is produced, rather the subgraph (S, T ) whose density is approximated.
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