
PORTS: A Parallel, Optimistic, Real-Time Simulator

Kaushik Ghosh, Kiran Panesar. Richard M. Fujimoto ,and K,arsten Schwan

College of Computing

Georgia Institute of Technology

Atha.nta, GA, 30332.

Abstract

This paper describes Issues concerning the design of an optimistic
p.amllel discrete event simulation system that executes in environ-
ments that impose real-time constraints on the simulator’s execution.
Two key problems must be addressed by such a system. First the
timing characteristics of the parallel simulator must be sufficiently
predickzble to atlow one to guarantee that real-time deadlines for
completing simulation computations wilt be met. Second, the op-
timistic computation must be able to interact with its surrounding
environment with as little latency as possible, necessitating rapid
commitment of I/O operations.

To address the first question, we show that optimistic simulators
that never send incorrect messages (sometimes called “aggressive-
no-risk” simulators) provide sufficient predictability to allow tra-
ditlonrd schedulabifity analysis techniques commonly used in real-
time systems to be applied. We show that incremental state saving
techniques introduce sufficient unpredictability that they are not
welt-suited for real-time environments. We observe that the tra-
ditional “lowest timestamp first” scheduling policy used in many
optimistic parallel simulation systems is an optimal (in the real-
tlme sense) scheduling algorithm when event tlmestamps and real-
time deadlines are the same. Finally, to address the question of
rapid commitment of 40 operations, we utdize a continuous GVT
computation scheme for shared-memory mulhprocessors where a
new value of GVT is computed after processing each event in the
simulation.

These ideas are incorporated in a parallel, optimistic, real-time
simulation system called PORTS. Initial performance measure-
ments of the shared-memory based PORTS system executing on
a Kendall Square Research multiprocessor are presented. Initial
performance results are encouraging, demonstrating that PORTS
achieves performance approaching that of a conventional Time Warp
system for the benchmark programs that were tested.

1 Introduction
Real-time applications are computations that require adherence to
specdied timmg constraints. A real-time system is a computer
system that supports the proper execution of real-time applications.
Thus, m real-time systems, interactions with the external world

are such that the response time of the system to external inputs is
important, if not critical, to the proper functioning of the system. A

late response is often no better than no response at all.

A real-time simulation is a real-time system where some por-
tion of the environment, or portions of the real-time system itself,
are realized by a simulation model. Real-time simulators are used
extensively in the development of real-time systems because it is

o

often too expensive, or dangerous, to develop the real-time system

in the actual environment into which it will eventually be embedded.

Further, one may have hybrid simulations where an implemented

part and a simulated part of a real-time system interact m conjttnc-
tion with a given environment. This alfows testurg of portions of

the system before the entire system has been fully reahzed. In

either case, the real-time sunulator must adhere to certain tuning
constraints m order to properly test the real time system tnto which
it is to be embedded.

It is important to note that real-lime simulation is not the same
as high-performance simulation. Achieving high performance re-

quires a high average rate in processing events. On the other hand,
real-time simulations require that individual events be completed

by certain deadtines even under worst-case conditions. Predictabil-
ity (see section 3) is of critical importance in real-time simulation.

While high-performance has been extensively studied by the parallel

discrete event simulation community, predictability and guarantee-
ing real-time constraints has received very little attention.

Optimistic (aggressive) approaches detect synchronization er-
rors at rontune, and recover using a rollback mechanism. The focus
of our work is in optimistic real-time simulation. This is in contrast

to prior work by Bagrodia and Shen that used conservative sim-

ulation methods [1]. Further, we explicitly consider deadlines on

simulation events, and their real+me schedulability analysis, unlike

the work described in [25].

In [13] it was shown that Time Warp, the most welt known

optimistic protocol, cannot guarantee deadlines because of the un-
predictability of roltbacks for general simulation problems. Thus,

Time Warp is poorly suited for real-time simulations. This work
also defined a class of simulations where Time Warp using lazy

cancellation is able to guarantee deadlines. However, this class
1s somewhat restrictive, and does not include many simulations of

practical interest. Here, we focus attention on other optirrustic sim-
ulation protocols that are able to enjoy the benefits of optimistic

execution, but are still able to guarantee deadtines.

Another challenging aspect of optimistic real-time simulation
is that they may require frequent I/O operations to interact with the
external envwonment. Optimistic protocols must compute global

virlual lime (GVT,J’ before committing an I/O operation. Tradi-

tional algorithms for computing GVT are sufficiently time consunl-
ing that invoking them very frequently (e.g., prior to performmg
each I/O operation produced by the parallel simulator) will result
m a significant performance degradation. Reducing the frequency

of computing GVT may introduce delays in committmg operations
that result in untimely interactions with the external environment.
We propose an efficient software-based mechanism for continu-
ously computmg GVT on shared-memory multiprocessors so that
an up-to-date value M always available for rapidly commlttmg 1/0

operations. This mechamsm is also unportant for the efficient OP-

‘ CiW is a lower bound on the time.stiimp of my future rolltmck. 1/0 opcratlc]ns

occurnag cd slmukded tm]es greater thin GVT cannot be committed because they may

later be rolled back,

24

http://crossmark.crossref.org/dialog/?doi=10.1145%2F195291.182487&domain=pdf&date_stamp=1994-07-01

emtion of the synchronization protocol that is used here.

2 Terminology

We now introduce the terminology and model for real-time simula-

tion that IS used throughout. We denote an event with timestamp T
on logical process (LP) i as E,,T. Each event E,,T in the system
has a deadline dEc ~, and an execution time e E, ~.

The deadline of an event is the time by whwh execution of the

event must complete. The execution time indicates the maximum
amount of time the event requires to run when it is executed for
the last tune in the simulation (i.e., the instance of the event that

is ultimately committed). In general, the timestamp of an event is

some tune “not greater than its deadline, and is used to ascertain
dependencies between events. Here, we assume that the timestamp

of an event is equal to its deadline.
The simulation is assumed to start at real time O. Event E,,T

should be committed at or earlier than dE, ~ units of real time

after the start of the simulation. This brings out the relationship
between the logical time and the physical time: an event executes
(in the simulator) for a time interval equal to its execution time,

and its execution must complete (indeed, commit) before physical
time becomes equal to the deadline of the event (m this paper, the
deadline is identical to the tirnestamp on the event). The rate of
advancement of logical time is irrelevant as long, as the two criteria

above are adhered to.

It should be noted that one can easily have periodic and spo-
radic jobs (as found in ~ical real-time systems) in this simulator.
The tirnestamps (therefore. deadlines) of the individual events of a

periodic task will be multiples of the period: thus, e.g., 5,10,15 . . .
for events of a periodic task with period 5; the tirnestamps on the

events of sporadic jobs are “random.”
We assume that an event schedules at most c other events. The

time taken to send a message (or an antirnessage) is at most t, i.e.,
the sending processor has to work for up to tunits of real time to

send out a message. The time to send out true positive messages
is assumed to be included in the execution hrne of the event. The

transmission delay of a message is assumed to be at most J time
units.

The destination processor is interrupted when it receives a mes-
sage. The interrupt causes the processor to examine the tirnestamp

of the arriving message. If the arriving message causes a rollback of
the destination LP, rollback processing is started immediately; oth-

erwise, the arriving message is inserted into the appropriate event
list when the executing event Iinishes. We assume the ‘tnterrupt

processing’ takes negligible time; thus, we do not consider queue
insertion time. The model can be easify extended to include such
overheads, provided they require at most constant time. Hashing
schemes such as the calendar queue [5] provide possible approaches

for achieving constant time queue insertions.
Upon rollback, the state vector of the LP rolling back has to be

restored to a state corresponding to a simulated tune immediately

before the timestrtmp of the message that caused the rollback, and

m Time Warp, antimessages have to be sent for each of the pro-
cessed events with timestamp greater than that of the message that
caused the rollback. We assume that a constant amount of time
restore.state is required for state restoration. In many existing

implementations of Time Warp, state restoration is much less time
consuming than sending antimessages. Likewise, an amount of time

saves tate is required to save the state of each event. As stated
earlier, at most t units of time ,arerequired to send each antimessage.

Cancellation of an unprocessed event just requires that the event be
riisc.arded from the event list. We assume that this operation requires

a negligible amount of timez. Dwect cancellation stmttegies [9, 10]

2’flIIS imphes that if there. arc several unprocessed message-antunessage pmrs for a

25

avoid the time for searching for the event to be cancelled, and just@

this assumption.

In [13], a restricted class of optimistic simulations is defined as

follows: if an incorrect computation (one that will be later rolIed

back) produces an (incorrect) event E,,T itmust be the case that
the correct computation also produces an event ~,,’r with the same

tirnestamp, but possibly different message contents than the original
event scheduled by the incorrect computation(s). Simulations that

obey this property are called NFT Time Warp simulations (for No
False Tiiestamps). Thus, in NFT Tne Warp, if there is an event

with timestamp T at any point in the simulation, there will be a
committed event with timestamp T at the end of the simulahon.

The importance of this class of simulations wilI become clear later.

3 Issues in Optimistic Real-Time Simulation

The basic problem in any real-time system – be it simulation or
actual implementation - is one of managing resources ur a timely
manner. In this paper, we shalf make the simplifying assumption of

being concerned with only one resource: the CPU.

For purposes of real-time simulation, optimistic methods dtffer

from conservative ones in that at any time in a conservative simula-
tion, there is no ‘incorrect computation”: the system blocks, rather
than computing speculatively. For optimistic methods, the system

may have to recover from the effects of erro neous speculative com-
putation. The real-time scheduler has to ensure that recovery does

not take inordinately long. AIso, predictability plays a major role in
real-time simulations: there should not be large variances between
the execution time of a primitive when it is performed several times
[24].

Essential problems associated with using optimistic schemes
such as Time Warp for real-time simulation include the following:

(1) predictability of execution with respect to real-time,

(2) fast commitment of operations, and
(3) state saving and restoration overheads.

In tbe remainder of this section, we consider real-time predictability

of the synchronization protocol, the problem of obtaining fast com-

mitment of operations, and state-saving and restoration overheads.

3.1 Predictability of the Synchronization Mechanism

A central problem with using Time Warp for real-time simulations
is that the overheads associated with Tne Warp are difficult to

predict. Events with false tirnestamps might be produced, and
premature execution of events may have to be rolled back. Fai’:e

events have to be cancelled, and premature execution has to be
undone by restoration of state and sending antimessages for falsely-
scheduled messages. In [13] it is shown that these overheads might
require unbounded amounts of time, thus severely restricting the
use of Tme Warp in real-time simulation,

Specifically, a result that was proven in [13] is:

If there is no constraint on the number of false events that

may be created between any two successwe true events on
an LP, and the per-event overheads of Time Warp (saving

and restoring state, sending antimessages) are non-zero,
Time Warp cannot guarantee that any set of events can be

processed without violating deadlines.

Intuitwely, this M because one cannot derive a useful bound on the
amount of overbead computation that might delay the committed

execution of an event. This result motwated the definition of the
NFT class of simulations that precludes the possibility of such false
events.

single event. mrmhilatio” of such palm requires neglig,bletlme.

Unfortunately, the NFT class of simulations M very restric-
twe, as It excludes any simulation where the tlmestamp of an event
depends on prior events recewed from other processors. For in-

stance. queueing network simulations are non-NFT. Thus, rather

than restnctmg the range of applications that can be executed on the

real-time sunulator, as was done in [13], we take another approach.

Message sends (are not executed untd it can be guaranteed that the
generated message is a true (correct) message, thereby elimmatmg

all fake messages. A message is guaranteed to be a true message

when GVT has reached the tlmestamp of the event that scheduled
the message. With this protocol, there IS no need for antlmessages

because message sends are never rolled back.

This idea of delaytng message sends until the sending event
commits 1s not new; Reynolds refers to optimistic simulators that
do not send false messages as aggressive, no-risk (ANR) slmtrlations

[15], and at least two synchronization mechanisms. the SRADS [8]
anti SPEEDES [25] protocols, utdize this approach. In addition.

there have been other efforts toward using such risk-free approaches
for speeding up distributed simulation [18, 2], but they do not con-

sider the real-time aspects of such simulation. However, to our

knowledge, the relationship between ANR simulation protocols and
guaranteeing deadlines for optimistic real-time simulations has not

been previously reported.
The following lemma proves that ANR simulations have the

NFT property.

Lemma 1 The evenls produced in an ANR simulation conform lo
the NFT constraint.

Proof (by contradiction): Assume that NFT does nol hold, i.e.,

there is some event E,,T, scheduled by an event Ej, T1, and E,, T

cioes not exist in the final set of committed events. Thus, E,,T
must have been scheduled, and then cancelled, which can happen

only if EJ, T1 was rolled back after Et, T was put m the event list
of LP t. An event M scheduled (I.e., the corresponding ‘message’

M ‘transformed into an event’) in an ANR simulation only after the
scheduling event 1s itself committed. This lmphes that Ej, rl was

rolled back after It was committed, which is impossible. Thus, there
can be no event in an ANR simulation that violates NFT. ❑

The significance of the above lemma lies m the fact that NFT
simulations have sufficient predictabihty to enable one to determme

whether or not an event computation is scbedulable, I.e., can be
scheduled for execution without later violating real-time constraints

[13]. Non-schedulable computations must be rejected because if
they were allowed to execute, the system would be at risk of vi-

olating one or more deadlines. More will be said about rejected
computations later. A non-NFT Time Warp slmttlation cannot be

easily analyzed to determine which computations are schedulable
and which are not because there is sufficient uncertainty regarding

future rollbacks to perform useful schedulability analyses. Because
schedulabdlty analysis is essential to any real-time system, this

precludes Time Warp without any restrictions on the application
domain for use in real-time sttnulators. The above lemma proves
that ANR simulation protocols do not suffer from this problem.

Schedulability analysis3 can be performed on the real-time sin-
ulator if
(1) the events conform to NFT (guaranteed for ANR protocols),

(2) a Lazy-Cancellation-like strategy was used to undo erroneous
computation (see [13, 12] for details), and
(3) the event execution time is inflated by an amount
re store.state + save-state for the purposes of schedulability anal-

ysis,

311]real-tuneparlance, sched[zlab~li~ analysis refers to ascertaining whether a gwen

task or set of tasks can be nm to completion on a gwen set of processors, w]thout mwmg

the respectwe deadhnes of the tasks In our case. every event is a task.

The execution time of each event is inflated to allow time for

rollback computations to be performed, should that become neces-
safy[l l].

In addltlon to analyzing the schedulability of event computa-
tions, any real-time system must also devise a scbedulethat indicates

when the scheduled events will be executed (this schedule M usually
used in the schedulability analysis as well) so that no deadhnes are
wolated. In real+me systems termmology, an op[irnal scheduler is

defined as one that is always able to produce a schedule that does not
violate any deadlines if such a schedule exists. It is well known that

the earhest deadline (ED) first scheduling policy is optimal m keep-

m.g real-time deadlines on a single processor [7, 6]. Here, we have
assumed that the deadline for an event M identical to ts timestamp.

so the ED scheduling algorlthm is identical to the lowest tlmestamp
first (LTF) event scheduling algorithm that is commonly used m
optunistic simulators. LTF is usually used m optimistic simulators

because it M generally believed to reduce the number of rollbacks.
Thus, the LTF/ED scheduling algorithm is well suited for optimmtic

real-time simulation systems. Later, we provide an example that
illustrates the schedulability analysis and real-time scheduler in the
PORTS system.

3.2 Calculating GVT Continuously
To make the simulations as fast as possible, we need to commit

sender events as soon as possible so that pending messages can be
actually sent. Moreover, real-time systems typically perform much
I/O (interaction with the external environment). But 1/0, being

retractable, must be performed only after the corresponding event

has been committed. Thus. it IS not enough to merely ‘complete
execution’ of an evenu it must be committed m a timely manner.

We need to find a low-latency GVT computation algorithm, and run

the GVT computation at appropriate intervals. In fact. in an ideal

situation, the simulator should have a value of GVT (at least a close

lower-bound) continuously available (i.e., the bound is continuously
updated). This will ald m committing events, and wdl also not
need the computation to proceed in phases, separated by the GVT-

calculation phases, as is done in SPEEDES. We present such an
algorithm next.

Several algorithms have been proposed in the literature for com-
puting GVT. Software-based GVT schemes either synchronize all
processors and take a global snapshot, or compute GVT concurrently

with the simulation (e.g., see [22. 3, 17, 16]). Schemes utilizing a
global snapshot entail an unacceptable amount of overhead for our

purposes because we require GVT to be performed very frequently,
possibly as often as after each event. Concurrent GVT algorithms

(e.g., using token passing schemes) incur too much latency from
when GVT advances untd when It is recomputed. Because ex-

isting schemes for computing GVT were not intended to be used
with very high frequency, they essentially recompute GVT “from

scratch” each time the computation is invoked. We require a con-
tinuous GVT computation scheme where results from prior GVT
computations (e.g., the local minimum computed by a processor) are
reused on the next GVT computation. Hardware approaches such
as those described in [21, 20] provide one solution to this problem,

but such hardware is currently not avadable for most computing
platforms.

We present a software implementation for shared-memory mul-

tiprocessors. To compute GVT. we maintain a tournament &ee. not
unlike the hardware reduction networks or algorithms such as that
described in [14] with processors at the leaves. Each node of the

tree has a timestamp associated with it. The timestamp of a node
signifies the mmlmum of the local virtual times and transient mes-
sages of the processors at the leaves in that node’s subtree. The
value at the root node is the GVT. Whenever the local minimum for
a processor changes, It updates the timestamp value at its leaf node,

26

and propagates the changes up the tree until a node is found with

timestamp less than the new local value. By recomputing the local
minimum after each event a continuously updated value of GVT is

always available to the processors in thes ystem.

3.3 Predictability: Saving and Restoring State
The remaining overheads associated with our scheme are those for

saving and restoring state. These overheads are related: infrequent
state saving reduces the overall overhead of state saving at the cost

of extra overhead during rollback and state restoration. Several
methods have been suggested to reduce the combined cost of state
saving/restoration. They work on the principle of reducing the

average overhead per event, thereby increasing speedup. Often, in
decreasing the average, the worst-case overhead increases, as will
become evident in what follows. Reducing the average time for state
saving and restoration at the cost of the worst-case time, should be
avoided in real-time optimistic simulation, though it performs well
for non-real-time simulation.

In SPEEDES, state saving is performed after each event how-

ever, instead of saving the whole state associated with that event
(i.e., the complete set of state variables that the event might up-

date), SPEEDES ‘saves’ only the bytes that the event had actually
updated. This can lead to significant performance improvements if

the event updates only a few bytes out of the many it has access to.
However, such an approach is unpredictable m terms of the cost of

rollback: while in more conventional schemes of state-saving, the
time to restore state is a constant in incremental state saving, this

time is proporhonal to the number of events rolled back. This is
explained further next.

Incremental state saving mechanisms m general only save up-
dated bytes of storage. Typically, the previous contents of a state
variable is copied mto a “modification list” before the data is over-
written. Thus, in order to recover the state as it was before an event

executed, one needs to exchange the appropriate bytes in the state
vector with what was stored after that event was urocessed. Sutmose. . .
that there are a number of events E,, Tl . . . E,, Tn –I, E,, Tn on LP
t, and all events up to E,,Tn have been processed, and we have to

roll back to a state earlier than TI. To recover that state, we have to

exchange the modified bytes for all the events E,,Tn, E,, Tn –I . . .

E, ,Tl. However, the number of such events may be very large (in

the sense that one cannot put a meaningful bound on the number a
priori), as shown in the followrng example.

Assume that we have 2 LPs LPo and LPI in an optimistic
simulation that uses ANR and incremental state saving. Let the LPs

be mapped to distinct processors. Assume that the average fanout

of each event is 1, but there are k events on LPo each of which
schedule m other events. Let the k events be consecutive events on
LPo, and let their timestamps be between O and 1. Let the events

scheduled by these k events have timestamps of 2 or larger. The
only events on L P1which are of interest to us are the first 2 events:

assume that the first of these has a timestamp of 1 and the second a

titnestamp of 1.5; further, the second event schedules an event with

timestamp 1.9 on .LPo.
Assume that LPI is much slower than LPo, and by the time

LPI executes an even~ LPo has already executed the k events above
(with timestamps between O and 1). At the end of this phase, GVT is

calculated, and found to be 1; thus, the events scheduled by the first
k events on LPo are ‘released’ (let us call this set of events S). It

may so happen that by the time the event with timestamp 1.9 arrives
at LPo, all the events in S have been executed, and restoration of
state dictates that the Delta Exchange be performed on all of these
(large number of) events. This may take mordmately long, and it

should be noted that the amount of time lt will take cannot be tightly
bounded a priori.

It might be argued that the above scenario is contrived: that

IPl
Real-Time

Scheduler

and Dispatcher
.

hTIUIZItOr @/T

nd Synch Calculation

rotocol Scheme

IReal-Time

Scheduler I

Y
and Dispatcher

GVT Simulator

Calculation and Syncl

Scheme Protocol

Processor O Processor n
+ $

~Tournament tree data structure I

E&l
Figure 1: The overall structure of the system

lt will not occur frequently in practice. However, for predictable
execution (as required in real-time systems), this possibility can-

not be precluded. This motivates the folfowing lemma concerning
incremental state saving.

Lemma 2 An incrernentals~ate saving mechanism that res[oreslhe

state of the system by “undoing” write operations recorded in a
modification list may cause deadline violations.

Proofl As shown in the discussion above, the number of events to
be processed before an LP is rolled back may be unbounded. Thus,

when an LP receives a message, it might have to roll back ‘over’ an
unboundedlylarge number of events to recover to a state from which

forward processing can occur again. Such rollback, therefore, can
take arbitrarily long, resulting in missed deadlines. 0

The problem above arose because restoring state required us
to roll back over too many events, and perform the exchange of
modified bytes too many times. One solution to the problem can be
to carry out a ‘full checkpoint’ (i.e., save the complete state) once

in every k events (where k is a constant for a particular simulation).
This enables us to have a bounded value for state saving and state

restoration, thereby having predictable properties in the slmulat~ m.

4 Design of the PORTS System

In this section, we mention a few relevant points about the design of

the real-time simulator. As shown in figure 1, the system consists of
a simulator, which is a collection of LPs, modules for doing GVT

computations, a module for managing real-time, i.e., performmg
real-time scheduling and dispatching, and a module for managmg

I/o.
The mapping of the LPs to the available processors is ‘static’:

it M done during initialization of the simulation, and is not modified
during the run. Each LP is a collection of events and the event lists

are autonomous. The simulator keeps track of event dependencies,
and performs rollbacks when a straggler arrives. The real-time-

management module decides whether an arriving event can be run
to completion, and M discussed m detail in section 4.1. GVT com-

putation is performed partly locally, and partly in conjunction with
the other processors in the system, and is discussed m section 4.2.
Here, we discuss the synchronization strategy used m the system.

As in SRADS and SPEEDES, we use an ANR mechanism to
schedule events. However, a real-time system needs fast committing
of indiwdual events: it is not enough to ensure that the average time

between completing an event and committing it is small. Thus, un-
like SPEEDES, we perform GVT computation continuously. After
each event execution is completed, certain local data structures are

27

updated, and If requmed, the appropriate state of a to urnament tree is

also mochfied (if a new mimmum is found at the leaf, then the mu--

lmum M ‘bubbled up’ to the root of the tree), Since a lower bound

of GVT M thus available all the time, there is no need to ‘freeze’
the simulation to calculate GVT, which would be catastrophic in an

embedded real-time simulation.

The real-time-management module selects the next event to be
run; the event M executed by the ‘simulator’; during execution, the
event updates state varrables, and sends messages to LPs; after the
event completes execution, the GVT data structures are updated, and

a new value of GVT obtained; the events with tlmestamp smaller
than GVT release them messages (which interrupt the destination

processors); arriving stragglers may cause rollbacks which wdl be

taken care of by the ‘simulator’ module; the I/O associated with
committed events is also performed at this stage (the values to be

output were stored in the state vector associated w:th the particular

event). This sequence is repeated.

In the followurg sections, we discuss two of the most important

modules in the system: the real-time management module, and the
GVT computation module.

4.1 Management of Real-Time
In the current design, the simulator consists of a collection of LPs,

which are statically mapped to the processors (PEs) available to
the simulator. Thus, events are bound to processors, and there

is no event-migration or exphclt 10ad-balancing. Further, because
deadlines and execution times are associated with events, it suffices

to perform schedulabdity analyses on a per-processor basis. We
follow the ED (earliest deadline first) algorithm for scheduling,
which has been proven to be optunal for umprocessor systems. A

slot list N used to perform this schedulabilrty analysis. Here, we
provide an example to explain the ED scheduling algorithm, and
describe the use of the slot list to keep real-time.

A slot hst IS essentially a time table which marks the intervals

during which the processor is busy executing an event, and which
event can be successfully scheduled on the processor. Suppose we

have the following events on a processor: El with execution time 2

and cleadline4 3; E2 with execution time 1 and deadline 2; E3 with
execution time 1.5 and deadline 5. The ED scheduling mechanism

would run E2 first (since lt has the lowest deadline) from time O to

1 (since it needs 1 unit of time to complete), El from 1 to 3, and

finally E3 from 3 to 4.5. Since all the events run to completion

before their respectwe deadlines, tbe set of events is schedulable
(see figure 2).

However, suppose that there 1s an event El, with deadline 5
and execution time 1, in addition to the events above. In this

case, El would miss its deadlines (see figure 2). This is the basic
principle underlying the ED algorithm. The horizontal boxes in

figure 2 denote times during which the processor is busy. Each such
box is a S1OC.The use of this representation in maintaining timing
information timers is explained hereunder.

When a message arrives (the message may produce an event
with a close deadline), the ‘currently executing’ event M preempted.

An ED reschedule is computed for the existing events. If the arriving

event can be run to completion witbout wolatmg the deadtine of any
exlstmg even~ it is accepted; otherwise, the event is rejected, and

a negatwe acknowledgement is sent to the sender LP6. Thus, in

4Recall that the deadline is identical to the time.stamp

‘Having the largest deadhne, it would be mn last There M only O 5 units of idle

time on the processor before E4’s deadhne comes up, However, Ea reqtnres 1 umt of

tnne to execute, and tberefo re misses m deadhne

“We assume that there is some ‘higher-level’ software that takes care of such

Wuatlons. One way to handle these sltaatlons IS the use of primary and seconda~

versmm of algorithms [23] essentndl y, reverting to “coarser’ models of mmulation.

The negative acknowledgment does not necessarily entad rollback of the sender LP

1 I I I
F

~ ~ 2 4 ..,

Time

Schedule and slot list for the events El, E2, E3.

E4 misses its deadline

Figure 2: Some examp~es using the ED algorithm

our optimlshc simulator which uses direct-cancellation on a shared-
memory multiprocessor (a KSR-1 machine), the recewmg processor
is interrupted after the sender bas put tbe arriving message into the

receiver’s message ltst. The slot list is updated after the reschedule.
There are two interrupts associated with each S1OCat the ‘Ieadmg
edge’ of the slot, the processor 1s handed off [4] to the thread that
will run that pa.rhcular event. while at the trailing edge of tbe slot, the

processor IShanded off to the ‘dispatcher thread7, which later bands
the processor off to a particular event at the next ‘leading edge” of
a slot. Unix timers (set i timel- () and signal ()), and context

switching facilities (set jmp () and-1 ong j mp ()) are useds: the
trailing-edge-interrupt is set to go off after an interval equal to the

length of that particular slot. The ‘dispatcher thread9’ performs a
checkpointing of tbe stack of the event (since the thread of the event
may, in general, have to continue from any of a number of such

‘interrupted points’). This is useful if the granularkes of the events
are high in comparison to the time requmed to checkpoint the stack

contents, since it allows us to roll back to the ‘middle of’ an event.

Such checkpointing, schedulability analyses, and maintenance of

timing information is performed transparently to the application,

which is written as a collection of events with execution times and

deadlines (tlmestamps). A lightweight threads library [19] was
modified to perform these operations.

The slot ltst can be optimized. From the preceding examples,
it is clear that for the scbedulability analyses of an arriving even~
we need to update the slots corresponding only to those events with
deadlines larger than that on the arriving event. The dispatcher and
real-time scheduler are invoked very frequently in the simulator.
We use a hash table to avoid frequent traversal over slots with lower
deadhnes, which will be left undisturbed by the arming event. The

hash table provides a better starting point for the traversal than

would be otherwse obtained. This achieves much tbe same effect
as the ‘slot-merging’ technique used m [26], and becomes especially
important if there are a lot of slots m the system. Figure 3 provides

which just schedules ‘recovery events’ (which should have smaller executioa hme than

the re]ected event) on the L~ that rejected the ongmal event.

‘These threads may be the same m certain Implementations. Keepurg them d~stmct

ensures generahty, and is useful in rolling back to the ‘middle of’ an event, as stated

later.

‘Context saveand restore take about 6 psecs, each on the KSR, as reported m [19],

gWe use tie same thread for dwpatchmg other threads and perfonnmgschedu labihty

ZaMlyses.

28

Dearll]nes:

n

El: 3
E2. 5

30 E~: 10

E4: 2C

H.%SP,
E5: 25

Eb: 35
Tabl - ~.

;0

1 * +

:;l,,tc List 1 I I I I I

El E2 E3 E4 E5 Eb

Figure 3: Hashing scheme to bypass the initial part of the slot list

an example to explain the hashing technique.

Suppose that there are events with deadlines as shown in Fig-
ure 3. Suppose that the hashing scheme is based on deadlines: slots

of events with deadlines in [0, 10) are in one hashed class, those
in [10, 20) in the second. those m [20, 30) in the third and those in
[30, co) in the last. Thus, events E, and Ez are m one class, event

E~ is in one class, EA and E5 are in another class and EG is in the

last class. Now, if an event with deadline 23 arrives, lt belongs to
the class [20, 30), and the initial part of the slot hst (for events El to
E3) can be bypassed while performmg schedrrlability analyses for

the new event, since that part of the slot list will not be affected at
all.

All 1/0 associated with an event M stored in its state vector,

and is performed when that event commits. This requires a fast

and frequently-invoked GVT calculation mechanism. In the next

subsection, we discuss a method to continuously obtain a lower

bound on GVT.

4.2 The GVT Algorithm

There are three parts to the algorithm. First, the acknowledgment
scheme accounts for all messages in transit. Second, each proces-

sor must compute a local minimum; currently, this is done after
processing each event. Third, whenever the local minimum in a

processor changes, the processor propagates this value up the tour-
nament tree. We define GVT to be the minimum timestamp among

all unacknowledged and unprocessed messages in the system.

Acknowledgments are performed by maintaining a circular

queue on each processor indicating the timestamps of messages
sent by that processor. Each message carries with it a pointer to

its entry in the sender PE queue. To acknowledge a message, the
receiver writes + MI into the queue location signifying that the mes-
sage has been received. Occasionally, the unacknowledged queue

is compacted and space for the received messages is reclaimed.

Computing the local minimum requires no additional overhead
because this 1sdone when the next event is selected to be processed
(recall that a lowest timestamp first scheduling policy is used).

As outlined in [16] there are two potential problems in any
GVT algorithm, unacknowledged messages and the wrnultaneous

update problem. Our algorithm prevents both these race conditions

by exphcitly acknowledging messages. The sender is responsible
for including unacknowledged messages into the GVT computa-
tion, until an acknowledge M received. The receiver acknowledges

a message only after ithas received the message, incorporated the

message in its LVT computation, and propagated its LVT. If the
acknowledge is delayed, the message is included in the LVT com-

putations of both the receiver and the sender. Due to the globaf
minimum nature of GVT, including a message more than once does
not affect the overall result.

Since our implementation of ANR is on a shared memory ma-

chine, acknowledgments on each message are inexpensive. Each
acknowledgment is simply a non local write and does not have any
other overheads associated with messages. There is no locking re-

qrured when accessing the remote unacknowledged message queue.

5 Performance Measurements

We conducted two sets of experiments to evaluate the PORTS kernel.

The first examines the overhead of the continuous GVT computahon
scheme by comparing the performance of two conventional Time
Warp systems (noz the ANR protocol). One system only computes
GVT after memory is exhausted. The second uses the continuous
GVT scheme where each processor computes a new GVT value after

every event. The second set of expe~ments measure performance of

the ANR protocol using the continuous GVT scheme, and compares
its performance with that of a conventional Time Warp system. The

goal of the PORTS system is to achieve performance comparable to

Time Warp while guaranteeing that real-time deadlines will be met.

We use the Phold model [10] as the application to evaluate

performance. We enhanced the shared memory implementation
of Time Waqr described in [9] by the continuous GVT and ANR
protocols. Time Warp uses static scheduling of LPs on processors.
All the experiments were conducted on a KSR- 1 multiprocessor.

Processors were exclusively allocated for the experiments. This
nmmmlzed the effect of other processes on our measurements.

5.1 Performance of the Continuous GVT Scheme

We first compared the performance of Time Warp using the contin-

uous GVT scheme with a conventional system that computes GVT

when the system exhausts the available memory. For the experi-
ments performed here, the latter system only runs out of memory

approximately once every three seconds, so GVT overheads are
negligible. The second system is identical to the first, except the
continuous GVT computation is used, with GVT updated after ev-
ery simulator event. The Phold application was used containing 64

LPs and message population of 128 for Table 1.

The destination of each message is uniformly distributed among

all of the LPs. The computation granularity of each event 1sapprox-
imately one millisecond. Several of the overheads (e.g., saving and

restoring contex~ overheads for GVT-propagation, rollback over-
heads) being on a per-event basis, the performance of the system is

better for large-granularity events.

Table 1, shows the amount of overhead added per event for each
GVT update. This includes message acknowledgements as well

as updating the tournament tree. Overhead increases significantly
from one processor to two because there are no remote memory

accesses in the one processor case. As can be seen from the graphs.
the overheads range from about 20 to 90 microseconds per event.

These measurements correspond to our initial implementation of
the continuous GVT scheme, so we anticipate that this time can be

reduced through tuning of the implementation.

The overhead increases with the number of processors as the non

local accesses increase. However, the overheadgrowth is somewhat
slower than logarithmic, due to the fact that tree updates affect only

part of the tree. This localizes the computation and gives a faster

than log effect. For example, in going from 8 to 16 processors, the
time increase by 4 microseconds whife from 16 to 32 the increase

is only 1 microsecond.

Phold experiments running on Time Warp simulators with and

without the continuous GVT calculations show that the overall per-
formance degradation of using the continuous GVT scheme is less
than IOYO.

29

Number of PEs I 1 I 2 I 4 ~ 8 \ 16 I 32

Overhead I 22.8 \ 63.5 I 78.8 I 88.5 I 92.6 ~ 93.1

Table 1: GVT calculation overhead per event (microseconds)

5.2 Performance of the ANR Protocol
The second set of experiments were performed using the aggressive-

no-risk message sending scheme, combined with the continuous
GVT computation mechanism. The effect of the ANR protocol

itself is a non-trrvial question. On the one hand, it delays sending
messages, which could cause stragglers to be delayed even further

than they would otherwise, and thus lead to more rollbacks. But
on the other hand, ANR avoids all secondary rollbacks because no

incomect messages are ever sent. This could be a significant factor

in unbalanced applications where some processors have a tendency
to advance far ahead of others.

Speedup of Tme Warp and the PORTS system for the homoge-
neous Phold model are shown in Figure 4 with 256 LPs and message
population of 8192. The speedups are relative to a fast sequential
discrete event simulator using splay tree event data structure.

It can be seen that Time Warp outperforms ANR. The loss

m performance associated with acquiring a real-time capability is
modest, except in the case of 16 processors. The performance loss
appears to be due to the less optimistic nature of the ANR protocol.

,O,”O0”s- t. +

,“m.. eno. *-anr -+-
..bal. need-tw -Q-

rebalanced-a. r -*

,r...__....__.....—..””””_””.””e”-”

System Laxity Events Missed Time Taken

Seconds Events Seconds

0.4 36582 36575 13386

TW 0.6 24589 24584 6390

0.8 18517 11273 3085

1.0 14851 55 2474

0.4 36582 36476 7492

ANR 0.6 24589 12780 3392

0.8 18517 15 1930

1.0 14851 8 1249

Table 2: Execution times, number of events, and events missed for

ANR and TW for different laxities

should caution that these are only preliminary performance mea-

surements.

5.3 Real-Time Performance of ANR vs. Time Warp
In [13], we had shown that Time Warp, in its full generali~, can be
unreliable as far as keeping real-time deadhnes is concerned. This

can be seen in an auulication where the number of events rolled

back on receiving ea~h straggler can become very large.

100 . ANR —

‘\,, T,.. warp —-

80 ‘\\
‘\

\
\

60 \,

‘\
‘.,.

‘\
40

I.,

‘%,

‘\\

20 . ..+

. .
. ..<

x..

‘.\

“o 4 05 06 07 U9 0, 1
,... ,, {.eco”ds ,

0246 10 12 14 16
P; s

Figure 5: Percentage of deadlines missed m Time Warp and ANR

Figure 4: Speedups of Time Warp and ANR for homogeneous and

unbalanced Phold benchmarks.

A second, heterogeneous benchmark was also implemented.
This is identical to the firs~ except the event granularity for the

LPs executing on one processor was increased by a factor of three,
causing the other processors to execute further ahead of this “slow”

processor. This is, by design, a stress case for Time Warp, due to the
unbalanced nature of the apphcatlon. This workload was examined

in order to test the benefit of limiting optimistic execuhon m the ANR
protocol. Speedup measurements are also shown in Figure 4. Not
surprisingly, lower speedups are obtained than in the homogeneous
case, since the slow processor becomes a bottleneck that limits the

amount of speedup that can be obtained. However, It is seen that
PORTS and Tme Warp yield nearly identical performance (even at
higher number of processors) for this benchmark, and PORTS even
outperforms Time Warp in certain cases.

The initial performance results are encouraging, however, we

executions.

Consider an application running on 2 processors, with one LP
per processor. Each LP has a periodic task (i.e., a repetitive task with
timestamps at fixed intervals) with small execution hme. Further,

there IS a sporadic (non-periodic) task in the system. When the
sporadic executes on LP i, its execution time M such that LP (i+ 1)
mod 2 completes executing all of its periodic events. Execution of

the sporadic on LP zresults in a sporadic event event being scheduled
on LP (t + 1) mod 2. This sporadic, being a straggler, rolls back a
large number of prematurely executed events on the destination LP.

The aforementioned situation occurs under Time Warp execu-

tion. With the ANR protocols, the ‘sporadic event’ is released only
after GVT crosses the timestamp of the sending event. Thus the
sporadic does not result in an excessively long rollback on the desti-

nation LP, since the destination LP does not progress unfoundedly,
as m Time Warp.

We varied the difference between the send-timestamp of the
sender event and the receive timestamp of the scheduled event

30

(which is also the ‘timestamp’ (and deadline) of that event) This

parameter is a measure of the ‘laxity’ that the event has to run: the

difference between the hme it is generated, and the time by which

it must complete. At low values of laxity, both Time Warp and the

ANR proto~ol miss deadlines, as can be expected. As the laxity

increases, The ANR protocol succeeds in keeping more deadlines
than Time Warp, because Time Warp wastes much (real) time m

rolling back prematurely executed events every time it receives a
straggler, At higher values of laxity, this phenomenon is not very

pronounced, since there N enough laxlty in the generated events for
Time Warp to keep deadlines even after performmg the rollbacks.

However, the longer the simulation, the larger the number of events
that lhe Time Warp execution must rollback, and the larger ~he laxity

required before the Time Warp execution will begin to keep as rnuny

deadlines as the ANR execution. The results of the experiments are

shown in figure 5 and table 2.

It should be noted that the ANR protocols might run slower (this

might be an artifact of the ‘continuous GVT mechanism’) than Time
Warp for certain applications. However. ANR avoids the ad-hoc

nature of Time Warp (as far as real-time guarantees are concerned),
and is useful in real-time simulations because it is predictable.

6 Conclusions
We have described several design issues that must be addressed in

attempting to exploit optimistic synchronization for real-time sim-
ulations. In particular, an aggressive-no-risk protocol was shown to

bean attractive approach for such simulations, and continuous GVT
computations offer an approach to rapidly commit I/O operations.
We have incorporated many of these ideas into a prototype parallel.

optimistic real-time simulator called PORTS. Initial performance

results are encouraging in that they indicate that the performance of
the PORTS system approaches that of Time Warp, which has already

been demonstrated to be effective in a variety of applications.

It might be noted that most of the techmques used m the PORTS
system have been reported by other researchers, but in different
contexts and with different motivations. The central contribution of

this work is in showing that this particular set of techniques shows

promme in developing parallel real-time simulators using optimistic
synchronization, and developing an implementation to demonstrate

ILSperformance.

References

[l] R. L. Bagrodiaand C.-C Shen. Midas: Integrated design and simulation

of di stributed systems. IEEE Transactions on Software Engineering,
17(10):1042–1058,0ctober 1991.

[2] S. Beltenot. Performance of a nskfree time warp operating system.
In 7 ‘h Workrhop on Parallel and Distributed Simrdatirm, volume 23,

pages 155-158. SCS Slmulahon Series, May 1993.

[3] S. Beltenot. Global virtual time algorithms. Distributed Simulation

Proceedings of the SCS Mrdticonfererwe, volume 22. number 1, page

122-127,1990.

[4] D. L. Black. Scheduling and resource managerneut techniques for

multiprocessors. (CMU-CS-90- 152), July 1990.

[5] R. Brown. Calendar queues: A fast O(1) pnonty queue implemen-

tation for the simulation event set problem. Communications of the

ACM, 3 1(10):1220-1227, October 1988.

[6] H. Chetto and M. Chetto. Some results of the earliest deadhne schedul-

ing algorithm. IEEE Transactions on Software Engineering, pages

1261–1269,0ctober 1989.

[7] M. L. Denouzos and A. K, Mok, Multiprocessor on-line scheduhng

of hard-red-time tasks. IEEE Transactions on Software Engineering,

15(12):1497–1506, December 1989.

[8]

[91

10]

11]

12]

P. M. D1ckerrs and F? F. Reynolds, Jr. SRADS with local rolfback,

Proceedings of the SCS Mr.dticonference on Distributed Simulation,

22(1):161-164, January 1990.

R. M. Fujlmoto. Time Warp on a shared memory multlproceswr.

Transactions of ~he Society for Compuier Simulation. 6(3);21 1-239,

hdy 1989.

R. M. Fujlmoto. Petfonnance of Time Warp under synthetic workloads.

Proceedings of the SCS Multiconference on Distributed Simulation,

22(1):23–28, January 1990.

K. Ghosh, R. M. FuJlmoto, and K. Schwan. Time warp simtrlatlon m

time constrained systems. (GIT-CC-92/46), october 1992.

K. Ghosh, R. M. Fuiimoto, and K, Schwarr, A testbed for optimistic

[13]

[14]

[15]

16]

17]

18]

execution of reaf-nrne simulations. IEEE Workshop on Parallel and
Distributed Real-fime Systems,ApriJ 1993.

K, Ghosh, R. M. FuJlmoto, and K. Schwan. Tune wa~ simulation in

time constrarued systems. Proceedings of rhe 7th Workshop on Parallel

and Distributed Sim ukztion (PADS), pp. 163–166, May 1993.

W. T.-Y. Hsu and I?-C. Yew. An effectwe synchrornzation network for

hot-spot accesses. ACM Transactions on ComuCerSystems,10(3):167-
189, August 1992.

P. F. Reynolds Jr. A spectnrm of options for parallel simulation. In

Proceedings of the 1988 Winter Simulation Conference, pages 325-
332,1988.

Y. B. Lin and E. D. Laszowska. Determining the globaJ virtuat time

in a di stnbuted simulation. lnternadomrl Conference on Parallel Pro-

cessing, 111:201–209, 1990.

F. .Mattem. Eftic]ent algorithms for dmtnbuted snapshots and globaf

wrtual time approxlmatiou. Personal Communication, 1992.

H. Mehl. Speedup of conservatwe distributed discrete-event snnula-

tion methods by speculative computntg. In Advances in Parallel and
Distributed Simulation, volume 23, pages 163–1 66. SCS SimnJation

Series, Januaty 1991.

[19] B. Mnkberjee, G. Eisenhauer. and K. Ghosh. A machine independent

interface for lightweight threads. In 0S Review of the ACM Speciat

Interest Group in Operating Systems. pages 3347, January 1994.

[20] C. Pancerella. Improving the efficiency of a framework for paratJel

srmulatlons. In 6 ‘h Workshop on Parallel and Distributed Simuhtion,

volume 24, pages 22–32. SCS Simulation Series, January 1992.

[21] P. F. Reynolds Jr., C. M. Pancerella, and S. Snnivasan. Design and

performance anafysis of hardware support for parallel simulations.

Jourrrul of Parallel arrd Distributed Computing, 18(4):435-453, Aug.

1993.

[22] B. .%rnadl. Distributed simulation, algorithms and performance anaJ-

ysis. Ph, D. Thesis, University of California, Los Angeles, 1985.

[23] W. K. Shih and J. W. S. Liu. On-line scheduling of lmpreclse compu-

tations to mimmize error. In Proceedings of IEEE Real-7ime Systems
Symposium, 1992.

[24] J. A. Stankowc and K. Ramamntharn. Ed,tonaf: What is predictability

for real-time systems? Real-Time Systems, 2(4):247–254, November

1991.

[25] J. S. Steinman. SPEEDES: A multiple-synchronization environment

for paralJel discrete-event simulation. In IntcrnationalJournalin Com-

puter Simulation, pages 251–286, 1992.

[26] H. Zhou. Task Scheduling and Synchronization for Multiprocessor

Real-71me Systems. PhD thesm, ColJege of Computmg. Geo~la insti-

tute of Technology, Atlanta, GA, April 1992.

31

