
Parallel Independent Replicated Simulation on a Network of

Workst at ions

Yi-Bing Lin

Bellcore

Morristown, New Jersey

Abstract

Parallel independent replicated simulation (PIRS)

is an effective approach to speed up the simulation

processes. In a PIRS, a single simulation run is ex-

ecuted by multiple computers in parallel. The sta-

tistical properties for a PIRS may be affected by the

scheduling policies. For an unbiased PIRS scheduling

policy, a reliable distributed computing environment

is required. We consider an unbiased PIRS schedul-

ing policy on a distributed platform such as a net-

work of workstations. We observe that including more

computing resources may degrade the performance of

PIRS. Simple rules are proposed to select processors

for PIRS.

1 Introduction

Discrete event simulations are of-

ten time-consuming. In many applications (such as

communication network simulations), simulation pro-

cesses may take several days before accurate estimates

can be obtained, Recently, parallel simulation, or the

execution of a single realization of a stochastic process

on multiple cooperating processors, has been inten-

sively studied to speed up the simulation process. An

excellent survey of parallel simulation can be found in

[2]. Bhavsar and Isaac [1], and Heidelberger [4] pro-

posed another approach to reduce the time complexity

of simulation: concurrently running multiple indepen-

dent replications of the model on multiple processors

and averaging the results at the end of the runs. This

approach is referred to as parallel independent repli-
cated simulation (PIRS). PIRS is much simpler than

the parallel simulation approach, and is appropriate

for stochastic simulations where the initialization bias

is not severe. Properties of PIRS are studied in [3]

and the references therein.

Independent replicated simulation is also a popu-

lar technique used in sequential discrete event simu-

lation. In a long replication, the output observations

are usually correlated and hence, do not satisfy the in-

dependence assumption which underlies standard sta-

tistical methods. The independent replicated simula-

tion is considered as a simple yet effective approach to

achieve independence [9]. A possible implementation

.~=o;
oa = p = 0.0;
while i <2 or $. > bp do

i=i+l;

execute the ith replication, and obtain the output p,;

update p and 0~;

end while

Figure 1: Independent Replicated Simulation.

of the independent replicated simulation is illustrated

in Figure 1.

In Figure 1, at the ith iteration of the algorithm,

p=
LX pk, where ~k is the output obtained in the

I$k<i

kth rephcation, and do is the confidence interval of a

confidence level based on i samples HI, pi, where

i ~ 2. In the termination test of the while loop, both

a and 6 are pre-defined constants. A larger CY and

a smaller 6 will yield a more accurate result. When

the termination condition is satisfied, p is the final

output obtained. Note that termination rules other

than the one illustrated in Figure 1 can be used to

test termination. A very simple rule, “terminate when

i > IV” (where IV is a constant), was used in [4]. The

termination rule

terminate if @a ~ dp (1)

is the most popular one used in the independent repli-

cated simulation.

In a PIRS, the while loop in Figure 1 is executed

in parallel. There are several policies to schedule the

processors for replication executions. The scheduling

policy may significantly affect the time complexity and

the statistical properties of PIRS. Different schedul-

ing policies were studied in [1] and [4]. This paper

studies the end effect of an unbiased PIRS scheduling

policy on a network of workstations. Experimental

study of PIRS has been conducted by Rego and Sun-

dream [7]. They reported several important results

73

http://crossmark.crossref.org/dialog/?doi=10.1145%2F195291.182516&domain=pdf&date_stamp=1994-07-01

regarding PIRS. In their study, they assumed identi-

cal processors devoted to the PIRS applications. This

paper assumes that the workstations are shared by

other applications, and the workloads at workstations

may change dynamically. Our study indicates that

including more processors may increase the time com-

plexity for PIRS. Several rules are proposed to select

processors for PIRS.

2 Scheduling Policies
A simple scheduling policy for PIRS is the follow-

ing: Suppose that N = MP replications are to be exe-

cuted on P processors. Every processor is assigned M

replications, and one waits until all processors finish

the executions. This scheduling policy is referred to

as FRP (fixed number of replications per processor)
policy. There are several problems about this policy:

● One must determine N before the replications are

executed. However, it is not possible to select N

which satisfies the termination condition such as

(1) before we start executions.

● The processors that have finished the assigned

replications are idle, and cannot be used to exe-

cute replications assigned to other processors.

A better approach is to dynamically assign replica-

tions to processors where a scheduler is required to

coordinate the executions.

There are several possible scheduling policies for

dynamic replication assignment. The simplest one

is described as follows. The scheduler first assigns a

replication to every processor. When a processor p fin-

ishes the execution, it returns the result (the output

measure) to the scheduler. The scheduler then checks

if the results collected so far satisfies the termination

condition. If so, abort the executions of all proces-

sors and terminate. Otherwise, initiate the execution

of a new replication at processor p. Assume that the

termination condition is satisfied after N replication

results are obtained. This scheme is referred to as the

FNC (first N replications completed) policy because

the PIRS terminates after the first N results are ob-

tained. (Note that the first N replications completed

are not necessarily the first N replications initiated.)

FNC does not have the disadvantages of FRP. First,

different termination rules can be used, and the ter-
mination condition is checked dynamically. Secondj a

processor is never idle if the termination condition is

not satisfied.

FNC collects the results form the first N completed

replications (if the termination condition is satisfied

after the scheduler receives the N results). In other

words, this scheme tends to collects the results from

replications with shorter execution times. A potential

problem is that for a replication, the execution time

usually correlates to the output measure obtained, and

collecting results from replications with short execu-

tion times may result in wrong answer. Heidelberger

[4] showed that the expected value of the output mea-

sure obtained by FNC is guaranteed to converge to

the wrong value unless (N/P) -+ co. Consider an

example where the execution time of a replication is

a random variable with exponential distribution, and

the correlated coefficient of the output measure and

the execution time is 1. We found that for N = 200,

the result obtained for FNC is about 40% lower than

the true value when P = 100, and is 10’ZO lower when

P= 20 [6].
A scheduling policy was introduced [1, 4] to fix the

bias caused by FNC. This scheme is basically the same

as FNC except that every replication is assigned a

number which represents the order in which it is ini-

tiated. That is, replication ri is initiated earlier than

replication rj if and only if i < j, where i is the order

number for ri (note that ri and rj may be assigned

to different processors). To compute the termination

condition such as (1), the scheduler cannot use the

result obtained from ri unless it has received results

from rk for all k < i. This scheme is referred to as the

FNI (first N replications initiated) policy. Suppose

that this scheme collects N results, then these N re-

sults are from the first N replications initiated in the

PIRS. Since the results collected are independent of

the replication execution times, the final result is not

biased in FNI.

In the remainder of this paper, we consider PIRS

with the FNI policy.

3 Implementing PIRS on A Network

of Workstations
At Bellcore, a PIRS/FNI environment was devel-

oped [6] on a network of workstations where the work-

stations are shared by several different applications.

Two issues must be considered in such a computing

platform.

Fault tolerance For PIRS/FNI, the result of repli-

cation ri cannot be used to test the termination

condition (1) if the result of replication rk, where

k < i, has not been received by the scheduler. If

the workstation which executes r~ crashes, then

the scheduler will never announce termination.

Load balancing Since the workstations are shared

with other applications, the workloads on the

workstations are different. A workstation with

heavy workload should not be included to run

replications for two reasons. First, executing

a replication on a slow workstation may signif-

icantly increase the workload which affects the

performance of other applications on that work-

station. Second, adding an extra slow worksta-

tion may increase the time complexity of PIRS

(to be studied in the next sections).

74

Thus, a practical implementation for PIRS/FNI haa to

constantly monitor all the workstations in the network

and be able to dynamically migrate simulation tasks

when workstation failure or slowness is detected.

The Bellcore PIRS/FNI environment was imple-

mented based on PCI (parallel command interpreter)

shell [8]. The PCI shell allows the user to program

a parallel replicated simulation application in a very

high level language while automatically managing the

complexity caused by the dynamics of a network of

workstations. PCI is able to achieve the following de-

sired properties in PIRS/FNI:

Load balancing: PCI automatically selects work-

stations with low workload for execution. During

task executions, load monitoring and task migra-

tion are done automatically without user inter-

vention.

Fault tolerance: workstation failure is automati-

cally detected by the PCI shell and the task can

be restarted.

Heterogeneity: The workstations selected for ex-

ecution can be of different types.

Transparency: In the PIRS environment, the

user only needs to provide simulation programs,

and specify termination rules. Little or no mod-

ification to an existing simulation program is re-

quired. Also, several termination rules are al-

ready built in the environment. The user only

needs to select the appropriate one without any

programming effort.

In the remainder of this paper, we study how load

balancing and system availability affect the perfor-

mance of PIRS/FNI. It is difficult to study the above

issues under real workload. Instead, an artificial envi-

ronment is created for analytic analysis and a Monte

Simulation simulation approach similar to the one

in [4] is used. In the simulation experiments, the ex-

ecution time of a replication is either exponentially

distributed, normally distributed, or uniformally dis-

tributed. Since the analytical analysis assumes expo-

nential execution times, we only present the simula-

tion results of the exponential replications for the com-

parison purposes (the simulation experiments with

other distributions have the similar behavior as the

exponential distribution). We have performed experi-

ments using PCI. The results are briefly discussed in

the Summary section.

4 The Effect of Slow Processors
Suppose that the termination condition is sat-

isfied after IV replications have been completed in

PIRS/FNI with P identical processors (i.e., the pro-

cessors do not execute other applications). The ex-

ecution times of replications are i.i.d. exponentially

distributed random variables with mean 1. Bhavsar

and Isaac [1] showed that when IV >> P, the time

complexity is

The time complexity T is affected by the end effect
described as follows.

The End Effect. For the last P replications exe-

cuted in the PIRS/FNI the PIRS has to wait until the

replication with the longest execution time completes.

Note that the end effect does not occur in PIRS

with the FNC policy, and the time complexity is N/P
(cf., [1]). The second component lfp in (2) is caused

by the end effect. Suppose that the last replication is

initiated at time ~. Then the completion time of the

PIRS is determined by the longest residual execution

time of the P processors. Since the execution times for

replications are i.i.d. random variables Ti (1 ~ i ~ P)
with an exponential distribution (with mean 1), the

residual execution times after time r also have the

same exponential distribution, and the expected value

for the longest residual execution time is

+&d ‘pi:’e-’’l-e-’’p-’d’=,—
Now, we extend (2) by considering the processors with

different speeds. Suppose that the replication execu-

tion time Ti at processor i is exponentially distributed

with mean pi, where ~~~P /?i = 1. Then the expected

elapsed time for PIRS_is-approximated by

N

[1T=(l/p,)+ (1//3,)+...+ (l/@p) + E lY:Pn

(3)

The first component of (3) represents the expected

execution time without the end effect, and the sec-

ond component represents the extra time complexity

caused by the end effect. Note that the end effect

disappears as N ~ co. Practically, 2 ~ P < 100,

100 s N < 2000, and we expect that the end ef-

fect has sig~ificant impact on the time complexity of

a PIRS.

Suppose that a PIRS/FNI is running on a net-

work of reliable heterogeneous workstations (i.e., the

workstations never fail), and all workstations are de-

voted to the PIRS. In such an environment, the pro-

cessor speeds may be different because the types of

workstations are different. It is important to select

the workstations to execute the replications. A slow

workstation should not be selected because adding an

extra slow workstation may increase the time com-

plexity of PIRS. This phenomenon is caused by the

end effect and is demonstrated by the following ex-

ample. Consider a PIRS with P processors where

75

/%=/32=”””= @p.l=land~p=~>l. In

other words, there are P— 1 fast processors and one

slow processor. From (3), we have

N
Figure 2: Performance of PIRS with P – 1 fast pro-

cessors and one slow processor with workload level /3

‘= P–l+(l/p)
+ TE (4)

(*: P=5,0:P =6,* :P=7, e: P=8). Solid
curves: simulation. Dashed curves: analytical results.

where

+ (p-l)j:~.-’(e-)p’(l-’(’’e-’’’~))~~
P-1

p -1 (-l)’(l/p)——

~ (i) ((1/0+02‘i=o

+ (P - l)p~2 (p; 2) (-1)’ [~ -(l; ::;:fj))2]

$=0

s
P
e

:
u
P

8

7

6

5

Define the expected speedup S for a PIRS/FNI as
4 1 I

s=
the expected time to execute N replications at the fastest processor

the expected elapsed time for PIRS/FNI
J--J

Then the speedup for PIRS/FNI with P – 1 fast pro-

cessors and one slow processor is

s=;= N
(5)

P–l!(l/jl)+~~

Equation (5) is comparecl with the experimental re-

sults in Figure 2 (a) where the dashed curves repre-

sent the approximate analytical results and the solid

curves represent the experimental results. The figure

indicates that (5) is consistent with the experimental

study. The figure also indicates that using the extra

slow processor may degrade the performance. For ex-

ample, when /3 > 5, using 7 fast processors is better

than using 7 fast processors and one slow processor.

Equation (5) also indicates that S increases as N in-

creases. In other words, the end effect disappears as

N increases. When N - m, adding extra (slow) pro-

cessors always improves the performance. Figure 2 (b)

plots S against N (based on the experimental study).

5 The Effect of Workload Changes
The previous section assumes that the speed of a

workstation does not change. This section considers

a network of unreliable workstations where worksta-

tions are shared by several applications. In such an

environment, a workstation may not execute replica-

tions during some periods of time in two situations.

In the first situation, the workstation fails and is not

12345

(a) N@= 1000

8

7–

6–

(

5-

[

4–

,~
1 3 5 7 9

N(unit : 100)
(b)~=5

76

available until it is recovered. In the second situa-

tion, the workload 1 at the workstation is heavy, and

executing a replication may significantly degrade the

performance of other applications.

We assume that there are L workload levels for a

processor. At workload level i, the mean execution

time for a replication is @, where /31 = 1, pi > /3i _ 1

for 1< i ~ L, and ~L = cm. A threshold y is used to

determine when a processor is available for executing

the replications. If the workload level of a processor

is higher than y, then the processor is not available

for executing the replications. If a replication is be-

ing executed when the workload changes to a level

higher than y, then the execution is interrupted, and

the replication must be re-executed.

Suppose that the workload at a processor remains

at a level i for a time period which is an exponen-

tially distributed random variable with mean w (w is

referred to as the mean workload cycle time). The

workload changes from level j to level i with probabil-

ity pj,i where 1 s i, j S L. For simplicity, we consider

the case that pi = pj,~ = pk,~ for all j, k # i. That

is, the workload of a workstation changes from the

current level to level i with probability pi.

Figure 3 plots the speedup for the PIRS when P =
57, L=6, pi=l/6for alli#j, /31= 1,~2 =20,/33=

30, @4 = 40, ~5 = 50,~G = m. For y = 1, the speedup

is an increasing function of w. The effect of workload

change can be derived as follows. The probability that

k – 1 replications are completed before the workload

changes to a level above y (i.e., the kth replication is

interrupted at the workload change) is

/

cu tk-1

Pr[K = k] =
_te-(*)d, = w’-’

,=, (k - l)!e w (w+ l)k

Thus, the expected number of the replications exe-

cuted (including the uncompleted one) before a pro-

cessor becomes unavailable is

X= ~ .kPr[K=k]=l+w

l<k<m

Let SW,7,~ be the speedup for PIRS with workload

level threshold y when the mean workload cycle time

is w, and termination condition is satisfied after N

replications are completed. The speedup SW,1 ,N can

be approximated as

SW,I,AI =
II-l
~L%,LN “

1

1 + (l/w) s~’l’N
(6)

The dashed curves in Figure 3 plot SW,1 ,1000 based on

the following equation:

SW,,,,!).,= ;;:;:;s,,,l,lOOO

1The workload does not include the load of running the

simulation itself.

Figure 3: Speedups for PIRS. P = 57, L = 6, pi =
l/6,Pl=l,Pi=10i(2<i<5),~G= co *: Y=l, o:

Ly=2, *:7= 3,. :7=4,0 :’y= 5). olid curves:

simulation. Dashed curves: analytical approximation.

10

9

S8
P
e

:
u
P7

6

5
.,

I I I I I I

s
P

7

6

5

4

3

2

r,/’/’
/’

t’
:
1’
:
:

ii&
I I I I I I

1 3 5 7 9111315 1 3 5 7 9111315

(a) Nw= 1000 (b) Nw= 100

Equation (6) indicates that for y = 1, the speedup

is an increasing function of w. It is clear that if the

workload level changes very frequently, then the possi-

bility that a replication is interrupted and re-executed

increases, and the time complexity for the PIRS in-

creases. We note that the end effect is not significant

for -y = 1 when N > 100 (cf., Figure 4 (a)). For a

large -y, the end effect is very significant for N <1000,

which affects the speedup curve as described below.

If y increases, the probability that a replication is

re-executed decreases. On the other hand, the end

effect is more significant because a processor may ex-

ecute replications at a slower rate. For a fixed y, the

probability that a replication is re-executed decreases

as w increases. Equation (6) indicates that the re-

execution effect is significant if w is small. (I. e., when

w is less than 5, changing w may significant affect the

speedup. For a large w, i.e., w > 5, changing w only

has minor impact on speedup.) On the other hand,

for 7 > 1, the end effect is more significant as w h-

creases. If the workload changes very frequently, the

times to complete a replication at different processors

are roughly the same, and the end effect is caused

by “identical” processors. As w ~ co, the end effect

is determined by the slow processors with workload

level -y. The previous section has already shown that

77

the end effect is more significant when there are slow

processors. Thus, for y > 2, when w is small, the

re-execution effect is more significant than the end ef-

fect, and the speedup increases as w increases (cf.,

Figure 3). When w is large, the end effect is more

significant, and the speedup decreases as w increases.

The end effect has different impact for different -y val-

ues.

Figure 4 (a) plots speedup against N. We observe

three phenomena.

● For a fixed 7, speedup is an increasing function

of N. The previous section already showed that

the end effect disappears as N increases.

● The speedup is less sensitive to the end effect

for a small y than a large y. For a small y, the

speedup improvement (by increasing N from 100

to 1500) is less than the speedup improvement

for a large y. If we assume that for a fixed ~

and w values the re-execution effect has the same

impact on the speedup, then based on (3), we

may approximate the execution time T~ ,7, N for

PIRS as

‘WYN=CW4E+TEJ‘7)
where P7=P~ ~ and TE,7Y,Q

I<,<? fii— —

and CW ,Y < 1 is the degradation factor caused by

the re-execution effect. The component TE,7 is

caused by the end effect (assuming that the worli-
load level at a processor does not change when ex-

ecuting the last replications). Equation (7) may

not give a good approximation for TE,7. How-

ever, it is clear that TE,71 < TE,72 for ~1 < -yj

(because there are more slow processors for a

large y). The speedup improvement for threshold

y is

Tw,y,N~AN – TW,T,N = AN

TW,7,N N -1- TE,7P7
(8)

Since P71 < Py, and TE,71 < TE,7. for Y1 < ‘!z,

(8) implies that the speedup improvement for -yI

is less than the improvement for yz. In Figure 4

(a), the dashed curves marked by ‘*’ (for y = 1)

and ‘o’ (for -y = 5) are speedup curves based on

the following equation:

N(1500+P7TE,7)
S5,7,1500S5,7,AJ = 1500(N + p~TE,v)

Although this equation does not match the ex-

perimental results well (because the TE,7 compo-

nent is not accurate), it provides a general trend

of speedup changes for different 7 values.

Figure 4: Speedups for PIRS. P = 57, L = 6, pi =
l/6,p1=l,p6=@(*:Y=1,0:Y =2, *:-y =3,0:
y = 4,0: y = 5). Solid curves: simulation. Dashed
curves: analytical approximation.

s
P
e

:
u
P

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

i

~

t’
,’

<

-4

I I I I I I
13579111315

I

1

135791113 15

(b)&= ;,2<i<5

78

● For a small N, the speedup for a small -y is better

than the speedup for a large y. For a large N,

the result reverses. This phenomenon can also

be explained by (7). For a small N, the end ef-

fect has more impact on the speedup for a large

y than a small -y. Thus, it is possible that the

speedup for a small y is larger than the speedup

for a large y. (However, if w is small, the speedup

for a large y is always better even for a small N

value because the re-execution effect is very sig-

nificant for a small ~). When N is large, the end

effect can be ignored, and adding more processor

power (P71< P72 for 71 < 72) always improves

the performance.

For a fixed N, and 71<72, there may exist an w“ such

that &t,7, ,N = %=,72,N. In Figure 3 (a), w“ = 2.5.
If w“ exists, then for w < W*,

‘w,Y1,N < ‘w,72,N

(cf., Figures 3 (a), 4 (b),and 5) This is due to the fact

that for a small w, the re-execution effect has more

impact on small y, and the slow processor effect is not

significant (and thus the end effect has same impact

on the speedups for all y values). For w > w*,

s w,’YI,N > ‘w,Y2,N

This is due to the fact that for a large w, the re-

execution effect only has minor impact for all y values,

and the slow processor effect (and thus the end effect)

is more significant for a larger y. If N is small, the

impact of end effect on a large -y is so significant that

the speedup for a small 7 is always better than the

large ~ even if w is small. In such a case, w* does not

exist (cf., Figure 3 (b)).

For a fixed N, if ~i ~ ~i+l then increasing the

threshold y from i to i + 1 always improves the per-

formance. In general, if (~i+l /@i) decreases, then w:

(i.e., the cross point w* for the speedup curves with

y = i and z’+ 1) increases, and

lim W:=co
(Pl+l/P!)-+1

Figure 4 (b) plots the speedup curves for experiments

with the same parameter setup as in Figure 3 (a),

except that ~z = 6,,B3 = 9,/?4 = 12, and ~5 = 15. The

effect of (~i+l /~i) is observed by comparing Figure 3

(a) and Figure 4 (b). Since the ratio (/3i+l/~i) in

Figure 3 (a) is larger than the ratio in Figure 4 (b),

the w* values for the speedup curves in Figure 3 (a)

are smaller than that in Figure 4 (b).

The value for W* is also affected by pi. In Figure 3

(a), pi = pi+l and w* E 2.5. In Figure 5 (a), pi > Pi+l

for 1 s i s 5 and W“ cx 2. In Figure 5 (b), pi < pi+l

for 1 ~. i ~ 5 and W* z 3. These figure indicate that

increasing pi for a small i decreases the w* values.

Figure 5: Speedups for PIRS. N = 1000, P = 57, L =
6,~1 = l,~i = 10i(2 < i < 5), /?6 = co. In (a),

pl = ().3, Pz = 0.225, Ps = 0.2, pA = 0.125, Ps =
O.l, ps = .05. In (b), pl = O.l, pz = ().125, Ps =

0.2, PA = 0.225, p5 = 0.3, pG = .05 (A : 7 = 1,0 :
y=z,x:y=s,o:y=l,o:y=s)

s
P
e

:
u
P

+T———n—
13.579111315

s
P
e

:
u
P

5.0

4.5

4.0

3.5

3.0

I I I I I I

1357911131 5

79

If pi is large, then a processor is likely to be in the

workload level i, and it is important to set y > i to

include enough computing resources to run the PIRS.

In summary, a small y should be chosen if (i) N is

small, (ii) w is large, (iii) (/3~+1 //3~) is large, or (iv) pi

is large for a small i.

6 Summary

This paper studied the performance of parallel in-

dependent replication simulation (PIRS) using a net-

work of unreliable workstations shared by several ap-

plications. An unbiased replication scheduling policy

called FNI (first N replications initiated) was consid-

ered. Our study suggests that limiting the comput-

ing resources to PIRS is necessary for two reasons:

First, executing a replication on a slow workstation

may significantly increase the workload which affects

the performance of other applications on that worksta-

tion. Second, adding an extra slow workstation may

increase the time complexity of PIRS.

We assumed that there are several workload lev-

els for a workstation. The mean replication execu-

tion time at workload level i + 1 is longer than the

mean execution at workload level i. The workload

level changes dynamically. A threshold -y of workload

level is used so that PIRS does not degrade the per-

formance of other applications too much. We found

that by limiting the computing resources available to

PIRS (i.e., by selecting a small threshold -~), the per-

formance of PIRS may improve if (i) the total number

of replications to be executed is small, (ii) the work-

load level does not change frequently, (iii) the execu-

tion times in a heavy load situation are much longer

than the executions in a light load situation, and (iv) a

workstation is in the light load situation more frequent

than in the heavy load situation.

The above results were obtained in an artificial sinl-

ulation environment (so that we can control the work-

load changes of workstations). We have conducted

PIRS for a personal communication service network

simulation [5] using PCI with 57 workstations (20

Spare 2 workstations, 20 Spare 1 workstations, 10

Sun 3 workstations, and 7 DEC 5000 workstations).

The experiments for PIRS/FNI with workload con-

trol (a workstation is disabled if CPU utilization is

higher than 70%) are compared with PIRS/FNI witho-

ut workload control. One the average, the experi-

ments with workload control are 30% faster than the

experiments without workload control. We note that

the workloads of workstations are different for different

PIRS experiments. Although no precise conclusions

can be drawn, the study does indicate the benefit of

using workload control in PIRS/FNI.

References

[1] Bhavsar, V. C., and Isaac, J.R. Design and Anal-

ysis of Parallel Monte Carlo Algorithms. SIAM

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Journul on Scienti@ and Statistical Comput-
ing, 8:s73–s95, 1987.

Fujimoto, R.M. Parallel Discrete Event Simula-

tion. Communications of theACM, 33(10):31-53,
October 1990.

Glynn, P. W., and Heidelberger, P. Analysis of Ini-

tial Transient Deletion for Parallel Steady-State

Simulation. SIAM Journal on Scienti@ and Sta-
tistical Computing, 13(4):904-922, 1992.

Heidelberger, P. Discrete Event Simulations and

Parallel Processing: Statistical Properties. SIAM
Journal on Scientifi and Statistical Comput-
ing, 9(6):1114–1132, November 1988.

Lin, Y.-B., and Mak, V.K. Eliminating the Bound-

ary Effect of a Large-Scale Personal Communica-

tion Service Network Simulation. To appear in

ACM ~ansactions on Modeling and Computer

Simulation, 4(2), 1994.

Lin, Y.-B., Tseng, P., and S. Y. Hwang. Paral-

lel Replicated Simulation and Its Extensions. In-
ternational Conference On Parallel And Dis-
tributed Systems, pages 622-627, 1992.

Rego V.J. and Sunderam V.S. Experiments in

Concurrent Stochastic Simulation: The EcliPSe

Paradigm. Journul of Parallel and Distributed
Computing, 14(1):66-84, 1992.

Tseng, P. Network Parallel Computing with a

Command Interpreter. To appear in International
Conference on Parallel Processing, 1992.

Welch, P.D. Computer Peqlormance Modeling

Handbook, chapter The Statistical Analysis of

Simulation Results, pages 267-329. Academic

Press, 1983. Edited by S. Lavenberg.

80

