Maya: A Simulation Platform for
Distributed Shared Memories

Divyakant Agrawal*

Manhoi Choy!  Hong Va Leong*

Ambuj K. Singhf

Department of Computer Science

University of California at Santa Barbara
Santa Barbara, CA 93106

Abstract

Maya is a simulation platform for evaluating the perfor-
mance of parallel programs on parallel architectures. It al-
lows the rapid prototyping of memory protocols with vary-
ing degrees of coherence and facilitates the study of the im-
pact of these protocols on application programs. The design
of Maya and its simulation mechanism are discussed. Per-
formance results on architectural simulation with different
memory coherence protocols are presented. Parallel discrete
event simulation techniques are adopted for the execution-
driven simulation of parallel architectures.

1 Introduction

Recent interest in high performance computing has led to a
greater need for adequate simulation tools and models for
evaluating parallel architectures and parallel programs on
these architectures. Several simulation systems have been
developed [1, 5, 6, 9, 10, 17] and based on the granularity
of the simulator, the simulation techniques used in these
simulators can be broadly classified into three categories:
trace-driven or statistical simulation, functional or instruc-
tion level simulation, and erecution-driven simulation with
direct execution. Trace-driven simulation systems [1, 4, 10}
have been used for a long time. They are fast but suf-
fer from a low accuracy. Functional simulators such as the
ASIM simulation system [6] provide a high degree of ac-
curacy of a simulated execution with respect to the real-
time execution. However, these simulators are usually slow.
Execution-driven simulators, on the other hand, represent
a compromise between the two extremes. These simulators
sacrifice the speed of trace-driven simulations for greater
accuracy. The representatives of this class are the Tango
system from Stanford [9], the Proteus system from MIT [5],
and the Wisconsin Wind Tunnel [17]. These simulation sys-
tems provide a reasonable level of accuracy between simu-
lated and real-time executions with a moderate slowdown

*Work supported in part by NSF grant IRI-9117094 and
LANL,

tWork supported in part by NSF grants CCR-9008628 and
CCR-~9223094.

of about one to two orders of magnitude. In this paper,
we describe an execution-driven simulation system, Maya!,
developed at the University of California at Santa Barbara.

Maya is a parallel programming system which supports
execution-driven simulation on distributed memory archi-
tectures. The programming paradigm of Maya is that of
shared memory. The current version of Maya is based on
the PVM communication library [19], and can be ported to
any environment that supports Unix and PVM. We have so
far ported Maya to a network of Sun workstations and the
Intel Paragon. Maya is capable of simulating the execution
of a number of such memories including causal memory [3],
and pipelined random access memory [16]. Preliminary eval-
uation results for several user applications appear in [2).

This paper is organized as follows. An overview of the
design of Maya is presented in Section 2. In Section 3, the
simulation environment and the modeling of parallel archi-
tectures are discussed. Section 4 contains some architectural
simulation results and performance results. We conclude
with a brief discussion in Section 5.

2 An Overview of Maya

Maya is designed to be a versatile tool for parallel program-
ming with a variety of features. First, it is capable of simu-
lating a target parallel architecture on a different host ma-
chine. Second, it is useful as a programming environment
for rapid prototyping of parallel programs. Finally, it is
intended as a test-bed for experimenting with a variety of
shared memory protocols. To provide these features, Maya
operates principally in two different modes: the simulation
mode and the native mode. The simulation mode is used
for simulating execution of a parallel program on the tar-
get architecture with a specific memory coherence protocol.
In the native mode, the target and the host architectures
are identical. Parallel programs are executed directly and
no simulation is performed. In either mode, it is easy to
replace one memory coherence protocol by another.

We assume that the host architecture consists of a set
of processors each with its private memory (referred to as
a node) connected by a network. The Maya environment
on each node comprises of three layers: the user program
or application layer, the memory subsystem layer, and the
communication subsystem layer. The memory subsystem
in Maya acts as an interface between the user processes and
the network to support shared memory in a distributed en-
vironment. The accesses to the shared variables result in
macro calls to the memory subsystem. Currently the inter-
face between the users and the memory subsystem is based
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on messages. The memory subsystem executes the under-
lying distributed shared memory protocol by communicat-
ing with the memory subsystems on other nodes. The dis-
tributed static manager scheme [14] is implemented as the
base case memory protocol (referred to as “atomic memory”
in this paper) for both comparison and testing purposes.
The memory subsystem in Maya is extensible. Currently,
we have developed a library to support distributed shared
memory protocols based on atomic memory, causal memory,
and pipelined random access memory [2].

The primary responsibility of the communication subsys-
tem is to facilitate communication among the memory sub-
systems, which cooperate with one another to implement
distributed shared memory. The communication subsystem
in Maya is based on the message passing library PVM [19].
Since PVM is available on most distributed memory archi-
tectures, Maya can be supported on a variety of hardware
platforms and on a network of heterogeneous Unix compat-
ible machines.

3 Architectural Simulation

Maya can be configured as a simulation environment for par-
allel architectures. Functioning as a simulator, Maya auto-
matically transforms both the parallel user program and the
memory coherence protocol into simulation programs using
a set of macros. Monitoring codes are inserted for each
communication event in the coherence protocol and cycle
counting codes are added to maintain timing information in
the simulated environment. A number of useful statistical
information can be obtained from Maya in the simulation
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Figure 1: Architectural simulation in Maya

The configuration of Maya in the simulation mode is
shown in Figure 1. The memory subsystem is responsible for
scheduling user processes on the same node. The network
manager is responsible for scheduling the simulation events
due to messages sent over the network and is currently im-
plemented as a centralized process. Two major components
exist in the network manager: message delay model and
communication event scheduler. The message delay model
is used to determine the arrival time of a message sent over
the target architecture communication network. The com-
munication event scheduler schedules the delivery of mes-
sages and resolves any deadlock. Maya simulation ensures
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repeatability: repeated execution of the same user program
with the same input will yield exactly the same output and
simulated execution time. This feature is useful for rapid
prototyping of parallel programs by making it easier for de-
bugging timing anomalies. In the following subsections, we
will discuss the modeling of target parallel architectures, the
event scheduling mechanism, and the modeling of network
contention in greater detail.

3.1 Modeling Parallel Architectures

Several models exist for parallel architectures and compu-
tations [8, 11, 13]. The traditional Parallel Random Ac-
cess Machine model [11, 13] is not accurate enough since
many important architectural aspects such as communica-
tion overhead are missing. The LogP model [8] character-
izes a parallel architecture by the communication delay L,
the communication overhead o, the communication band-
width g, and the number of processors P. Various aspects
of the architecture are approximated by these four param-
eters. Our architectural simulation model is similar to the
LogP model. Parameters used in Maya can be categorized
to model the delay, overhead and bandwidth. The number
of processors P is not explicitly used in our model.

In Maya, the characteristics of the parallel architecture
are modeled by two sets of parameters. The first set of pa-
rameters captures the computational aspects of the parallel
architecture, whereas the second set delineates the commu-
nication aspects. The parameters on computational speed
are categorized based on instruction groups such as integer
addition, floating point division, procedure call, etc. Cycle
counting statements are inserted into the user program to
maintain the timing information for local computation. The
simulation clock is advanced as the simulation proceeds. To
cater for the communication delay between nodes, we re-
quire the simulation model designer to provide a function
netdelay that models the target communication network.
Details of this function is discussed in Section 3.3. In the
current prototype of Maya, the network manager schedules
the message delivery events using retdelay since it has the
complete knowledge of all communication events occurring
between nodes.

3.2 Event Scheduling

In order to mimic the execution of the parallel program
on the target architecture, events and processes need to be
scheduled correctly. This execution is modeled in terms of
a set of simulation events which correspond to the accesses
to shared variables and the resulting message transmission,
delivery, and processing in the memory subsystem. Maya
attempts to schedule all these events in the same order as
they would appear in a real execution on the target archi-
tecture by tagging each event with a timestamp from the
simulation clock and executing them in timestamp order.
Simulation events local to a user process are executed in
timestamp order. Non-local simulation events such as trans-
missions and deliveries of messages are scheduled by the net-
work manager. Logically, all internodal messages are sent
to their destination node via the network manager, which
maintains a queue of relevant events ordered by their times-
tamps. Based on the message transmission timestamps from
senders, the network manager computes the timestamp of
the next message delivery event by adding the network de-
lay estimated by the message delay model and redirects the
message to the receiver. This scheme results in a consistent
interface for both the native and the simulation mode.
While the network manager is responsible for the schedul-
ing of communication events across memory subsystems,



memory subsystems are responsible for the scheduling of
events on the node. These events include shared access re-
quests from user processes and the receipt of messages from
other memory subsystems. Each memory subsystem main-
tains an ordered queue for these simulation events in the
same manner as the network manager. For events due to
messages from other memory subsystems, the arrival times-
tamps of the events are supplied by the network manager.
For events due to shared access requests, a special function
time_.mapping is used to determine the arrival timestamps.
Function ttme.mapping models the specific scheduling al-
gorithm employed by the operating system on the target
architecture. It takes the local timestamp of an event which
is supplied by the user process and the relevant past history
of the execution on the node and returns a modified local
timestamp. This modified timestamp is an estimation of the
actual scheduling time of the event after taking operating
system scheduling overhead and delay into account. Differ-
ent scheduling schemes require different time_mapping func-
tions. For the applications we are simulating, there is only
a single user process residing at each node. Consequently,
function time_mapping simply models the overhead and de-
lay due to a memory subsystem.

Maya’s event scheduling follows the framework of parallel
discrete event simulatijon [12], in which simulation events are
scheduled in the same order as in actual executions. This
can be guaranteed by observing the input waiting rule and
the output waiting rule as in the conservative approach for
parallel discrete event simulation [7). In Maya, the input
waiting rule is enforced by requiring the network manager
to wait until it receives a message from each memory sub-
system. The output waiting rule is enforced by requiring the
network manager to schedule a message only when the sim-
ulation clock has advanced to the send time of the message.
Conservative approaches in parallel discrete event simula-
tion may lead to deadlocks. One way to avoid deadlocks
is to flush all the communication channels periodically with
null messages [7]. In Maya, the deadlock resolution scheme
is attached to the centralized network manager. The dead-
lock resolution scheme is a combination of deadlock avoid-
ance and deadlock detection. The network manager keeps
track of the number of outstanding messages of each mem-
ory subsystem. When the number of outstanding messages
drops to zero, the network manager calculates the largest
time T such that no memory subsystem will receive another
message with send timestamp smaller than T. The value
of T is then broadcast to all memory subsystems. Memory
subsystems are allowed to schedule local events only if they
are issued before time T. If T is updated and broadcast
frequently, this scheme tends to avoid deadlocks before they
actually occur. Furthermore, if deadlock does occur, the
number of outstanding messages among the memory sub-
systems will eventually become zero. (This is obvious if
the deadlock involves all the memory subsystems. On the
other hand, if only a subset of memory subsystems are dead-
locked, the local simulation clocks of the deadlock memory
subsystems will not proceed any further. Eventually, the
network manager will not be able to advance the value of
T any more and all memory subsystems will stop sending
messages.) Subsequently, the network manager will be able
to detect the deadlock and resolve it by sending another
value of T. To compute the largest possible value of T,
lookahead techniques [15] are adopted. In particular, sup-
pose the smallest send timestamp of all the messages the
network manager has received is ¢ and the minimum mes-
sage delay on the target architecture is d. It can be shown
that when the network manager finds that the number of
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outstanding messages is zero, no memory subsystem will re-
ceive any message before time t+d. Consequently, T can be
taken as t 4+ d. Our scheduling scheme is further optimized
in the case where successive shared accesses are separated
by a large block of local access and computation. In this sit-
uation, the application process is setup to report the largest
timestamp before which it will not make any shared access.
Event scheduling on other nodes may be accelerated based
on this additional information.

3.3 Modeling Contention and Communication
Delay

It is important to take the congestion level of the target
communication network into account in order to obtain a
realistic simulation of a parallel program. To simplify the
modeling process, we assume the existence of a function
netdelay that takes into account the contention level in the
network and computes the message delay. Function net-
delay takes an event of message transmission and returns
the time at which the message should be received by the
receiver. For some network contention models, the arrival
time of a message depends not only on the current network
contention, but also on the traffic in the immediate future.
The function netdelay is allowed to return L, if there is
inadequate information to determine the arrival time of a
message. Eventually, when sufficient information becomes
available, an arrival time is returned. The amount of in-
formation needed to estimate the receipt time of a message
varies for different accuracy levels. In our prototype, we as-
sume that the scheduling of messages on most networks is
independent of the local computation on the nodes of the
target machine. Therefore, a separate network manager is
used to schedule messages during simulation.

In the current prototype of Maya, the ideal delay of a
message is modeled as the sum of the sender overhead, the
receiver overhead, and the transmission delay. Sender and
receiver overheads are assumed to be constant. Transmis-
sion delay is modeled as a linear function proportional to
the length of the message. The actual delay of a message
is the ideal delay plus a factor due to network contention.
A collision-based model is introduced to model the effect
of contention. This model is useful for communication net-
works that exhibit the behavior of message collisions. Let
the propagation interval of a message transmitted at time ¢
be the interval [¢, t-+d) where d is the calculated transmission
delay of the message. A collision is said to occur between
two or more messages transmitted over a common channel
if their propagation intervals overlap. We handle collision
by rescheduling messages whose propagation intervals over-
lap. In our collision-based model, when a collision occurs,
the message with the smallest transmission time succeeds
and all the others are re-transmitted. Note that this results
in recomputation of the propagation intervals for the de-
layed messages when they are re-transmitted. A penalty e is
charged to delayed messages so that they are re-transmitted
e units of time after the succeeded message.

4 Experimental Results

The current version of Maya includes a library of coher-
ence protocols: atomic memory, causal memory, pipelined
random access memory, and some of their variations. Sev-
eral application programs including the Gaussian elimina-
tion and matrix inversion (Gaussian inverse), all pairs short-
est path, the traveling salespersons problem, the Jocabi iter-
ative synchronous linear equation solver, and the Cholesky
factorization from the SPLASH benchmark [18] have been
tested. Preliminary results of the performance of some of



these coherence protocols and application programs when
used in the native mode have been obtained for a network of
Sun workstations and an Intel Paragon [2]. In this section,
we concentrate on the results from the simulation mode.
These results are based on one user application: a Gaussian
inverse algorithm, two kinds of coherence protocol: atomic
memory and causal memory, and two different architectures:
a network of Sun workstations and an Intel Paragon. The
results obtained from the simulation mode are compared
with the results obtained from the native mode. Finally,
the performance of Maya is evaluated by varying the degree
of concurrency.

4.1 Results of Architectural Simulation

The input to the Gaussian inverse problem is a matrix of
size N X N and the output is the inverse of the input ma-
trix. The N rows of the matrix are evenly assigned to the n
participating user processes. In phase 7, the user process in
charge of row i selects one of its rows as a pivot row. All the
user processes cache this row and use it for the local com-
putation on their assigned rows. Due to the use of barriers
and the variable sharing patterns in the algorithm, coher-
ence protocols weaker than atomic memory can be used. We
use atomic memory and causal memory in our experiments.
Copies of the memory pages may migrate dynamically and
are kept track of by a distributed directory [14]. In the case
of causal memory, each memory subsystem keeps a copy
of the shared memory. Reads to the shared memory are
served locally. Writes to the shared memory are broadcast
and performed on each node in a causal order.

A network of Sun workstations is used as the host ma-
chine in our simulation experiments. The target machines
being simulated are the same network of Sun workstations
and an Intel Paragon. In the network of Sun workstations,
an Ethernet is used to conmnect a set of Sparc LX work-
stations. The number of user processes being simulated is
denoted by n. Each simulated user process and the corre-
sponding simulated memory subsystem are assigned to one
workstation so that there are a total of n workstations. On
the Intel Paragon, a partition of 2n nodes is used and the
simulated user processes and simulated memory subsystems
are assigned to different nodes of the machine. To obtain
the necessary parameters for simulating the two target ma-
chines, we have written simple benchmark programs to es-
timate the speeds of the processors for local computation,
the communication overheads when using PVM as the un-
derlying communication interface, and the bandwidths of
the networks.

Figure 2 compares the actual execution times and sim-
ulated times running Gaussian inverse with N = 500 and
n equal to 2,4,6, and 8. As shown in figures 2¢ and 25,
the simulated times obtained for causal memory match the
actual execution time within a small percentage on both
the Paragon and the network of workstations. In the case
of atomic memory, the simulated times obtained also agree
with the actual execution time on the Paragon (Figure 2c).
However, the simulated times obtained in the case of the
network of workstations are relatively low compared with
the actual execution time (Figure 2d).

4.2 Performance of Maya

Figure 3 shows the speedup of performing simulation in
Maya by varying the number of processors used in the host
environment. In this experiment, we fix the number of user
processes n to 32. We assume that each user process resides
on a different processing unit of the target machine and
there is a memory subsystem corresponding to each user.
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Figure 2: Native mode versus simulation mode for

Gaussian inverse with N = 500

We simulate the same Gaussian inverse algorithm using one
or more workstations. Since the bottleneck of the simula-
tor is in the network manager, only moderate speedup is
obtained as more workstations are used.

The slowdown of performing simulation in Maya with 2
workstations and a varying number of user processes is de-
picted in Figure 4. As the number of user processes is in-
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creased, the number of memory subsystems and the number
of processors in the target machine are also increased cor-
respondingly. The slowdown is almost linear to n, which
is expected as more computation and communication are
needed to simulate larger number of user processes.

5 Discussion and Future Work

In this paper we have presented the system overview of Maya
which is a simulation platform for evaluating distributed
shared memory protocols and parallel architectures. Maya
is an execution-driven simulator and can be ported to a va-
riety of distributed memory architectures. It can be used
for rapid prototyping of parallel programs employing the
shared memory paradigm. Furthermore, Maya facilitates
shared memory parallel program development based on dif-
ferent notions of memory consistency. We feel that this is
a better approach of developing parallel programs instead
of exposing the low-level message passing paradigm to the
users. Finally, users can experiment with a variety of par-
allel architectures which can be simulated through Maya.

The memory subsystem is being integrated with the user
process in the next generation of Maya. This approach will
result in minimal access time for locally available shared
variables. Another issue that we are investigating is to de-
centralize the current implementation of the network man-
ager, which is the major bottleneck of the system.
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