
RECONFIGURABLE TECHNOLOGY: AN INNOVATIVE SOLUTION FOR

PARALLEL DISCRETE EVENT SIMULATION SUPPORT

C. Beaumont, P. Boronat’ *, J. Champeau, J.-M. Filloque and B. Pottier t

LIBr, University de Bretagne Occidental

BP 809, 29285 Brest, France

e-mail: Guuue>tiiv-brest. f r

‘ Universidad Jaume I,

Apart. Correos 224, 12080 Caatel16n de la Plana, Spain

e-mail: boronat @vents. uj i. es

ABSTRACT

Accelerating discrete event simulation can be achieved by
using parallel architectures. The use of dedicated hardware

is a possible alternative in some speaal domains like logic
simulation. However, few studies have focused on general

cases.

This paper presents an innovative solution using a re-

cent hardware technology called FPGA (Field Programmable

Gate Arrav), that enables dynamic synthesis of application
speciiic hardware. Each node of an MIMD parallel machine
is tightly coupled to an FPGA ring. This ring allows us to
synthesize application specific global opemtotw and control

or communication circuits and complements the possibili-
ties of the original machine on a wide application spectrum.
We present the first results obtained in the simulation field
with an eight node prototype.

1 INTRODUCTION

Parallel execution of discrete event simulation is a good way

to reduce the processing time. Beside software studies which
address general purpose parallel machine (with shared or
distributed memory), few ones have focused on hardware
support for PDES. Hietoricsdly, logic simulation ia the first
domain where significant work has been undertaken. This
work has been stopped for many reasons like: i) the develop-
ment cost of the machine, ii) the specific usage and iii) the
fast evolution of the technology of both simulated circuits
and general purpose computers. More recently, research has
been led to obtain solutions for general purpose simulators.
Fujimoto et al. have developed the Rollback Chip to support
memory management in optimistic aimulation[3]. Reynolds
et al. propose the addition of a specific active network, called
Pm, to a standard MIMD machine. This network is able
to compute and disseminate global information required by
both optimistic and conservative PDES[7]. Their solution is
attractive for coarse grain simulators. The binary-tree topol-
ogy of the PRN gives good performances when the number of

“The work of P. Boronat wss done in collaboration with Telecom
Bretagne hss been founded by Bancsixa (grant A -38- IN) - Spain

tArMen project i. ,uPPotied by French PRO-ANM ~d Cs (~ln-

iatry of research and CNRS), r&gion Bretagne, Brest municipality and
ANVAR.

nodes becomes large, although the cost and complexity of in-
terconnections between network nodes will be great. These
solutions lead to efficient systems usable for a limited subset
of problems.

The present paper describes a new solution using a

promising hardware technology called FPGA[8]. The use of

FPGA as a computing resource allows us to study the rela-
tionship between algorithms and hardware for several classes

of application. The next section establishes some computing
requirements proper to dWerent classes of PDES, whereas sec-
tion 3 shortly describes the hardware support and its associ-
ated software tools. Sections 4 and 5 show machine configu-
rations for fine grain time driven simulation and synchronous
coarse grain event driven simulation. We give results of ex-
perimentation and conclude with an outline of our work in
progress.

2 PDES REQUIREMENTS

The domain of parallel discrete event simulation can be di-
vided into four subdomains. FPGA ring may support critical

parts of their computation.

Fine-grain time-driven P DES Let the simulated

real system be decomposable into a set of small identical
processes with only neighborhood interactions. Then, the
model can be a state-matrix and a transition function which
enables evaluation of all matrix points at the step p + 1 from

the state of their neighborhood at the step p. This model
is called the cellular automata model [9] and can be viewed
se a fine-grain time-driven simulation. Processes are synthe-
sised in the FPGAS as global opemtors and the state-matrix
is maintained in the --machine memory. Then, the ma-
chine works in SPMD mode. Section 4 gives an example of
such an implementation.

Coarse-grain time-driven PDES Coarse grain
time-driven simulations are necessary when processes are
complex and have many int erections, i.e., there are many

events in the system at each step. Processes are executed by
the processors and require a synchronisation barrier at each

step.

Synchronous event-driven P D ES Synchronous
event driven simulations require the evaluation of the min-
imum of all waiting events tirnestamps. Section 5 gives an
example of an implementation.

Asynchronous event-driven P D ES Asynchronous
event driven simulations use either conservative or optimistic
synchronisation protocols. Anyway, global evaluations must
be done[7], and the main one is currently computation of the
minimum over distributed virtual clocks. Conservative pro-
tocols require exact evaluation of this minimum whereas op-
timistic ones need only approximations of the lower bound.

160

http://crossmark.crossref.org/dialog/?doi=10.1145%2F195291.182585&domain=pdf&date_stamp=1994-07-01

This minimum can be evaluated continuously by a global op-
erator reaching local values or by a windowing mechanism as

stated in an earlier paper[5]. Moreover, we have shown that
it is possible to create a circuit able to evaluate minima of
values belonging only to the subset of processors from which
a node can receive messages. Hardware resources for such
an implementation are important and not currently available
on ArMen,

3 A NEW ARCHITECTURAL SUPPORT

We propose to use a general-purpose machine called ArMen.
This machine is based on a modular distributed memory
architecture where processors are tightly connected to an
FPGA ring (see figure 1). This section gives details of the
implement ation.

3.1 MACHINE PRESENTATION

FPGA is a promising technology that follows the progress of
VLSI integration. Conceptually, the circuits are the superpo-
sition of two planes. The upper one is a writable configurw
tion memory, whale the lower one iS an active ASIC. This l~t
plane has Configurable Logic Blocks (CLB), Input/Output

Blocks (IOB) and finally a set of interconnection resources
such as busses, crossbars, or programmable points. A cou-
ple of registers allows implementation of sequential logic.

Each ArMen node has a processor connected to a bank
of memory and a large Xilinx FPGA. Current hardware uses

Transputers and 3090/3195 FPGAS on VME-like boards. The
processor loads new configuration data into its FPGA in less
than 100ms. The topology of an FPGA is a CLB array with

four 32-bit ports. Its north port is connected to the local

address/data multiplexed system bus. East and west ports
are connected to neighbors in a ring topology.

I
/.,,,,...,,.,.,..... ,...,.,...,,.,;., <q;.. ,,, ., ,,, .,, ,,.

I 1 I 1 I I
I

I I
I

● 9*

● O*
FPGA baaed

● 00
global shared ooprocassor

Figure 1: Principle scheme of the ArMen machine

The ArMen machine is a set of nodes interfaced to a
workstation hosting a ‘Ihnsputer board. The machine ex-
ecutes the TROLLIUS operating system[2] to ease the ap-

plication developments, TROLLIUS provides concurrent in-

pUt/oUtPUt, routing facilities and supports to load and oh.
serve processes on the nodes,

The ArMen FPGAS are local coprocessor for each node,
or parts of a global shared coprocessor for the processor array.

3.2 SHARED COPROCESSOR

The logic layer (ring of interconnected FPGAS, also called
configurable logic layer or CLL) of the parallel machine pro-
vides support for a large diversity of global coprocessor.
They combine operative and control functions for specific
tasks.

Global controllers An implicit model for global com-

putations is based on pipelines with one stage within each
node. In the pipeline mode, data is encapsdatcd into tokens
to ensure the synchronism of their collection in the node. An
automaton in the node O coordinates the pipelines[5].

The node processor interacts with its pipeline stage by
reading or writing FPG.&-based registers. Generally, local
programs simply drop significant information into FPGA-
based double buffered channels. Global predicates like termi-
nation detection or synchronization conditions can be com-
puted with these global controllers. In the current imple.
ment ation, tokens circulate faster than 100ns per node with
hIter-FPGAS asynchronous handshaking and a 20 MHz local
clock for FPGAs.

Global operative units A global operative unit uses

the set of local memories as a large contiguous data store,
and combmes the actions of the processor array with FPGA

synchronous processing and micro-grain communications.

A global operation occurs in one machine cycle. During
this cycle, the processor array pushes memory data to a

global operative unit. A move from the FPGAS array to the
local memories usually follows the firsttransfer. A linear
architecture model is suitable for thiskind of computational],

A simple global operative unit has two parts: a shift reg-
ist er holding a linear union of neighborhoods, and an array of
small processors receiving data from the shift register. An
inter-FPGA handshake protocol ensures that data hnes are
processed synchronously. A special node, we call the margin
node, solves data dependencies for the external stripes.

Current performances of the ArMen architecture depend

strongly on the processor capabilities. With Transputers,
a global cycle is executed with a 1.2 MS delay, despite the
operative unit complexity. This delay includes fetching a
word of data from an array, writing to the FPGA and reading
back the result to be pushed inside the memory,

3.3 DEVELOPMENT TOOLS

Shared coprocessor are designed using specific high level
tools. They use a behavioral input description. More irreg-
ular designs, such as local accelerators, remain in the field of
CAD approaches. CelhAar automata are currently produced
from a high level language called CCEL[l]. Control circuits
are currently compiled from UCA, a language based on the
UNITY formalism[4].

4 APPLICATION TO FINE GRAIN TIME
DRIVEN PDES

Cellular automata are discrete dynamic models, typically
fine grain parallel models. Their simulations are baaed on

interaction between a large number of cells defined by a small

set of states. The evolution is time driven: at each time step
each cell computes its new state depending on the neigh-
bors’ states. This model has a large scope of simulation
applications. A well known example is the game of life, an
abstraction of a density regulation for a population. Cellular
automata may also specify the evolution of physical systems
like fluid or gas dynamics [9]. Toffoli presents cellular au-
tomata as a real alternative to the resolution of diferentisl
equations for physics modeling. In this way, Margolus pro-
posed a specification of a gas &fFusion in [9].

4.1 THE HPP-GAS MODEL

The cellular automata space domain contains gas particles.
The cells’ behavior is described by way of particle motions
and collisions. In contrast to the classical cellular automata

161

neighborhood, formed by a central cell and the directly con-
nected ones, the Margolus’ neighborhood is a cell block with-
out a specitic central cell. The blocks partition the data

space without overlap between the different blocks. The par-

ticles cross over to a different block because, during a time
step, the block evaluation is made on two different reference
grids, as shown in figure 2.

I ~ ‘;
----

● 0 “-’ 1
0 0 0 j

o~o ---i--- ‘-I

1
---- ‘1’.---y----.+------+------

1’ ‘i
Figure 2: The two overlapping grids

In this case, the transition rule describes the evolution of

a block. Figure 3 gives the motion without collisions of the
particles in the model.

H-H EEH%li-laEEHiFl
Figure 3: Particle motion

This description must be expanded with the rotated con-

figurations of one, two and three particles. Figure 4.a shows
the collision rule for two particles. They travel in opposite

directions on a diagonal, starting from the other diagonal.

For the other configurations, the particles act in the same
way. All these rules define the HPP-gaa model. They are ex-
tended by rules for particle collisions with a wall (see figure

4. b).

EIHEl
(a)

Figure 4: Particle collisions

4.2 IMPLEMENTATION

The implementation of thin model needs four bits per cell:
one for the particle, two for the reference grid specification
and one to indicate the presence of a wall. The model ia de-
scribed and compiled with the CCEL tools after a transform
tion towards the classical expression of a cellular automaton,
This program provides a specific FPGA configuration where a

shift register contains the cell states, and an array of combi-
natorial functions computes the transition. For this applicw
tion, the global operative unit is implemented with a 16-bit
word per node, pushed in the FPGA by the processor. For
one node, 4 cells are updated during a processor read/write
cycle. This limitation ia due to the current capacity of the
FPGA.

With a data space of 350x 37o cells, the time for one
iteration is 64 ms using 8 nodes.

S APPLICATION TO SYNCHRONOUS PDES

As stated earlier, many classes of global algorithms can be

synthesised in the FPGAS. In this section, we present an
implementation of two global operators.

The protocol implemented in order to distribute the
global scheduler of sequential simulation among the proces-
sor network consists in allowing the parallel execution of

all events with the same date in virtual time. We call it
phase protocol because ready processors have to wait un-

til all event computations for the current date (i.e., phase)
are completed. Then, they can proceed to the next phase.
Which will be the next date to be simulated in virtual time
is deterrnimed by a global computation. This value, called
Global Virtual Time (WT), is the global minimum of all Lo-
cal Virtual Times (LVT) (i.e., all event timestamps on each
node). The main loop of this protocol is given in algorithm
1.

Algorithm 1 Main loop of our phase-protocol

1 SynchronousDES t

2 GVT+GVT-Computation(tWakeUpmim4);
P Global minimum computation and broadcaet

3 while (- End_Simulation)

4 if (GVT = tWakeUpmi%) then
5 < Model evaluation;
6 Sending of generated messages;
7 Waiting for acknowledgments >;

8 Global-Synchrontzationo;
b . . . h order to be sure that eveq ezecution is over
in the current time ~tep

9 < tWakeUpmini evaluation >;
b Local minimum e e-arch

10 GVTeGVT-Computation(tWakeUpmin+);
r= NeuI global minimum computation and broadcast

This protocol respects the causality constraint since all
processors are always executing events with the same times-
tamp.

In such a distributed synchronous simulation kernel, the
two main global control operations are: the synchronisation
barrier that every processor must reach before the GVT can

progress, and the calculation of the global minimum of all
the LVTS in order to determine the next date to be simulated.
These two global operations have been implemented in the
CLL of the ArMen machine.

5.1 HARDWARE IMPLEMENTATION

The two synthesised global operators exploit the possibilities
of the ArMen machine described in section 3.

In the caae of the synchronization barrier, every Trana-
puter sends a flag, set to TRUE, to its aasoaated FPGA, in-
dicating its wish to synchronise. Observing results from the
pipelined AND-fUnctiOn along the FPGA ring, the automaton

on node O will send a RESTART flag, as soon as every proces-
sor has reached the barrier. That is when it receives TRCE3

from the pipeline.
Considering the computation of the global minimum, we

choose to implement it using a “digit-serial” method (see
figure 5). In this case, all processors of the MEWD network
have to contribute to the calculation at the same time un-
der the control of the simulation kernel. The possibility of
ArMen to switch from MIMI) to SPMD mode ia efficient for
this kind of computation. The function implemented in an
FPGA computes the minimum among three valuee: the 10CS.I
one, and the ones from the two adj scent nodee. For each
node, the Transputer writes its local minimum in its local
FPGA (which ia seen as a part of memory addressable space),

-..

beginning with the high order digit, and reads back the re-
sults.

After n levels of vertical pipeline, the minimum over

2n + 1 values is computed (if we have N nodes (N > 2n + 1),

we compute again the minimum on the local results until we

h8Ye processed at least N/2 levels). It is noticeable that dur-
ing the time the global minimum is computed in the FPGA
ring, it is also broadcasted.

)--lb

L_-.Juuu

Figure 5: Digit-serial implementation of the global
minimum computation and broadcast -

5.2 PERFORMANCES

The performances obtained for these two global operations
are summarized in table 1. One point worth being mentioned
is that the number of iterated read/write operations can be
reduced. Indeed, the number of accesses to the FPG.4 is fully

dependent on the size of the minimum, on the number of
nodes, and on the width of the digits. The use of larger

digits (resp. 2, 4, 8 bits) reduces the number of accesses and
thus the execution time of the global computation (with a
ratio of 2, 4, 8, resp.). Pipelining the function also leads to
such enhancements.

Number of nodes 2 4 8

Synchronization - pure soft. 4392 8481 14577

with CLL 4 4 4
Globed rmmmum - pure soft. 4416 10088 18160

with CLL 110 220 440

Table 1: Execution time for global operations on the
ArMen architecture (times are given in ps, global minimum

is computed in “bit-serial” way on 32-bit values)

Compared to a pure software solution usrng the TROL-
LIUS operating system[2], speed-ups obtained are in order ofi
1,000 to 3,500 for the synchronization barrier and 40 for a
global minimum computation on four 32-bit integer values
with l-bit digits and one level of pipeline in the FPGA.

The synchronization results reflect the delay needed
by the Transputer interrupt-signals. The signal transfer
through an FPGA lasts indeed about 30 ns, which allowE us
to expect a 4 ps delay with up to 120 processors, If we con-
sider 8-bit digits and 2 levels of pipeline, the speed-up for
the GVT computation achieves 600.

6 CONCLUSION AND FURTHER WORK

The use of FPGAE aa computing resource in the MIMD model
opens new research areas. Lots of these are still to be inves-
tigated and we have built a parallel machine to study the

relationship between algorithms and hardware for several
classes of applications.

The main benefits of using reconfigurable technology in

the PDES domain are possibilities for:

1. synthesizing operators for model evaluation suited to

the problem or the data size.

2. synthesizing specific coprocessor able to evaluate

global or partial reduction over distributed values.

3. building a simulation mach:ne efficient for larger ap-
plication space than previous ones, and combining the
speed of hardware solutions with the flexibibty of pro-
grammable ones.

We have presented two machine-configurations with
“sirnulation-coprocessors”. A fine-grain time-driven simu-
lator with 8 nodes performs one step in 64 ms for a 350x370

cell model. A coarse-grain event-driven simulator computes
each next-event timest amp in O.4 ms, Currently, a parallel

simulator is being brought to the machine and will allow per-
formance studies on hardware accelerators for the different
asynchronous protocols. In particular, we study the impact
of global controller on adaptive protocols.

Other work has begun on the bounded lag algorithm de-
scribed by Lubachevsky in [6]. A first analysis shows an

important use of global operations. With the previously
presented global accelerators and considering their perfor-
mance, we expect that FPGAS will help to improve the sim-

ulation by an interesting ratio.

The reconfigurability enables application specific hard-
ware optimization, and the availability of larger FPGAS in

the near future allows us to consider the development of

simulation coprocessor supporting both model evaluation
functions and synchronization functions.

REFERENCES

[1] BOUAZZA, K., CHAMPEAU, J., NG, P., POTTIER, B., AND Ru-
BINI, S. Implementing Cellular Automata on the ArMen Ma-
chine. In Proceedin~e of the Workahov on A190rithma and

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Parallel VLSI Achit;ctu& H (Bonae, fiance, ~we 1991), P.

Quinton and Y. Robert, Ed., Eleevier Science Publishers B. V.,
pp. 317-322.

BURNS, G., RADNA, V., DAOUD, R., AND MACHIRAJU, R.

Ml About TROLLIUS. Occam User Group Newsletter (July
1990), 55-70.

BUZZEL, C., ROBB, M., AND FUJIFiiOTO, R. Modular VME
RoilBaek Hardware for Time Warp. La Proceedings of the
SCS multi- conjenmce on Distributed Simulation (San Di4go,
USA, Jan. 1990), SCS, pp. 153-156.

DHAUSSY, P., FILLOQUE, J.-M., POTTIER, B., AND RUBINI, S.
Global Control Synthesis for an MIMD/FPGA Machine. In
IEEE Workshop on FPGAB for custom computing machinea
(Napa, California, Apr. 1994), I. C. S: Press, Ed.

FILLOQUE, J.-M., GAUTRIN, E., AND POTTIER, B. Effi-
cient Global Computation on a Processor Network with Pro-
grammable Logic. In Proceedings of PARLE ’91 (Emdhoven,
NL, June 1991), no. 505 in LNCS, Springer-Verlag, pp. 55-63.

LUBACHEVSKY, B. Synchronization Barrier and Related Tools
for Shared Memory Parallel Programming,. In Proceedings
of Intl. Conference on Parallel Prvce~aing, (Pen State, USA,
Aug. 1989), pp. “11-175-179” .

REYNOLDS, P. Efficient l%rnework for Parallel Simulations. In
Proceeding of the SCS multi-conference on Advancea in Par-
allel and Distributed Simulation (Anaheim, USA, Jan. 1991),
SCS, pp. 167-174.

ROSE, J., GAFdAL, A. E., AND SANGIOVANNI-VINCENTELLI, A.
Architecture of field-progr srnrnable gate arrays. Proceedings

of the IEEE s1, 7 (July 1993).

TOFFOLI, T., AND MARGOLUS, N. Cellular automata ma-
chines. MIT Press, 1987.

163

