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Abstract 
As the amount of digital data grows, so does the theft of sensitive data through the loss or misplacement of laptops, thumb drives, 

external hard drives, and other electronic storage media.  Sensitive data may also be leaked accidentally due to improper disposal or 

resale of storage media.  To protect the secrecy of the entire data lifetime, we must have confidential ways to store and delete data.  

This survey summarizes and compares existing methods of providing confidential storage and deletion of data in personal computing 

environments. 

 

 

1. INTRODUCTION  

As the cost of electronic storage declines rapidly, more and more sensitive data are stored on media such as 

hard disks, CDs, and thumb drives.  The push toward the paperless office also drives businesses toward 

converting sensitive documents, once stored in locked filing cabinets, into digital forms.  Today, an 

insurance agent can carry a laptop that holds thousands of Social Security numbers, medical histories, and 

other confidential information. 

As early as 2003, the U.S. Census Bureau reported that two-thirds of American households have at least 

one computer, with about one-third of adults using computers to manage household finances and make 

online purchases [U.S. Census Bureau 2005].  These statistics suggest that many computers store data on 

personal finances and online transactions, not to mention other confidential data such as tax records, 

passwords for bank accounts, and email.  We can estimate that these figures have risen dramatically since 

the 2003 survey. 

Sensitive information stored in an insecure manner is vulnerable to theft.  According to the most recent 

CSI Computer Crime and Security Survey [Richardson 2007], 50 percent of the respondents have been 

victims  of  laptop  and  mobile  theft  in  the  last  12  months.  These   respondents   include   494   security 

practitioners in U.S. corporations, government agencies, financial institutions, medical institutions, and 

universities.  The survey also shows that between the years 2001 and 2007, the theft of electronic storage 

occurred much more frequently than other forms of attack or misuse such as denial of service, telecom 

fraud, unauthorized access to information, financial fraud, abuse of wireless network, sabotage, and Web 

site defacement.  Many incidences of theft continue to make headlines across many segments of the 

society, including the government [Hines 2007], academia [Square 2007], the health industry [McNevin 

2007; Sullivan 2005], and large companies [WirelessWeek 2007].   



 

Two major components exist to safeguard the privacy of data on electronic storage media.  First, data 

must be stored in a confidential manner to prevent unauthorized access, and the solution should not impose 

significant inconvenience during normal use.  Second, at the time of disposal, confidential data must be 

removed from the storage media as well as the overall computing environment in an irrecoverable manner.  

While the fundamental goals are clear, existing solutions tend to evolve independently around each goal.  

This survey summarizes the advantages and challenges of various confidential data storage and deletion 

techniques, with the aim of identifying underlying trends and lessons to arrive at an overarching solution. 

Due to the size of the problem, the focus of this survey is on non-distributed, single-user computing 

environments (e.g., desktops and laptops).  The user is assumed to have system administrative privileges to 

configure the confidentiality settings of storage and deletion methods.  The threat model assumes that 

attacks to recover sensitive data are staged after the computer has been powered off:  in other words, the 

attacker uses “dead” forensic methods.  Attacks that occur after the user is logged in (e.g., network-based 

attacks or memory-based attacks) are beyond the scope of this survey. 

 

2. SECURITY BACKGROUND  

This section is designed for storage researchers and provides the relevant security concepts used when 

comparing storage designs. 

The general concept of secure handling of data is composed of three aspects: confidentiality, integrity, 

and availability.  Confidentiality involves ensuring that information is not read by unauthorized persons.  

Using encryption to store data or authenticating valid users are example means by which confidentiality is 

achieved.  Integrity ensures that the information is not altered by unauthorized persons.  Combining a 

message authentication code with sensitive data is a way to verify integrity.  Finally, availability ensures 

that data is accessible when needed.  Having multiple servers to withstand a malicious shutdown of a server 

is one way to improve availability. 

This survey compares various confidential storage and deletion approaches in terms of how each trades 

confidentiality with convenience (e.g., ease-of-use, performance, and flexibility of setting security 

policies).  Both integrity and availability goals are assumed and are beyond the scope of this survey.   

The strength of confidentiality is the result of how well secure storage and deletion mechanisms address 

the following questions: 

• If encryption is used, how well are the keys protected? 

• Do copies of sensitive data reside at multiple places in the system? 

• If encryption is used, how strong is the encryption mechanism and mode of operation in terms of the 

computational efforts to subvert the encryption? 

• Can deleted data be recovered?  If so, what are the time and resource costs? 



 

• Is the entire file securely deleted, or is some portion left behind (such as the file name or other 

metadata)? 

 

In other words, the confidential data must not be accessed by unauthorized persons after it is properly 

stored or deleted.   

The ease-of-use of an approach reflects the level of inconvenience imposed to end users. Methods of 

confidential storage and deletion that are too hard to use will either encourage users to circumvent the 

methods or discourage users from using them entirely [Whitten and Tygar 1999].  Some aspects of the user 

model examined include:  

• The number of times a person must enter an encryption key per session 

• The ease with which the method is invoked  

• The number of encryption keys or passwords a person or a system must remember 

 

Performance is another form of convenience, as methods that either take too long or consume 

unreasonable amounts of system resources will not be used.  For both confidential storage and deletion, 

performance can be measured by the latency and bandwidth of file access/erasure and overhead pertaining 

to the encryption algorithm and the mode of operation used.  Additionally, both methods can be measured 

by the time taken per operation and total amount of system resources used.   

Security policies are comprised of a set of rules, laws, and practices that regulate how an individual or 

organization manages, distributes, and protects secure information.  A policy may be specific to a person or 

organization and may need to change frequently.  This survey compares the flexibility of the method, or the 

ease of configurations, with regards to the implementation of various confidential storage and deletion 

policies.  Some aspects that were examined include: 

• Method compatibility with legacy applications and file systems 

• The ease of key or password revocation 

• How easily one may change the method’s configuration to fulfill a security policy (e.g., encryption 

algorithm and key size) 

• Whether one can control the granularity (e.g., file and disk partition) of confidential storage and 

deletion operations 

 

Many techniques of confidential storage and deletion involve cryptography.  The following subsection 

briefly introduces and compares commonly used encryption algorithms and their modes of operation. 

 

 

 



 

2.1 Commonly Used Encryption Algorithms 

Encryption is a procedure used in cryptography “to scramble information so that only someone knowing 

the appropriate secret can obtain the original information (through decryption) [Kaufman et al. 2002].”  The 

secret is often a key of n random bits of zeros and ones, which can be derived through the use of a 

password or passphrase.  A key’s strength is often associated with the length of the key which, if it consists 

of truly random bits, requires a brute-force enumeration of the key space to decrypt the original message. 

An encryption algorithm, or cipher, takes a plaintext as input and produces encrypted text (i.e., 

ciphertext); similarly, a decryption algorithm takes a ciphertext as input and generates decrypted text (i.e., 

plaintext).  Encryption algorithms can be either symmetric or asymmetric.  Symmetric algorithms use the 

same key for both encryption and decryption.  Asymmetric algorithms use two keys: one for encryption and 

another for decryption.  For example, public-key cryptography uses two keys (public and private keys) and 

is often used to establish secure communication across a network where there is no way to exchange a 

symmetric key beforehand.  Symmetric encryption schemes can be many times faster than comparable 

asymmetric schemes, and are therefore used more often in secure data storage, especially when the data in 

question does not traverse through an insecure network. 

Common symmetric key encryption algorithms include the Data Encryption Standard (DES), Triple-

DES (3DES), and the Advanced Encryption Standard (AES).  These algorithms are block ciphers, meaning 

that they take a block of symbols of size n as input and output a block of symbols of size n.  DES was 

published in 1975 and developed as the U.S. standard for unclassified applications in 1977 [Stinson 2002].  

DES uses a key size of 56 bits and a block size of 64 bits.  The main criticism of DES today is that the 56-

bit key length is too short.  With newer CPUs, the key space of 2
56

 can be enumerated.  Even with machines 

in 1998, a machine called the “DES Cracker” could find a DES key in 56 hours. 

Triple-DES was built to enlarge the DES key space without requiring users to switch to a new 

encryption algorithm.  3DES operates by performing three DES operations on the data with three keys:  

encryption with key one, decryption with key two, and encryption with key three.  The three keys increase 

the key space to 2
168

, but the strength of 3DES is only twice as strong as DES as demonstrated in the meet-

in-the-middle attack  [Chaum and Evertse 1985].  Unfortunately, performing three cryptographic operations 

for every data access imposes a high performance penalty. 

DES was replaced with the Advanced Encryption Standard (AES) algorithm in 2001.  AES has a block 

length of 128 bits and supports key lengths of 128, 192, and 256 bits.  Among the five finalist algorithms to 

be chosen as AES (MARS, RC6, Rijndael, Serpent, Twofish), Rijndael was chosen “because its 

combination of security, performance, efficiency, implementability, and flexibility was judged to be 

superior to the other finalists [Stinson 2002].”  The National Security Agency (NSA) has reviewed and 

concluded that all five finalists were secure enough for U.S. Government non-classified data.  In 2003, the 

U.S. government announced that AES, with all key lengths, is sufficient to protect classified information up 



 

to the level of secret.  Only AES key lengths of 192 or 256 bits can protect classified information at the top 

secret level [Ferguson et al. 2001]. 

 

2.2 Traditional Modes of Operation 

The operating mode of an encryption algorithm allows block ciphers to output messages of arbitrary length 

or turns block ciphers into self-synchronizing stream ciphers, which generate a continuous key stream to 

produce ciphertext of arbitrary length.  For example, using AES alone, one may only input and output 

blocks of 128 bits each.  Using AES with a mode of operation for a block cipher, one may input and output 

data of any length.   

An initialization vector (IV) is commonly used with many block ciphers: it is a small, often random, but 

non-secret value used to help introduce randomness into the block cipher.  The IV is often used at the 

beginning of the block cipher. 

The most common modes of operation for block ciphers include electronic codebook (ECB) mode, 

cipher-feedback (CFB) mode, cipher-block-chaining (CBC) mode, output- feedback (OFB) mode, and 

counter (CTR) mode.   

 

2.2.1 Mode Examples and Specifications.  ECB is the simplest mode of operation, and does not use an 

IV (Figure 1).  With a key, Pi as the ith block of plaintext, and Ci as the ith block of ciphertext, the 

encryption is performed as Ci = Ekey (Pi), and decryption is performed as Pi = Dkey (Ci).   

 

 

Figure 1. ECB-mode encryption and decryption. 

 
The CBC mode is slightly more complicated and uses an IV (Figure 2).  Each block of plaintext first is 

XORed with the previous block of ciphertext before being encrypted.  Therefore, each block of ciphertext 

relies on its previous block of ciphertext.  Encryption of the first block of plaintext is performed as C1 = 

Ekey (P1 ⊕ IV), where C1 is the 1
st
 block of ciphertext; IV is the random, non-secret initialization vector; and 

P1 is the 1
st
 block of plaintext.  Subsequent blocks of plaintext are encrypted as Ci = Ekey (Pi ⊕ Ci-1).  In the 



 

same manner, the first block of ciphertext is decrypted as P1 = Dkey (C1) ⊕ IV, and the subsequent blocks of 

ciphertext are decrypted as Pi = Dkey (Ci) ⊕ Ci-1.   

 

 
Figure 2. CBC-mode encryption and decryption. 

 
Other block ciphers can be specified in a similar way.  Table I lists the various modes of operation, 

along with the corresponding encryption and decryption specifications.   

 

Table I.  Encryption and Decryption Specifications for Various Modes of Operations 

Mode of operation Encryption Decryption 

ECB Ci = Ekey (Pi) Pi = Dkey (Ci) 

CFB Ci = Ekey (Ci-1) ⊕ Pi, C0 = IV Pi = E key (Ci-1) ⊕ Ci, C0 = IV 

CBC Ci = Ekey (Pi ⊕ Ci-1), C0 = IV Pi = Dkey (Ci) ⊕ Ci-1, C0 = IV 

OFB Ci = Pi ⊕ Oi 

Oi = Ekey (Oi-1), O0 = IV 

Pi = Ci ⊕ Oi 

Oi = Ekey (Oi-1), O0 = IV 

CTR Ci = Ekey (IV ⊕ CTRi) ⊕ Pi Pi = Ekey (IV ⊕ CTRi) ⊕ Ci 

 

2.2.2 Performance Factors.  Even when employing a fast block cipher (such as AES), certain modes of 

operation may not interact well with the file system usage patterns.  Although most file accesses are 

sequential, where the accessed file locations are consecutive, a significant fraction of file references are not 

and are loosely defined as random file accesses.  Therefore, some modes may require decrypting an entire 

file before a read can be performed at the very end of the file.  Conversely, some modes may require re-

encrypting an entire file after a write is performed at the beginning of the file.  To reduce random access 

time, certain solutions divide files into extents (contiguous segments of blocks) for a finer encryption 

granularity.  The main tradeoff is introducing complexity in key and IV management. 

Knowing the performance characteristics of various modes of operation helps the storage designers 

understand how mode choices affect confidential storage and deletion later in this survey.  Table II 

compares encryption and decryption performance of the discussed modes of operation.  Since the random 

file access pattern is more general compared to the sequential one, the table only characterizes the 

performance of various operation modes under random accesses. 



 

 

Table II.  Random-access Performance for Various Modes of Operation 

Mode of  

operation 

Encryption performance Decryption performance 

ECB/CTR 

 

Good:  ECB and CTR do not depend on previous blocks.  Multiple blocks can be 

encrypted and decrypted in parallel. 

CFB/CBC 

 

Poor:  Generating a CFB and CBC 

ciphertext requires the previous ciphertext 

block as input.  In the case of updates, 

CFB and CBC require re-encrypting the 

remainder of a file, since all subsequent 

ciphertext blocks depend on the current 

ciphertext block. Thus, encryption is not 

parallelizable. 

Good: CFB and CBC decryption of one 

block requires only one previous 

ciphertext block as input.  Multiple blocks 

can be decrypted in parallel. 

OFB 

 

Medium: The key stream (or encryption mask) can be pre-computed independently of 

the ciphertext.  This pre-computation can speed up random file access, as the encryption 

and decryption of a block does not depend on previous blocks.  Once the key stream is 

computed, encryption and decryption may be performed in parallel. 

 

 

2.2.3 Security Caveats.  Other considerations when choosing a mode of operation are error resiliency 

and the overall security of the mode (Table III).  Error resiliency is concerned with the propagation of 

damage when errors occur in a ciphertext block (e.g., the result of a damaged sector on a hard disk).  

Overall security is concerned with the weaknesses for various modes of operation during attacks that 

attempt to recover the key, plaintext, or both.   

Table III.  Recoverability and Security Characteristics for Various Modes of Operation  

Mode of  

operation 

Error resiliency Overall security 

ECB Good: Bit errors in a ciphertext block will 

only corrupt the corresponding plaintext 

block. 

Poor: Two plaintext blocks with the 

same content yield the same encrypted 

ciphertext.  Ciphertext blocks may also 

be reordered by an adversary. 

CFB Good: A bit error in a ciphertext block affects 

only two plaintext blocks—a one-bit change 

in the corresponding plaintext block, and the 

corruption of the following plaintext block. 

Remaining plaintext blocks are decrypted 

normally. 

Good: As long as IVs are randomly 

generated and not reused. 

CBC Good: A bit error in the ciphertext will 

corrupt the corresponding plaintext block, and 

the corresponding bit in the next plaintext 

block will be flipped.  Later plaintext blocks 

are decrypted normally. 

Good: As long as IVs are randomly 

generated and not reused. 

OFB/CTR Good: Bit errors in a single ciphertext block 

will corrupt only the corresponding plaintext 

block. 

Good: As long as IVs are randomly 

generated and not reused. 

 



 

2.2.4 A Side Note about CTR Mode and Key Management.  While CTR mode may seem to excel in both 

security and performance, most encryption systems today use CBC mode.  The reason lies in the way the 

counters are generated and the keys are managed.  Each block encrypted or decrypted in CTR mode does 

not depend on previous blocks.  Instead, counters are generated and fed into the encryption algorithm along 

with the file’s key.  A counter can be just the block index within a file.   

To prevent direct comparisons of ciphered blocks from different files that share a key and the same 

counter indexing method, a per-file IV is often XORed with each counter.  Unfortunately, the counter 

XORed with IV is not guaranteed to be unique (e.g., files with the same initial file header), giving attackers 

multiple counter-IV pairs and ciphertext using the same key for analysis.  Using a per-file unique key could 

be one solution, but also introduces the hard problem of key management in encryption systems, which is a 

large area of research beyond the scope of this survey. 

 

2.3 NIST-proposed Encryption Modes of Operation 

This section summarizes other modes of encryption currently being proposed by the National Institute of 

Standards and Technology (NIST).  These modes primarily deal with protecting data confidentiality.  Other 

modes, such as authenticated encryption, are beyond the scope of this survey. 

 

2.3.1 2DEM.  The 2D-Encryption Mode (2DEM) encrypts and decrypts binary data in block structures 

with rows and columns [Belal and Abdel-Gawad 2001].  If DES is chosen as the underlying encryption 

algorithm, the number of bytes n in each row and column must be a multiple of 8; for AES, 16.  2DEM 

encrypts data by first performing ECB encryption operations on each row of the block structure (traveling 

from top to bottom) and producing an intermediary result.  It then performs additional ECB encryption 

operations on each column of the intermediary result (traveling from left to right).  The resulting output is 

the ciphtertext.  Decryption is performed on the ciphertext by reversing the encryption operation. 

2DEM seems naturally suited for encrypting data of a 2D nature (such as images and tables), but it can 

be applied to other forms of 1D data by simulating artificial rows and columns.  Since each block of data in 

the row-encrypting phase or the column encrypting phase does not rely on any other block of data, these 

operations can be parallelized.  Bit errors are limited to the encryption/decryption block. 

 

2.3.2 ABC.  Traditional modes of operations have good error resiliency (Table III) in that bit errors in 

the n
th

 ciphertext block will affect at most up to the (n+1)
th

 plaintext block.  The Accumulated Block 

Chaining (ABC) mode, on the other hand, was designed to have infinite error propagation [Knudsen 2000].  

As Knudsen states, error propagation modes are best suited “…for situations where errors in transmission 

are either unlikely to happen or taken care of by noncryptographic means like error-correcting codes, 

and/or situations where an erroneous data transmission is dealt with by a retransmission.” 



 

With a key, Pi as the ith block of plaintext, and Ci as the ith block of ciphertext, h as a mapping from n to 

n bits, and where H0 and C0 are initial values, the encryption operations is 

 

Hi = Pi ⊕ h(Hi-1), 

Ci = Ekey (Hi ⊕ Ci-1) ⊕ Hi-1. 

The decryption operation is 

Hi = Dkey (Ci ⊕ Hi-1) ⊕ Ci-1, 

Pi = Hi ⊕ h(Hi-1). 

 

h may be chosen as a hash function, but Knudsen also argues that choosing h(X) = X or h(X) = X << 1 

(one-bit rotation) may be sufficient for most applications. 

 

2.3.3 IGE.  The Infinite Grappling Extension (IGE) is a special case of ABC where h(X) = 0.  The IGE 

mode was first proposed by Campbell [1978] and further analyzed by Gligor and Donescu [2000].  IGE 

mode was conceived to prevent spoofing attacks in which an attacker would intercept, modify, and 

retransmit a cipher in such a way that the deception is not detected, even when the attacker does not know 

the secret key.  Any change made to the ciphertext in IGE mode will garble all remaining plaintext during 

decryption.  Campbell suggests placing an expected pattern at the end of the message.  If the recipient finds 

the expected pattern after decryption at the end of the message, the recipient can be assured that the 

message has not been tampered with. 

With a key, Pi as the ith block of plaintext, and Ci as the ith block of ciphertext, and where C0 and P0 are 

initial values, the encryption operation is 

 

Ci = Ekey (Ci-1 ⊕ Pi) ⊕ Pi-1. 

The decryption operation is 

Pi = Dkey (Pi-1 ⊕ Ci) ⊕ Ci-1. 

 

2.3.4 FFSEM.  Some traditional modes of operation, such as ECB, CBC, and CTR, will only accept as 

input fixed size plaintext blocks and output fixed-size encryption blocks.  The Feistel Finite Set Encryption 

Mode (FFSEM) [Spies 2008] was designed to encrypt arbitrarily sized data using two components: cycle 

following and the Feistel method.  Cycle following uses a q-bit block cipher to encrypt and decrypt sets of 

size n where n < 2
q
.  The Feistel method uses a Luby-Rackoff construction [Luby and Rackoff 1988] to 

turn a fixed-width block cipher into an arbitrary-width block cipher. 

An advantage is that FFSEM does not encrypt multiple blocks of data, but is designed to be used where 

data expansion is not acceptable.  Some disadvantages are that FFSEM needs multiple invocations of the 



 

block cipher for a single encryption, and different data items can take different amounts of time to encrypt 

or decrypt due to FFSEM’s cycling construction. 

 

2.4 SISWG Cipher Modes 

This section summarizes modes of confidential encryption designed for hard disk encryption and data at 

rest.  The IEEE Security in Storage Working Group (SISWG) is currently looking to standardize narrow-

block and wide-block encryption modes.   A narrow-block cipher mode operates on the block size of the 

underlying cipher (e.g., 16 bytes for AES).  A wide-block cipher mode operates on more cipher blocks 

equal to the size of an underlying disk sector (generally 512 bytes and above).  At the time of this writing, 

SISWG has submitted an active, approved draft to the IEEE for narrow-block encryption P1619/D18 titled 

“Draft Standard for Cryptographic Protection of Data on block-Oriented Storage Devices” and is working 

on a draft for wide-block encryption P1619.2/D1 titled “Draft Standard for Wide-Block Encryption for 

Shared Storage Media. 

 

2.4.1 Narrow-Block Encryption.  The published P1619 draft standard discusses the use of XTS-AES, 

which is a tweakable block cipher.  A tweakable encryption algorithm has similar inputs (plaintext and key) 

and outputs (ciphertext) as the encryption algorithms discussed in Section 2.1, with the addition of a non-

secret input called a “tweak” [Liskov et al. 2002].  This tweak serves a similar randomization purpose as a 

nonce or IV in a mode of operation, except at the block cipher level.  The authors specify certain goals for 

tweakable block ciphers, namely that (1) any tweakable block ciphers designed should be just as efficient 

as non-tweakable block ciphers, and (2) a tweakable block cipher should also be secure, even if an 

adversary has control of the tweak value. 

XTS-AES can be applied to data units of 128 bits or more and uses AES as a subroutine [Bohman 

2007].  Broken down, the acronym XTS stands for XEX TCB with ciphertext stealing, XEX stands for 

XOR-Encrypt-XOR, and TCB stands for Tweakable Codebook encryption.  With a key, P as the 128-bit 

block of plaintext, and C as the resulting 128-bit block of ciphertext, i is the 128-bit tweak value, and j is 

the sequential number of the 128-bit block inside the data unit, the encryption operation is 

 

C = Ekey (P, i, j). 

 

2.4.2 Wide-Block Encryption.  The unpublished P1619.2/D1 draft currently specifies Encryption with 

Associated Data (EAD) methods, such as the EME2 transform and the XCB-AES transform.  An EAD 

method consists of an encryption operation that accepts three inputs: a secret key, a plaintext, and the 

associated data.  The encryption operation returns a single ciphertext value.  An EAD method also consists 

of a decryption operation that accepts three inputs: a secret key, a ciphertext, and the associated data.  The 



 

decryption operation returns a single plaintext value. With a key, Pi as the ith block of plaintext, and Ci as 

the ith block of ciphertext, and where C0 and P0 are initial values, the encryption and decryption operations 

are 

 

Ci = Ekey (ADi , Pi), 

Pi = Dkey (ADi , Ci). 

 

3. CONFIDENTIAL STORAGE 

Many regulations and acts address the storage of sensitive data.  The Gramm-Leach Bliley Act requires 

financial institutions to have a security plan for protecting the confidentiality and integrity of personal 

consumer data.  The Federal Information Security Management Act addresses the minimum security 

requirements for information and systems within the federal government and affiliated parties.  The Health 

Insurance Portability and Accountability Act mandates provisions to address the confidentiality and 

security of sensitive health data.  These acts and regulations and the threat of possible storage media theft 

motivates the need for methods of secure data storage.  For this survey, we focus on a major component of 

secure data storage, namely, protecting data confidentiality. 

The concept of confidential storage of data may be easy to understand, yet difficult to implement.  

Achieving confidentiality means storing data in a way that it can be read or deciphered only by authorized 

persons.  No unauthorized persons should be able to read or otherwise obtain meaningful information from 

this data, even with physical access to the storage media (e.g., a stolen laptop).   

Confidential storage methods are difficult to implement for reasons including complexity of method 

setup, difficulty of conversion of prior methods to new secure methods, training, overhead and latency in 

everyday tasks (e.g., reading and writing to files), key management, and password management. 

As a brief storage background, Figure 3 shows the storage data paths for popular Unix-based and 

Windows operating systems.  For both platforms, applications reside in user space.  When a Unix 

application makes a call to a file system, the call crosses the kernel boundary and is handled by the Virtual 

File System (VFS) Layer [Kleiman 1986].  VFS provides functions commonly used in various file systems 

to ease individual file system implementations, and allows different file systems to co-exist, including local 

file systems such as ext3 and network file systems such as NFS.  Local file systems then proceed to read 

and write to the block layer, which provides a unified API to access block layer devices. 

When a Windows application makes a file system call, that call gets passed to the I/O Manager.  The 

I/O Manager translates application file system calls into I/O request packets, which it then translates into 

device-specific calls.  The File System Drivers are high-level drivers such as FAT and NTFS.  These 

drivers rely on the Storage Device Drivers, which are lower-level drivers that directly access the storage 

media.  Note that both UNIX and Windows storage data paths share almost one-to-one mapping in terms of 



 

their internal structures.  Thus, a confidential storage solution designed for one can be generalized to both 

platforms. 

 

Application

VFS

File System

Block Layer

Storage

Media

Application

I/O Manager

File System Driver

Storage Device

Drivers

Storage

Media

User

Kernel

Unix Storage 

Data Path

Windows Storage 

Data Path

 

Figure 3. Unix and Windows storage data paths.  

The following subsections discuss specific aspects of confidential storage.  Section 3.1 demonstrates 

different types of software-based confidential storage techniques, and Section 3.2 delves into hardware-

based confidential storage.  

 

3.1 Software-based Confidential Storage 

Software-based solutions to confidential storage require no specialized hardware and are widely available 

today.  These solutions range from encryption programs to cryptographic file systems and block-based 

encryption systems.   Encryption programs reside in user space and employ cryptographic operations at a 

file granularity.  Cryptographic file systems include file systems that are either tailored for encryption or 

extended for cryptographic functionality.  Block-based solutions are tailored to encrypt and decrypt large 

chunks of data at the granularity of a partition or disk. Each solution has its strengths and limitations with 

regard to the level of confidentiality, ease-of-use, performance, and the flexibility to set policies. 

 

3.1.1 Encryption Programs. Software encryption programs come in two flavors: generalized encryption 

programs and built-in encryption mechanisms in applications. Generalized encryption programs can 

encrypt and decrypt files using a variety of ciphers and encryption modes.  Some examples are mcrypt, 

openssl, and gpg.  mcrypt [Smith 2008] is a simple command-line program intended to replace the old 

Unix crypt program.  openssl [Young and Hudson 2008] is an open source toolkit that implements the 



 

Secure Socket Layer and Transport Layer Security protocols as well as a general-purpose cryptography 

library.  Through use of the library, one may encrypt and decrypt files through the command line.  The 

GNU Privacy Guard, or GnuPG [Koch 2008], implements the OpenPGP standard, which features a 

versatile key management system and allows the user to encrypt and sign data and communications using 

public and private keys. 

Many applications also include cryptographic options to protect the confidentiality of files.  Examples 

include the text editor vim [Moolenaar 2008] and Microsoft Office products such as Word and Excel 

[Microsoft Corporation 2003].  These applications either derive the key from the user’s system information 

(such as a password) or prompt for a key or passphrase at the beginning of the session.    

While easiest to deploy, application-level solutions have their limitations in regards to level of 

confidentiality.  For example, temporary plaintext files may be created based on the files that are being 

accessed.  Therefore, if temporary files are not deleted, an attacker can simply find them.  If the temporary 

files have been deleted but not securely erased (see Section 4), an attacker may use forensic tools to recover 

the data.   

Encryption programs can vary widely in terms of the flexibility of security policies.  For example, 

generalized encryption programs often offer a wide array of encryption algorithms and modes of operation.  

They can be used on general files and possibly used as a filter in a command pipeline.  On the other hand, 

application-specific encryption programs tend to offer few ways to perform encryption, to limited files 

types, with limited compatibility with other applications.  These characteristics could limit application-

specific encryption in terms of the flexibility of changing security policies.   

In terms of the user model, generalized encryption programs usually demand much user participation 

and may not be easy to use.  For example, a user must invoke these programs along with the necessary 

key/password/passphrase every time encryption or decryption takes place.  A simple mistake, such as using 

an incorrect passphrase to encrypt a file or accidental deletion of the private key, may render a file useless 

and irrecoverable.  While this is true of any method using encryption, the chances for error tend to be 

higher when users can manipulate the encryption key directly.  Conversely, application-specific solutions 

typically prompt for a key/password/passphrase once and tend to perform encryption in a “behind-the-

scenes” manner.      

In terms of performance, both generalized and application-specific solutions at the user level are slower 

than other solutions because they do not take full advantage of the VFS layer caching.  To be specific, since 

encryption occurs at the user level, VFS has to cache encrypted data.  Thus, unless a user space application 

caches plaintext itself, it needs to perform decryption and encryption functions on every read and write.   

 

3.1.2 User-Space File Systems. Many user-space file systems take advantage of the Filesystem in 

Userspace (FUSE) module [Szeredi 2008], which is a Unix kernel module that allows a virtual file system 



 

to be built inside a user-space program without having to write any kernel-level code.  FUSE intercepts 

VFS calls and directs them to a user-space file system with added security features before forwarding 

requests to an underlying legacy file system in the kernel space (Figure 4). 

Two examples of FUSE-based secure storage file systems include EncFS [Gough 2008, Hohmann 

2008].  Both systems are similar in (1) storing encrypted files and file names in normal directories, (2) 

requiring users to mount files with the correct key to see decrypted files and file names, (3) prompting users 

for a password to generate the encryption key, (4) supporting common encryption algorithms such as AES, 

DES, Blowfish, Twofish, and (5) encrypting files on a per-block basis.  Neither file system documents its 

mode of operation, which is not a configurable option. 

These file systems can provide strong confidentiality by employing good encryption mechanisms and 

placing temporary files in encrypted directories.  One drawback is that user-space file systems still reveal 

the directory structure and file metadata information.  User-space file systems do allow for some security 

policy flexibility in that they generally allow for different encryption algorithms, but neither eases key 

revocation nor changing the mode of operation.   

User-space file systems tend to be easier to use than user encryption applications because encryption 

and decryption happen transparently.  Still, users must “mount” encrypted directories to a special mount 

point to manipulate them.   

These file systems tend to have higher performance overhead in that requests may need to travel across 

the kernel and user space multiple times.  Since these file systems also rely on an underlying file system, 

the performance overhead of using user-space file systems is additional to the overhead of using the 

underlying file system.   

 

 
Figure 4. FUSE data path. 



 

 

3.1.3 Network-based File Systems. Network-based file systems operate through the network stack.  Two 

examples are the Cryptographic File System (CFS) and the Transparent Cryptographic File System 

(TCFS).   

CFS [Blaze 1993] is implemented in the user space, which communicates with the Unix kernel via NFS 

[Sandberg et al. 1985].   Specifically, it uses an unmodified NFS client to talk with a modified NFS server 

over the loopback network interface.  Figure 5 shows the CFS data path. 

CFS allows users to “attach” cryptographic keys to directories to make the content within the directory 

available to the user until the user “detaches” them.  While directories are attached, files, filenames, and file 

paths inside those directories are transparently encrypted and decrypted.  Files are encrypted using DES in 

a hybrid ECB+OFB mode by default, but multiple encryption algorithms are supported.  In the standard 

encryption mode, no IV is used, and files are subject to an identical block analysis attack.  In high security 

mode, the IV is stored in the group ID field of each file’s i-node data structure.  This mode improves 

security but precludes different group ownerships of files in the same directory, since the effective group 

ID is now inherited by the root encrypted directory.  Users are responsible for remembering keys, and keys 

are not stored on disk.  

 
Figure 5. Data flow in CFS. 

 

TCFS [Cattaneo et al. 2001] uses a modified NFS client (in kernel mode) and an unmodified NFS server 

to work with remote machines.  TCFS encrypts files by employing a user-specified block encryption 

module (e.g., AES) in CBC mode, and also includes authentication tags per file to insure data integrity.  



 

Instead of requiring passphrases, TCFS uses the UNIX authentication system.  TCFS implements a 

threshold secret sharing scheme [Shamir 1979] for reconstructing a group key if a member leaves the 

group.  TCFS is available under Linux with a 2.2.17 kernel or earlier and stores its keys on disk, which may 

not be safe. 

Network-based file systems can employ multiple confidential encryption mechanisms, confidential key 

solutions in which the decryption key is not stored on disk, and confidential temporary file solutions in 

which temporary files can be placed in encrypted directories.  On the other hand, network-based file 

systems reveal the directory structure and file metadata, and network-based file systems are subject to the 

security vulnerabilities of the underlying network protocols (e.g., an attack on NFS).  

Network-based file systems enjoy certain flexibilities in the context of implementing and changing 

security policy settings, including the ability to operate on top of any file system and portability across 

different systems through the use of the network stack and various network interfaces.  These 

characteristics may aid existing security policies by allowing the use of specific underlying file systems.  

Some limitations of network-based file systems include not allowing easy key revocation and changes in 

the mode of operation.   

Network-based file systems tend to be easier to use than user-space encryption programs because 

encryption and decryption happen transparently to the user.  On the other hand, users must realize that they 

need to “mount” encrypted directories to a special mount point in order to manipulate them.  Thus, the 

encryption is not entirely transparent. 

Due to their network nature and need to cross the kernel boundary many times, network-based file 

systems have perhaps the worst performance numbers compared to other forms of solutions in this survey.   

On the other hand, should normal file system operation involve network latency, the overhead of kernel 

crossing can become negligible.     

 

3.1.4 Stackable File Systems. Stackable file systems use a stackable architecture to extend functionality 

(such as cryptographic functions) by intercepting system calls and routing them to an inserted file system 

layer.  In other words, these file systems run inside the kernel and can operate on top of any other file 

system without requiring other user-level processes or daemons to run.  Some examples of stackable file 

systems include Cryptfs, NCryptfs, and eCryptfs. 

Cryptfs and NCryptfs are applications of FiST, a File System Translator language [Zadok and Nieh 

2000].  FiST allows developers to describe stackable file systems at a high level and generates kernel file 

system modules for various platforms (e.g., Solaris, Linux, and FreeBSD). 

Cryptfs is “a stackable v-node level encryption file system [Zadok et al. 1998].”  The term v-node refers 

to a data structure used to represent a virtual i-node in the virtual file system layer.  Cryptfs uses the 

Blowfish encryption algorithm with 128-bit keys in CBC mode.  A tool prompts users for passphrases, 



 

which then form encryption keys.  File names and directories are also encrypted.  The key is not stored on 

disk.  Figure 6 demonstrates how Cryptfs is layered between the user and the underlying file system. 

 

 
Figure 6. File system call path using Cryptfs. 

 

NCryptfs is the successor to Cryptfs and improves on its base design in many ways [Wright 2003].  

NCryptfs supports multiple users, keys, authentication modes, and any encryption algorithm that can 

encrypt arbitrary length buffers into a buffer of the same size (e.g., Blowfish or AES) in CFB mode. It 

extends key management to support ad-hoc groups, per-process and per-session keys, and key timeouts.  

NCryptfs uses “long-lived” keys to encrypt data to avoid the penalty of re-encrypting data when a key is 

changed.  Once the key is entered (through a passphrase), it is kept in core memory by NCryptfs and is 

never revealed to other users.  The key is not stored on disk. 

One example of a non-FiST stackable file system is eCryptfs, which is a kernel-native stacked 

cryptographic file system for Linux [Halcrow 2007].  Similar to the FiST stackable file systems, eCryptfs 

intercepts calls to the existing mounted file system.  While intercepting these calls, eCryptfs encrypts and 

decrypts file data.  eCryptfs operates at a lower granularity by encrypting and decrypting individual data 

extents in each file using a uniquely generated File Encryption Key (FEK).  That key is encrypted with the 

user-supplied File Encryption Key Encryption Key (FEKEK), and the result is stored inside the file’s 

metadata.  Users supply the FEKEK either by passphrase or a public key module.   

eCryptfs supports multiple encryption algorithms and supports the CBC mode of operation.  Each data 

extent also has a unique IV associated with it.  When data is written to an extent, its corresponding IV is 

changed before the extent is re-encrypted. 

Additional eCryptfs i-nodes are kept, which are mapped to the i-nodes in the underlying file system.  

eCryptfs i-nodes contain cryptographic contexts, including: 



 

• The session key for the target file 

• The size of the extents for the file 

• A flag specifying whether the file is encrypted 

 

Stackable file systems can employ confidential encryption mechanisms.  The primary file encryption 

key does not have to be stored on disk, and temporary files from applications can be placed in encrypted 

directories.  In terms of limitations, existing stackable file systems reveal the directory structure, as well as 

file metadata, and often do not allow easy key revocation or a change in mode of operation. 

Stackable file systems tend to be easier to use than user-level encryption programs due to the 

transparency of cryptography to the user.  Users must “mount” encrypted directories to a special mount 

point.  Since stackable file systems insert functionality through a layer of indirection, the overhead can be 

higher than other methods (e.g., a single-layer file system tailored to offer confidentiality).  On the other 

hand, since these file systems run in kernel space, they perform better than file systems that either run in 

user space or require crossing the kernel boundary multiple times. 

 

3.1.5 Disk-based File Systems. Disk-based file systems operate at a lower level of abstraction than 

stackable file systems, software-based encryption programs, or network-based file systems.  A disk-based 

file system has full control over all of its directory and file metadata and operations.  One example is 

Microsoft’s Encryption File System (EFS). 

EFS extends the journaling NTFS file system and utilizes Windows’ authentication methods as well as 

access control lists [Microsoft Corporation 2002, 2008].   EFS is supported by operating systems based on 

the Microsoft NT kernel, such as Windows 2000, XP, and Vista.  Figure 7 below demonstrates how EFS 

extends NTFS inside and outside of kernel space.   

 
Figure 7. EFS data path. 



 

 
EFS utilizes both public key and private key encryption techniques.  When a file is encrypted for the 

first time, a unique symmetric per-file encryption key (FEK) is created and is used to encrypt the file.  The 

FEK is embedded in the target file and is then encrypted with the user’s public key.  FEK can also be 

optionally encrypted with the private key of a user designated as the “recovery agent.”  Figure 8 shows an 

example of encrypted file structure.  Decryption involves decrypting the FEK with the user’s private key, 

which is stored in the user’s Windows profile.  One weakness of this method is that an attacker can recover 

the user’s or recovery agent’s private key if the attacker can gain access to the user’s account [Microsoft 

Corporation 2007]. 

EFS encrypts files and FEKs using the DESX encryption algorithm, a variant of DES that increases 

brute-force attack complexity on the key [Kilian and Rogaway 1996].  Encrypted folders are set with an 

encryption attribute, and by default all files and folders inside an encrypted folder are also encrypted. 

A disk-based file system, when configured correctly, can offer strong encryption mechanisms.  In 

addition, since a disk-based file system has control over its primitives, such as metadata, it can associate a 

unique key (and possibly even an IV) to each file.  Different encryption mechanisms are allowed for 

security policy creation and implementation, and multiple users may be specified to be able to decrypt 

certain files.  However, a disk-based file system cannot easily change the mode of operation. The user 

experience is similar to network-based and stackable file systems in that users must know enough of the 

encryption to place files into confidential directories (or designate directories as confidential directories).  

Disk-based file systems remove the level of indirection that other cryptographic file systems employ and 

perform encryption and decryption in the kernel, which utilizes lower level buffers and speed up 

performance.  

 
Figure 8. EFS file structure. 

 

3.1.5 Block-based Encryption Systems. Block-based encryption systems work at a lower layer of 

abstraction than file systems.  In other words, these systems work transparently below file systems to 



 

encrypt data at the disk-block level.  Examples of block-based encryption systems include dm-crypt, 

BestCrypt, the CryptoGraphic Disk driver, the Encrypted Volume and File System, and Microsoft 

BitLocker Drive Encryption. 

dm-crypt [Peters 2004] is a replacement for the Linux cryptoloop system that works by using the 

Linux device mapper, an infrastructure introduced in Linux 2.6 to provide a generic way to create virtual 

layers of block devices on top of real block devices that interact with hardware directly.  dm-crypt uses 

the Linux CryptoAPI and supports encrypting block devices such as disks, partitions, logical volumes, and 

RAID volumes.  If one writes random blocks to a block device using dm-crypt, an attacker will not be 

able to discern the locations of encrypted files and the amount of free space left on the device.  dm-crypt 

supports encryption algorithms and modes of operation present in the Linux CryptoAPI, which include 

AES, DES, Serpent, Twofish, Blowfish, ECB mode, and CBC mode.  The IV is based on the sector 

number.  An encrypted block device will wait to be mounted until a user passphrase is given.  Similar to 

cryptoloop and dm-crypt, BestCrypt [Jetico, Inc. 2008] is a commercial example of a block-based 

encryption system.  Other examples include the CryptoGraphic disk driver [Dowdeswell and Ioannidis 

2003] for NetBSD and the Encrypted Volume and File System (EVFS) [Hewlett-Packard 2007] for HP-

UX. 

Microsoft BitLocker Drive Encryption provides encryption for hard disk volumes and is available with 

Vista Enterprise, Vista Ultimate, and the upcoming Windows Server operating systems [Microsoft 

Corporation 2006].  BitLocker drive encryption has two goals: 

1. To encrypt the entire Windows operating system volume (and additional volumes in the future) 

2. To verify the integrity of the boot process using a Trusted Platform Module (TPM) 

 

We are only concerned with the first goal, as boot process integrity is beyond our scope.  BitLocker 

encrypts the specified volume sector-by-sector using AES in CBC mode with a diffuser called Elephant 

[Ferguson 2006].  The diffuser is stated as necessary due to a weakness in CBC mode, which allows an 

attacker to flip an ith bit in the next block’s plaintext by flipping the ith bit in the current block’s ciphertext 

at the risk of randomizing the current block’s plaintext (Table III).  This diffuser runs a series of XOR and 

rotations on words in a sector to cause one flipped bit to cause many more random bit flips in the same 

sector.  Figure 9 demonstrates Bitlocker encryption of one block, where the drive sector key is the IV and 

the block size can be any power of two within the range of 512-8192 bytes. 
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Figure 9: BitLocker encryption of a block. 

 

A BitLocker encryption key can be retrieved either automatically from the TPM chip without the user 

entering a PIN or from a USB device.  If the key is retrieved from the TPM chip, the device will boot up 

into the operating system. 

Block-based encryption systems have many advantages.  Once they are set up, they are transparent to 

the user (except when the user must enter the passphrase) and to the file system.  Swap and temporary files 

are automatically encrypted if the entire block device or volume is encrypted, which is a large improvement 

in confidentiality over other methods. 

Block-based encryption systems can employ confidential encryption algorithms and modes of 

encryption.  Encryption must be performed over the entire disk on all types of data, and keys, encryption 

algorithms, and mode of operation generally cannot be changed.  This characteristic makes it difficult to 

control the extra encryption granularity (e.g., everything must be encrypted), which may be a challenging 

obstacle for certain security policies.  Performance is rated similarly to disk-based file systems, in that 

encryption and decryption operations take place in kernel-space and take advantage of lower-level disk 

buffering. 

 

3.2 Hardware-based Confidential Storage 

Hardware-based confidential storage mechanisms differ from software ones in that the cryptographic 

functionality is either hard-coded into the hardware or into an external specialty device.  This method is 

more rigid in that a user cannot change authentication mechanisms (such as an encryption key or smart 

card) or add extra functionality to the storage mechanism, yet it is often much faster than any software-

based solution. 

Some present-day examples of hardware-based secure storage include secure flash drives, extended 

cryptographic instruction sets used on specialty CPUs, and hard disk enclosures, as well as PCI/PCMCIA 



 

extension cards that act as cryptographic interceptors between the hard disk and the operating system.  We 

discuss these mechanisms, as well as their strengths and limitations, in the following sections. 

 

3.2.1 Secure Flash Drives. The secure flash drive is a relatively new phenomenon on the market today, 

apparently in response to data and identity theft.  Some secure flash drives provide only software 

encryption using block-based encryption methods as mentioned.  Other flash drives protect data through 

cryptographic mechanisms provided on the flash drive itself.  This means that encryption and decryption 

are transparent to the host operating system, yet a mechanism must be provided (usually via operating 

system driver or application) to allow the user to input an encryption key (or a password that unlocks the 

encryption key or keys).   Two example products are Ironkey and the Kingston 256-MB Data Traveler 

Secure. 

Ironkey [2007] uses hardware-based AES encryption in CBC mode with 128-bit randomly generated 

keys.  These keys are generated inside the flash drive in a CryptoChip and are unlocked by a user password.  

Ten wrong attempts will trigger a “self-destruct” of the encryption keys.  Password entering (or 

“unlocking”) software is not installed on the host computer, yet it must be executed on the flash drive using 

the host operating system.  Currently, this limits Ironkey’s usage to Windows-based operating systems.  

The Kingston Data Traveler Secure [Kingston Technology 2008] is similar to Ironkey, except that it uses 

256-bit keys with AES encryption. 

Hardware-based encryption flash drives can employ good encryption techniques and directory structure 

is not revealed.  Confidential policy changing is not supported, as keys, encryption algorithms, and mode of 

operation cannot be changed.  In other words, the hardware cannot be reconfigured to meet changes in 

confidential policy.  Usability is good in that most of the password-entering software seems easy to use and 

requires the user to enter a password once per session.  In terms of overhead, all encryption operations are 

performed on the flash drives themselves and do not consume CPU cycles and memory on the host 

machine.  Therefore, the performance depends on the speeds of the on-flash cryptographic processing, flash 

data access times, and the interface used to access secure flash drives.  

 

3.2.2 Enclosures and Extension Cards. Hard disk enclosures and extension cards (either PCI or PCMCIA) 

have been used for several years as a fast, transparent encryption mechanism for sensitive data.  Examples 

include SecureDisk Hardware [SecureDisk 2008] and RocSecure Hard Drives [RocSecure 2008].  These 

solutions intercept and encrypt/decrypt data going to and from the hard drive real-time and use a 

specialized USB thumb drive as the encryption key. 

Enclosures and extension cards can employ good encryption techniques and do not divulge any 

information about files or the structure of the file system on disk.  Similarly to secure flash drives, policy 

regarding confidentiality changing is not supported since keys, encryption algorithms, and mode of 



 

operation cannot be changed.  Secure storage is not performed on a per-file level, so the entire hard disk 

must be encrypted.  This characteristic may not be flexible in regards to security policy.  A USB thumb 

drive acting as a key is simple to use.  Similar to secure flash drives, enclosures and extension cards do not 

consume host CPU cycles and memory, as encryption is done in the enclosure or on the extension card.   

 

3.2.3 Encrypted Hard Drives. Seagate [2006] is introducing “DriveTrust Technology” into their 

Momentus 5400 FDE series notebook hard drives, which implement full disk encryption.  This technology 

is implemented in the hard drive firmware and provides encryption, decryption, hashing (for passwords), 

digital signature, and random-number generation functions.  Extra-sensitive data, such as keys, can be 

stored in separate, secure partitions on the hard disk.  Any time a user application attempts to access 

information on a secure partition, it must present its credentials to the “administrator function” on the hard 

drive, which “authenticates the application, activates the appropriate secure partition, and allows the 

application to interact with the secure partition through the trusted send/receive command set [Seagate 

2006].”  The current hard disk supports the AES encryption algorithm. 

Once again, confidentiality is good if encryption keys are properly encrypted and stored in a secure 

manner, and the encryption algorithm, mode of operation, and key size are strong.  Flexibility of policy 

settings is coarse-grained, as entire partitions must be encrypted, and specifications such as encryption 

algorithm, mode of operation, and key size cannot be changed.  Keys also cannot be easily revoked.  The 

user model is simple, in the sense that cryptographic functions occur transparently, and the user must enter 

a password/passphrase when mounting the hard drive.  All encryption and decryption operations happen in 

the hard disk firmware with a claim of little to no performance penalty. 

  

4. CONFIDENTIAL DATA ERASURE 
When the time comes to remove confidential data, we must be sure that once deleted, the data can no 

longer be restored.  A full secure data lifecycle implies that data is not only stored securely, but deleted in a 

secure manner as well.  However, typical file deletion (encrypted or not) only removes a file name from its 

directory or folder, while a file’s content is still stored on the physical media until the data blocks are 

overwritten.  Unfortunately, average users believe that a file’s content is erased with its name [Rosenbaum 

2000].   

Many forensic techniques are available to the determined (and well-funded) attacker to recover the data.  

CMRR scanning microscopes [Hughes 2004] can recover data on a piece of a destroyed disk if any 

remaining pieces are larger than a single 512-byte record block in size, which is about 1/125” on today’s 

drives.  Magnetic force microscopy and magnetic force scanning tunneling microscopy [Gomez et al. 1992] 

analyze the polarity of the magnetic domains of the electronic storage medium and can recover data in 

minutes.  For example, when a zero overwrites a one, the actual value will become .95 and when a one 



 

overwrites a one it will be 1.05.  Another approach is to use a spin-stand to collect several concentric and 

radial magnetic surface images, which can be processed to form a single surface image [Mayergoyz et al. 

2000].  A less well-funded attacker can resort to many drive-independent data recovery techniques [Sobey 

et al. 2006], which may be used on most hard drives independently of their make.  The existence of these 

recovery techniques makes it mandatory that sensitive data be securely deleted from its storage media. 

Another issue is that true erasure may incur high overhead; therefore, security policy should have the 

flexibility to allow less-sensitive data to use conventional deletion techniques.  For example, a user might 

want to securely delete tax information from his or her computer’s hard drive, yet not mind if other files 

such as cookie recipes could be recovered.   

Confidential data deletion can be accomplished in three ways: physical destruction of the storage 

medium, overwriting all of the sensitive data, and secure overwriting the key of encrypted sensitive data.  

Each method has its relative strengths, and will be addressed in the following subsections. 

 

4.1 Physical Destruction 
One way of deleting sensitive data is through physical destruction.  For example, The Department of 

Defense government document DoD 522.22M [1995] states that classified material may be destroyed by 

numerous methods including smelting, shredding, sanding, pulverization, or acid bath.  Needless to say, 

these methods will leave the storage medium unusable.  The following definitions are supplied by P. 

Bennison and P. Lasher for destruction of hard drives [Bennison and Lasher 2004]:  

• With smelting, the hard drive is melted down into liquid metal, effectively destroying any data 

contained therein. 

• Shredding grinds the hard drive down into small pieces of scrap metal that cannot be reconstructed. 

• The sanding process grinds the hard drive platter down with an emery wheel or disk sander until the 

recordable surface is removed completely. 

• Pulverization is the act of pounding or crushing a hard drive into smaller pieces through a mechanical 

process. 

• An acid bath can be used for destruction of data on hard drive platters. A 58% concentration of 

hydriodic acid will remove the recordable surface of the platter. 

 

Magnetic degaussing is another option that erases data by exposing a hard drive platter to an inverted 

magnetic field, which leaves data unrecoverable by software or laboratory attempts [OSS-Spectrum Project 

2008].    This method also renders the storage media unusable. 

Physical destruction methods provide great confidentiality (the physical media is destroyed).  On the 

other hand, the granularity of data destruction is the entire drive.  For example, we cannot securely delete 

only one file using these methods.  Therefore, this method does not support flexible security policies.  



 

Many of the discussed physical destruction methods require specialized equipment (which may not be easy 

to obtain) and potential physical removal of the storage media (which may not be easy to perform), so 

physical destruction may not be straightforward to perform.   Conversely, since physical destruction can 

destroy large amounts of data in a relatively short amount of time, the performance in this sense is quite 

good (not including the time to acquire equipment for physical destruction).  

 

4.2 Data Overwriting 
Another way to remove confidential data is to overwrite the data.  Several standards exist for overwriting 

data on electronic media.  NIST recommends that magnetic media be degaussed or overwritten at least 

three times [Grance et al. 2003].   The Department of Defense document DoD 522.22M [1995] suggests an 

overwrite with a character, its compliment, then a random character, as well as other software-based, 

overwrite methods that refer to non-volatile electronic storage as listed below in Table IV.  

  

Table IV.  Software-based Methods of Erasing Data on Non-volatile Storage, Defined in the National 

Industrial Security Program Operating Manual 

ID Erasure method 
C Overwrite all addressable locations with a character. 

D Overwrite all addressable locations with a character, its complement, then a random character and verify. 

E Overwrite all addressable locations with a character, its complement, then a random character. 

H Overwrite all locations with a random pattern, with binary zeros, and then with binary ones. 

 

Peter Gutmann [1996] developed a 35-pass data overwriting scheme to work on older disks that use 

error-correcting-encoding patterns referred to as run-length-limited encodings.  The basic idea is to flip 

each magnetic domain on the disk back and forth as much as possible without writing the same pattern 

twice in a row and to saturate the disk surface to the greatest depth possible.  Peter Gutmann’s 35-pass 

overwrite technique is demonstrated in Table V. 

Table V. Peter Gutmann's 35-pass Overwrite Technique [1996] 

Pass 

number 

Data written Hex code 

1 Random Random 

2 Random Random 

3 Random Random 

4 Random Random 

5 01010101 01010101 01010101 0x55 0x55 0x55 

6 10101010 10101010 10101010 0xAA 0xAA 0xAA 

7 10010010 01001001 00100100 0x92 0x49 0x24 

8 01001001 00100100 10010010 0x49 0x24 0x92 

9 00100100 10010010 01001001 0x24 0x92 0x49 

10 00000000 00000000 00000000 0x00 0x00 0x00 

11 00010001 00010001 00010001 0x11 0x11 0x11 

12 00100010 00100010 00100010 0x22 0x22 0x22 



 

13 00110011 00110011 00110011 0x33 0x33 0x33 

14 01000100 01000100 01000100 0x44 0x44 0x44 

15 01010101 01010101 01010101 0x55 0x55 0x55 

16 01100110 01100110 01100110 0x66 0x66 0x66 

17 01110111 01110111 01110111 0x77 0x77 0x77 

18 10001000 10001000 10001000 0x88 0x88 0x88 

19 10011001 10011001 10011001 0x99 0x99 0x99 

20 10101010 10101010 10101010 0xAA 0xAA 0xAA 

21 10111011 10111011 10111011 0xBB 0xBB 0xBB 

22 11001100 11001100 11001100 0xCC 0xCC 0xCC 

23 11011101 11011101 11011101 0xDD 0xDD 0xDD 

24 11101110 11101110 11101110 0xEE 0xEE 0xEE 

25 11111111 11111111 11111111 0xFF 0xFF 0xFF 

26 10010010 01001001 00100100  0x92 0x49 0x24 

27 01001001 00100100 10010010  0x49 0x24 0x92 

28 00100100 10010010 01001001  0x24 0x92 0x49 

29 01101101 10110110 11011011 0x6D 0xB6 0xDB 

30 10110110 11011011 01101101  0xB6 0xDB 0x6D 

31 11011011 01101101 10110110  0xDB 0x6D 0xB6 

32 Random Random 

33 Random Random 

34 Random Random 

35 Random Random 

 

Modern hard drives use a different encoding scheme referred to as Partial-Response Maximum-

Likelihood (PRML) encoding [Bauer and Priyantha 2001].  Specific overwrite patterns have not yet been 

developed for the newer PRML encoding.   

The number of overwrite passes thought necessary to delete data securely is controversial.  Some 

believe various governmental agencies can recover data that has been overwritten any number of times, but 

most data recovery companies say they cannot recover data that has been overwritten even once.  It is 

probably safe to say, though, that the more times the data is overwritten, the more secure the deletion. 

Three main methods exist to delete data securely from electronic storage media.  These methods involve 

software applications, file systems, and hard disk mechanisms.  Their characteristics and relative strengths 

are discussed in the following subsections. 

 

4.2.1 Software Applications. Three main software methods exist for overwriting sensitive data: 

1. Overwrite the contents of a file. 

2. Delete the file normally, and then overwrite all free space in the partition. 

3. Erase the entire partition or disk. 

 

The first method is probably the quickest method if only a few small files are to be securely overwritten.  

Many utilities, both free and commercial, are available to perform this operation.  Two common UNIX 



 

utilities are shred, made by the Free Software Foundation, Inc., and wipe [Nester 2008].  The shred 

utility will overwrite a file’s content with random data for a configurable number of passes (default 25).  

However, shred will not work on file systems that do not overwrite data in place.  This can include log-

structured file systems [Rosenblum and Ousterhout 1991], journaling file systems (such as JFS, reiserFS, 

ext3), RAID-based file systems [Hartman and Ousterhout 1995], file systems that take snapshots [Peterson 

and Burns 2005], and compressed file systems [Woodhouse 2001; Dumesnil 2008].  The shred utility will 

not overwrite a file’s metadata. 

In contrast, the wipe utility will write over file data using the 35-bit patterns recommended by Peter 

Gutmann [1996].  It will also attempt to remove filenames by renaming them, although this does not 

guarantee that the old filename (or metadata) will be overwritten.  The wipe utility has file system 

limitations similar to those of shred. 

Overwriting all the free space in the partition is more of an afterthought method and might be employed 

after files have been deleted the normal way.  One example is scrub, a Unix open-source utility [Garlick 

2008], which erases free space in a partition by creating a file that extends to all the free space.  A user 

needs to remember to remove the file after the application is done.  The scrub utility implements user-

selectable pattern algorithms compliant with the U.S. Department of Defense document 522.22M [1995].   

Erasing the entire partition or disk will securely delete all confidential information on the partition or 

disk such as data, metadata, and directory structures.  One such software utility is Darik’s Boot and Nuke, 

or DBAN [2008], which is a self-contained boot floppy that wipes a hard drive by filling it with random 

data.  Depending on the size of the drive, the erasure process can take a long time. 

Neither the software file-erasure and free-space-erasure methods will write over previously deleted 

metadata.  Therefore, these methods can still leak confidential information.  On the other hand, partition 

overwriting software will erase all data and metadata, as well as the structure of the file system. 

Flexibility of confidentiality policy settings varies among these methods due to different granularities of 

deletion.  For example, it is possible to erase only sensitive files with software file erasure, while partition 

overwriting securely removes all files and metadata, regardless of their confidentiality requirements.    

All three methods are relatively easy to use.  The user needs only input a command in order for the 

secure erasure to take place.  However, the user still needs to initiate secure erasure explicitly.  

The level of performance can vary with software file erasure since the user has to wait for only chosen 

files (hopefully small) to be securely overwritten.  The other two methods may incur a considerable wait 

time, depending on the size of the free space and storage partition. 

 

4.2.2 File Systems. Two examples of data overwriting file systems are FoSgen [Joukov et al. 2006] and 

Purgefs [Joukov and Zadok 2005], which are stackable file systems built in FiST [Zadok and Nieh 2000].  

Purgefs can overwrite file data and metadata when deleting or truncating a file.  Alternatively, to increase 



 

efficiency, the purge delete option can be chosen using a special file attribute, for which only files with 

such an attribute will be purge deleted.  Purgefs will delete data one or more times and supports the NIST 

standards and all NISPOM overwrite patterns (Table IV). 

FoSgen consists of two components: a file system extension and the user mode shred tool (Section 

4.2.1).  FoSgen intercepts files that require overwriting and moves them to a special directory.  The shred 

tool, invoked either manually or periodically, eventually writes over the data in the special directory. 

The authors of FoSgen have also created patches to add secure deletion functionality to the ext3 file 

system.  The first patch adds one-pass secure deletion functionality, and the second patch supports multiple 

overwrites and securely deletes a file’s metadata.  Both implementations work in all three of ext3’s 

journaling modes and erase either a specially marked file’s data or all files.  

Overwriting file systems can confidentially erase files and metadata using a variety of methods and 

passes.  Users can specify the files and the number of passes and writing patterns for security policies.  

These file systems are easy to use, because a user only needs to mount the file system with specific options.  

Unfortunately, depending on the file size, overwriting files may incur a heavy performance penalty. 

 

4.2.3 Semantically-aware Hard Disks. A semantically-smart disk system (SDS) [Sivathanu et al. 2003] 

tries to understand how the file system uses the disk beyond the information made available by the interface 

between the two components.  In other words, an SDS can have access to certain knowledge of the file 

system’s on-disk data structures and policies and can make intelligent decisions based on this knowledge, 

such as pre-fetching blocks on a per-file basis.  The authors describe a “secure-deleting” SDS that 

guarantees that deleted file data will be rendered unrecoverable by recognizing deleted blocks through 

“operation inferencing” and overwriting those blocks with different data patterns a specified number of 

times.  Since it is possible that the file system might immediately reallocate those deleted blocks to another 

file, the SDS must track those deleted blocks and queue up pending write requests to those blocks until the 

secure overwrites have finished.  The authors also make a note that the ext2 file system must be mounted 

synchronously to operate correctly. 

Using implicit detection techniques, which enable the storage system to infer block liveness information 

without modification of the file system, Sivathanu et al. [2004] make a next-generation SDS prototype 

called FADED (A File-Aware Data-Erasing Disk) that operates under asynchronous file systems.  

Sometimes, though, this method of erasure can be incomplete.  In [Arpaci-Dusseau 2006], the authors 

explain that due to the reordering and reuse inherent in the ext2 file system, the SDS cannot definitively 

know whether the current contents of a reallocated block are those of the new or old file.  Here the authors 

use a conservative overwrite method to deal with this problem, which erases past layers of data on the 

block but leaves the current contents on the block.  Because of this, the user can never be positive that all 

deleted data has been confidentially erased.   



 

SDS overwrites deleted files regardless of their need to be deleted securely, which could result in 

unnecessary performance overhead and limited flexibility with security policies.  On the other hand, SDS 

operates transparently to the user (and operating system), which make them easy to use. 

A type-safe disk [Sivathanu et al. 2006] is similar to a SDS system in that it too can perform 

semantically-aware optimizations by understanding the pointer relationships between disk blocks that are 

imposed by high layers, such as the file system.  One difference between a type-safe disks and semantically 

smart disk systems is that, when using a type-safe disk, the file system must be modified in multiple ways, 

including the use of the expanded type-safe disk API.  The authors also describe a secure deletion type-safe 

disk, which tracks when a block is garbage-collected and overwrites it one or more times.  It ensures that 

the block is not reallocated before it is overwritten by postponing associated updates to the free block 

bitmap until the overwriting is complete. 

Since the file system is modified in [Sivathanu et al. 2006], the authors guarantee that all previously 

deleted data is overwritten.  This characteristic also requires the use of a modified file system, which may 

not be conducive to use of policies in many environments.  A type-safe disk’s overwriting granularity 

characteristics also result in the same unnecessary performance overhead and limited flexibility with 

security policies as SDS due to the overwriting of all data (sensitive or not).  Like SDS systems, though, 

type-safe disks are easy to use in that they operate in a completely transparent fashion to the user. 

 

4.3 Encryption with Key Erasure 
The third way to delete data securely is to encrypt the data and then securely erase the key.  The encryption 

key is often securely deleted using overwriting methods.  This combination allows for much faster secure 

deletion in that only a small key is overwritten instead of the entire file (which could be very large).  The 

downside is the extra encryption/decryption overhead of regular file operations until the file is deleted.  Not 

many specialized solutions exist.  One solution [Peterson et al. 2005] is built on top of the versioning file 

system ext3cow [Peterson and Burns 2005].  No commonly used solution that we are aware of exists for 

general-use file systems. 

The policy and performance characteristics of any encryption method with the addition of key erasure 

are inherited from the base encryption method.  The confidentiality characteristic is also inherited from the 

base encryption method with one caveat: if the encryption key is protected by a password and the password 

is merely forgotten, the strength of the secure deletion is directly correlated to the strength of the password.  

It is best to delete the encryption key(s) securely through physical destruction or overwriting methods.  The 

ease-of-use characteristic is degraded in that the user must destroy the key explicitly. 

 

5. OTHER CHALLENGES 
This section discusses other challenges for implementing confidential storage and deletion. 



 

 

5.1 Hard-Disk Issues 
Two hard-disk-specific issues we must consider in relation to confidential data deletion include bad sector 

forwarding and storage-persistent caches. 

Bad sectors are disk locations that cannot be accessed consistently, developed during the normal use of 

a hard disk.  Bad sector forwarding is performed transparently at the hardware level, in which the firmware 

identifies and remaps a bad sector to a reserved area hidden from the user through the hard-disk defects 

table (G-List) [Shirobokov 2006].  In other words, the defective sector is replaced with a sector on a 

different part of the hard disk.  The defective sector cannot be accessed again by the hard disk itself.  Figure 

10 demonstrates bad sector forwarding.  Data sector 2 has gone bad and has been detected by the hard disk 

firmware.  The hard disk firmware remaps sector 2 to the reserved area sector 0.  Now whenever a read or 

write operation is performed on sector 2, the operation will be mapped to reserved area sector 0. 

 
Figure 10: Demonstration of bad sector forwarding. 

The problem with bad sector forwarding is that the sector might still be partially readable with only a 

small number of error bytes.  This presents a problem if a bad sector contains a key or IV that could still be 

read using other forensic methods.  SDS systems [Sivathanu et al. 2003; Sivathanu et al. 2004; Arpaci-

Dusseau et. al 2006] and type-safe disks [Sivathanu et al. 2006] can address this problem (Section 4.2.3).  

Unfortunately the ATA specification does not have a command to turn off bad sector forwarding, so 

vendor-specific ATA commands must be used [Shirobokov 2006]. 

In addition to bad sector forwarding, persistent caches have been placed in disk-storage systems to 

improve performance [Joukov et al. 2006].  These caches may not only defer writing to the actual physical 

media, but may also aggregate multiple writes to the same location on the disk as a single write.  In this 

case, the write cache of the disk must be disabled. 

 

5.2 Data Lifetime Problem 
The data lifetime problem addresses the phenomenon of various copies of sensitive data, such as passwords 

or encryption keys, being scattered all over a computer system during normal system operation [Garfinkel 

et al. 2004, Chow et al. 2005, Chow et al. 2004].  These locations include numerous buffers (such as string 

buffers, network buffers, or operating system input queues), core dumps of memory, virtual memory, swap, 

hibernation values, and unintended leakage through application logs or features.  A strategy for secure 



 

deallocation of memory is presented in [Chow et al. 2005].  Garfinkel et al. [2004] and Chow et al. [2005] 

argue that data lifetime is a system-wide issue that must be addressed at every level of the software stack.   

The attack model in this survey assumes that any attacks to recover sensitive data are staged after the 

computer has been powered off, so volatile leakage of data such as buffers, queues, and memory are 

beyond the scope of this survey.  Hibernation files and swap, on the other hand, are generally stored on the 

hard disk and may not go away once the system is powered down.  Some block-based encryption methods 

from Section 3.1.5 may be used to encrypt swap partitions and hibernation files.  Hardware encryption 

enclosures and extensions from Section 3.2.2 and encrypted hard drives from Section 3.2.3 can protect both 

swap and hibernation as the data is decrypted upon load transparently from the operating system. 

 

6. OVERALL TRENDS 
Quite a few general trends emerge when comparing secure storage techniques.  These techniques range 

from solutions closest to the user (application programs) to solutions farthest from the user (hardware-

based encryption).  We can observe that the level of confidentiality becomes higher as we move 

responsibility away from the user, which leads to a lower possibility of human mistakes.  On the other 

hand, the flexibility of policy decreases as the solutions move away from the user.  In the extreme, all 

policy decisions are hard-coded in hardware with no room for user configurations.  Ease-of-use seems to be 

correlated to the degree of user involvement and therefore, indirectly, the confidence rating.  Performance 

gains steadily as the method is moved toward the hardware, and then stabilizes when it is in hardware.  

Table VI discusses observations of strengths and weaknesses of the confidential storage approaches 

discussed in this survey.  Many of these observations are high-level generalizations, not absolutes.  The 

purpose of the table is to help the reader become aware of the issues involved when designing solutions at 

different levels of the storage stack.   

Table VI. Pros and Cons of Confidential Storage Approaches 

Layer Approach Pros Cons 

A
p

p
li

ca
ti

o
n
 

Generalized 

encryption 

programs 

• Easy to deploy 

• Offer a wide array of encryption 

algorithms and modes of operation 

• Can be used on general files 

• Must be careful about temporary files 

• May be difficult to use 

• Slower than lower-level approaches 

Application-

specific 

encryption 

• Easy to deploy 

• Easy to use through the application 

• Must be careful about temporary files 

• Offer few ways to perform encryption 

• Limited compatibility with other 

applications 

• Often limited to certain file types 

• Slower than lower-level approaches 

V
F

S
/F

il
e 

sy
st

em
 User-space file 

systems 
• Generally support multiple 

encryption algorithms 

• Easy to use but not completely 

transparent 

• Reveal directory structure and file 

metadata information 

• No easy key revocation 

• No easy way to change encryption or 



 

• Users may separate encrypted files 

and non-encrypted files via 

directories 

mode of operation once started 

• Higher performance overhead due to 

kernel boundary crossings 

Network-based 

file systems 
• Generally support multiple 

encryption algorithms 

• Operate on top of existing file system 

• Easily portable 

• Easy to use but not completely 

transparent 

• Users may separate encrypted files 

and non-encrypted files via mount 

points 

• Reveal directory structure and file 

metadata information 

• Subject to vulnerabilities of 

underlying network protocol 

• No easy key revocation 

• No easy way to change encryption or 

mode of operation once started 

• Higher performance overhead due to 

kernel boundary crossings 

Stackable file 

systems 
• Generally support multiple 

encryption algorithms 

• Operate on top of existing file 

system. 

• Easy to use but not completely 

transparent 

• Users may separate encrypted files 

and non-encrypted files via mount 

points 

• Reveal directory structure and file 

metadata information 

• No easy key revocation 

• No easy way to change encryption or 

mode of operation once started 

• Slight performance overhead due to 

layer of indirection 

Disk-based file 

systems 
• Generally support multiple 

encryption algorithms 

• Directory structure and metadata do 

not have to be revealed 

• Easy to use but not completely 

transparent 

• Users may mix encrypted and non-

encrypted files in the same directory 

• Good performance 

• No easy key revocation 

• No easy way to change encryption or 

mode of operation once started 

B
lo

ck
 

Block-based 

encryption 

systems 

• Generally support multiple 

encryption algorithms 

• Directory structure and metadata are 

not revealed. 

• Easy to use and transparent to the 

user 

• Good performance 

• No easy key revocation 

• No easy way to change encryption or 

mode of operation once started 

• All files on the volume must be 

encrypted 

S
to

ra
g

e 
m

ed
ia

 

Secure flash 

drives,  

enclosures and 

extension cards, 

and 

encrypted hard 

drives 

• Generally incorporate a strong 

confidential encryption algorithm 

• Directory structure and metadata are 

not revealed 

• Easy to use and transparent to the 

user 

• Performance not tied to host system 

• No way to change encryption key 

• No way to change encryption or 

mode of operation 

• Generally all files on the volume 

must be encrypted 

 

Confidential deletion techniques contain many tradeoffs.  For example, data overwriting techniques 

have the potential to take a long time.  Data encryption with key erasure solves this problem, but introduces 



 

cryptography overhead.  Solutions that are farther away from user space and require little involvement from 

users once again tend to be easier to use if the necessary equipment is readily available. 

Table VII discusses observations of strengths and weaknesses of the confidential erasure approaches 

discussed in this survey.  Again, these observations are high-level generalizations shown to help the reader 

become aware of the issues involved when designing solutions at different levels of the storage stack.   

 

Table VII. Pros and Cons of Confidential Erasure Approaches 

 

Clearly, a combined solution that can store and remove confidential information should have the 

following ideal characteristics: 

• High confidential storage and deletion granularity 

• Acceptable performance overhead in terms of storage and deletion 

Layer Approach Pros Cons 

A
p

p
li

ca
ti

o
n
 

Software file 

erasure 
• Overwrite data using standards-

compliant patterns 

• High level of deletion granularity 

• Easy to use, but user must initiate 

process 

• Will not overwrite previously deleted 

metadata 

• Erasure wait time depends on size of 

file to erase and erasure pattern 

 

Software free-

space erasure 
• Overwrites data using standards-

compliant patterns 

• May erase files after they have been 

normally deleted 

• Easy to use, but user must initiate 

process 

• Will not overwrite previously deleted 

metadata 

• Erasure wait time depends on size of 

remaining free space on partition and 

erasure pattern 

Partition-

overwriting 

software 

• Will overwrite previously deleted 

metadata 

• Overwrites data using standards-

compliant patterns 

• Easy to use, but user must initiate 

process 

• Low level of deletion granularity 

• Erasure wait time depends on size of 

the partition and erasure pattern 

V
F

S
/F

il
e 

sy
st

em
 

File systems • Overwrites data and metadata using 

standards-compliant patterns 

• Easy to use, but not completely 

transparent 

 

• Erasure wait time depends on size of 

file to erase and erasure pattern 

 

S
to

ra
g

e 
m

ed
ia

 Semantically-

aware hard disks 
• Completely transparent 

• Can erase sectors that can only be 

accessed by the disk 

• Confidentiality of erasure depends on 

modification of the file system 

• Erasure wait time depends on size of 

the partition and erasure pattern 

• Low erasure granularity 

 

A
n

y
 

la
y

er
 Encryption with 

key erasure 
• Fast confidential erasure of files • Extra encryption/decryption overhead 

of regular file operations 

• No generalized solutions exist 



 

• Enhanced security policy support to enable key revocation, encryption algorithm/mode of 

operation change and mitigation, and erasure technique 

• Confidential storage and erasure of file and directory metadata 

• Easy to use with minimal user awareness 

 

While an overarching solution is currently elusive, hopefully, this survey sheds lights on the ground 

work and considerations to handle confidential data storage and deletion.  

 

7. CONCLUSION 
This survey took a look at the methods, advantages, and limitations of confidential storage and deletion 

methods for electronic media in a non-distributed, single-user environment, with a dead forensic attack 

model.  We compared confidential data handling methods using characteristics associated with 

confidentiality, policy, ease-of-use, and performance.  Additionally, we discussed challenges such as hard-

disk issues and the data lifetime problem, as well as the overall trends of various approaches.  By compiling 

experiences and constraints of various confidential storage and deletion techniques, we hope that 

knowledge from research areas that have been evolving independently can cross disseminate, to form 

solutions that are tolerant to a broader range of constraints.   
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