skip to main content
research-article

A Code Based on the Two-Stage Runge-Kutta Gauss Formula for Second-Order Initial Value Problems

Published:01 September 2010Publication History
Skip Abstract Section

Abstract

A code based on the two-stage Gauss formula (order four) for second-order initial value problems of a special type is developed. This code can be used to obtain a low- to medium-precision integration for a wide range of problems in the class of oscillatory type, Hamiltonian problems, and time-dependent partial differential equations discretized in space by finite differences or finite elements. The iteration process used in solving for the stage values of the Gauss formula, the selection of the initial step size, and the choice of an appropriate local error estimator for determining the step size change according to a particular tolerance specified by the user are studied. Moreover, a global error estimate and a dense output at equidistant points in the integration interval are supplied with the code. Numerical experiments and some comparisons with certain standard codes on relevant test problems are also given.

References

  1. }}Addison, C. A. 1984. A comparison of several formulas on lightly damped, oscillatory problems. SIAM J. Sci. Statist. Comput. 5, 4, 920--936.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. }}Bickart, T. A. 1977. An efficient solution process for implicit Runge-Kutta methods. SIAM J. Numer. Anal. 14, 1022--1027.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. }}Brankin, R., Gladwell, I., Dormand, J., Prince, P., and Seward, W. 1989. Algorithm 670. A Runge-Kutta-Nyström. ACM Trans. Math. Softw. 15, 31--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. }}Brown, P., Byrne, G., and Hindmarsh, A. 1989. Vode: A variable-coefficient ode solver. SIAM J. Sci. Statist. Comput. 10, 1038--1051. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. }}Calvo, M., González-Pinto, S., and Montijano, J. 2008. Global error estimation based on the tolerance proportionality for some adaptive Runge-Kutta codes. J. Comput. Appl. Math. 218, 329--341. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. }}Cash, J. 2005. A variable step Runge-Kutta Nyström integrator for reversible systems of second order initial value problems. Siam J. Sci. Comp. 26, 3, 963--978. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. }}Cooper, G. and Butcher, J. An iteration scheme for implicit Runge-Kutta methods. IMA J. Numer. Anal. 3.Google ScholarGoogle Scholar
  8. }}Cooper, G. and Vignesvaran, R. 1990. A scheme for the implementation of implicit Runge-Kutta methods. Comput. 45, 321--332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. }}Enright, W. 1978. Improving the efficiency of matrix operations in the numerical solution of stiff ordinary differential equations. ACM Trans. Math. Softw. 4, 127--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. }}Enright, W. 1980. On the efficient time integration of systems of second order equations arising on structural dynamics. Intern. J. Num. Meth. Engin. 16, 13--18.Google ScholarGoogle ScholarCross RefCross Ref
  11. }}Fehlberg, E., Filippi, S., and Graf, J. 1986. Ein Runge-Kutta-Nyström-Formelpaar der Ordnung 10(11) für Differentialgleichur-gen der Form y. ZAMM 66, 7, 265--270.Google ScholarGoogle ScholarCross RefCross Ref
  12. }}Fermi, E., Pasta, J., and Ulam, S. 1974. Los alamos report no. la-1940 (1965). Lect. Appli. Math. 15, 143.Google ScholarGoogle Scholar
  13. }}Filippi, S. and Graf, J. 1986. New Runge-Kutta-Nyström formula-pairs of order 8(7), 9(8), 10(9), and 11(10) for differential equations of the form y = f(x,y). J. Comput. Appl. Math. 14, 361--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. }}Franco, J., Gomez, J. M., and Randez, L. 1997. Sdirk methods for odes with oscillating solutions. J. Comput. Appl. Math. 81, 197--209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. }}Gladwell, I. and Thomas, R. 1990. Efficiency of methods for second--order problems. IMA J. Numer. Anal. 10, 181--207.Google ScholarGoogle ScholarCross RefCross Ref
  16. }}González-Pinto, S., Montijano, J., and Rández, L. 1995. Iterative schemes for three stage implicit Runge-Kutta methods. Appl. Numer. Math. 17, 363--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. }}Gonzalez-Pinto, S., Pérez-Rodrí guez, S., and Rojas-Bello, R. 2009. Gauss2 a fortran 90 code for second order initial value problems. http://pcmap.unizar.es/numerico/software.php.Google ScholarGoogle Scholar
  18. }}González-Pinto, S., Peréz-Rodrí guez, S., and Rojas-Bello, R. 2006. Efficient iteration for gauss methods on second order problems. J. Comput. Appl. Math. 189, 80--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. }}Hairer, E., Lubich, C., and Wanner, G. 2002. Geometric Numerical Integration. Springer, Berlin.Google ScholarGoogle Scholar
  20. }}Hairer, E., Nørsett, S., and Wanner, G. 1993. Solving Ordinary Differential Equations I, Nonstiff Problems. Springer, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. }}Hairer, E. and Wanner, G. 1996. Solving Ordinary Differential Equations II. Springer, Berlin.Google ScholarGoogle Scholar
  22. }}Lambert, J. and Watson, I. Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189--202.Google ScholarGoogle Scholar
  23. }}Sanz-Serna, J. and Calvo, M. Numerical Hamiltonian Problems. Chapman & Hall, London.Google ScholarGoogle Scholar
  24. }}Shampine, L. and Baca, L. 1984. Error estimators for stiff differential equations. J. Comput. Appl. Math. 11, 197--207.Google ScholarGoogle ScholarCross RefCross Ref
  25. }}van der Houwen, P. and Messina, E. 1997. Parallel linear system solvers for Runge-Kutta-Nyström. J. Comput. Appl. Math. 82, 407--422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. }}van der Houwen, P. and Sommeijer, B. 1989. Diagonally implicit Runge-Kutta-Nyström. SIAM J. Numer. Anal. 26, 2, 414--429. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. }}Varah, J. 1979. On the efficient implementation of implicit Runge-Kutta methods. Math. Comput. 33, 557--561.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Code Based on the Two-Stage Runge-Kutta Gauss Formula for Second-Order Initial Value Problems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Mathematical Software
      ACM Transactions on Mathematical Software  Volume 37, Issue 3
      September 2010
      296 pages
      ISSN:0098-3500
      EISSN:1557-7295
      DOI:10.1145/1824801
      Issue’s Table of Contents

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 September 2010
      • Accepted: 1 November 2009
      • Revised: 1 October 2009
      • Received: 1 September 2005
      Published in toms Volume 37, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader