
Any Algorithm in the Complex Object Algebra with
Powerset

Needs Exponential Space to Compute Transitive
Closure

MS-CIS-94-04
LOGIC & COMPUTATION 76

Dan Suciu
Jan Paredaens

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

February 1994

Any Algorithm in the Complex Object Algebra with Powerset
Needs Exponential Space to Compute Transitive Closure

Dan Suciu*
Dept. of Comp. and Info. Science
University of Pennsylvania, USA

suciu@saul.cis.upenn.edu

Jan Paredaens
Dept. of Computer Science

University of Antwerp, Belgium
pareda@wins.uia.ac.be

December 1, 1993

Abstract

The Abiteboul and Beeri algebra for complex objects can express a query whose meaning is transitive
closure, but the algorithm naturally associated to this query needs exponential space. We show that any other
query in the algebra which expresses transitive closure needs exponential space. This proves that in general
the powerset is an intractable operator for implementing fixpoint queries.

1 Introduction

Abiteboul and Beeri in [I] have shown that powerset can express transitive closure (tc), in a language for complex
objects without fixpoints or any other form of iterations. But the obvious way of doing that is by a query whose
ilaturally associated algorithm requires exponential space (and time). We prove here that in order to express tc
with powerset, exponential space (and time) is indeed needed.

This result is of a different nature than classical inexpressibility results (like transitive closure is not expressible
in FO ([3]) or even is not expressible in FO+LFP, because it says that tra.nsitive closure, although expressible
in a particular language, is not expressible e f i c ien t l y in that language. This denotes a mismatch between the
complexity of the natural way of colllputing queries in that language, and the colnplexity of the best Turing
Machine for computing those queries. It is in the same spirit as Abiteboul and Vianu's result that etien cannot
be computed in polynomial space on a generic machine ([2]).

Technically, our result is slightly stronger, in that it proves that powerset cannot express efficiently deterininistic
transitive closure (see [8]), i.e. transitive closure of a graph whose nodes have outdegree 5 1. More precisely,
we prove that in order to compute the transitive closure of the relation r, = ((0, I) , (1 ,2) , . . . , (n - 1, n)) in a
certain language with powerset, exponential space is needed. In addition, in ally query over 7-, which does not
require exponential space, we can replace all occurreilces of powerset with some approximation expressible in that
language without powerset.

*The author was partially supported by grant NSF CCR-90-57570

A consequence of our results is that the powerset is not an efficient opera.tor for the i~nplemeiltatioil of fixpoint
queries in general. Clearly, adding while to the algebra, instead of powerset, gives us the same computational
power but it evidently only uses polynomial time (and space) for computing transitive closure.

We conjecture that any query expressible efficiently with powerset is expressible also without powerset. However,
this problem remains open.

In sections 2 and 3 we define the nested relational algebra with powerset (which has the same expressive power
as Abiteboul and Beeri1s algebra) and the complexity of its evaluation. We state our main results in section 4,
and prove them in section 5 . The proof follows from three facts: (1) the abstract expressions, defined in section
5.1 are closed under application of functions in the nested relational algebra (this is shown in subsection 5.2),
(2) the relation r , can be expressed as an abstract expression, but its transitive closure cannot (this is shown
in subsection 5.3), and finally (3) any function in the nested relational algebra with powerset applied to some
abstract expression either yields another abstract expression, or has expoilential complexity (this is shown in
subsection 5.4).

2 The Language

Abiteboul and Beeri, in [I], define the complex values algebra, as a functional language for con~plex objects, and
show that it has the same expressive power as the domain independeni calculus, an extension of first order logic
to complex objects. Powerset is explicitly included in the algebra, and the authors show how powerset can be
used to compute transitive closure. The nested relational algebra NRA which we consider here has the same
expressive power as the algebra without powerset in [I], while N R A (p o w e r s e t) has the same expressive power as
the algebra. NRA has essentially the same expressive power as Schek and Scholl's N F 2 relational algebra ([13]),
as Thomas and Fischer's algebra ([14]), and as Paredaens and Van Gucht's nested algebra ([I l l , [12]). In defining
NRA, we follow the formalism in [GI.

The nested relational algebra AfRA is a. typed language. Its types are build from the following base types:
B (the booleans), unit (the single-valued type, unit = {())), and N (the natural numbers), and are given then by
the grammar:

t ::= unit I 5 I N 1 t x t ({ t)

The values of the type s x t are pairs (x, y), with x E s and y E t , while the values of the type { t) are finite sets
of elements from t .

NRA is a variable-free language, and its expressions are functions f : s - t . It contains some primitive functions
(like union Us : { s) x { s) -+ { s) for all types s), as well as formation rules, like the rule saying that the co~npositioii
of two functions, g o f : r -+ t , is in the language, whenever both f : 1. - s and y : s - t are in the language.
Note that functions of the type unit -+ s correspond to values of type s. NRA is defined below:

f : r - + s g : r + t
!' : s 4 unit (f , g) : r i s x t 7 r ; l t : s x t -+ s n;lt : s x t -+ t

f : s - + t

map(f j : i s) + I t) 1 7 s : s - {s} pS : { { s)) -+ { s) ,3;'l : s x { t) - {s x t }

0' : unzt -* {s} us : { s) x { s) I { s } = : N x N - + B empty : { s) + B

f : s + B f 1 : s - t f 2 : s i t
true : unit -+ B false : unit -+ B if f then fi else fi : s - t

We briefly describe the meaning of these functions. id is the identity function, ! is the constant furictioii such
that ! (x) = (). (f, g) is the pair formation function such that (f , g) (x) = (f (x) , g (x)) . and ~2 are respectively
first and second projection. m a p (f) { x l , . . . , x,) is defined to be { f (x l) , . . . , f (x ,)) : it is called replace (p (f)) in
[I]. 1) is the singleton formation function such that ~ (x) = { x) . p i x l , . . . , x,) = X I U . . . u x , flattens a set of
sets: it is called set-collapse in [I] . Further, pz (z , { y l , . . ., yn)) is { (x , y l) , . . . , (2, y,)}, 0 is the empty set, U is
set union, = (2 , y) returns true iff x = y and false otherwise, empty(x) returns true iff x = 0, t rue , and false
are constants. Finally, i f f then fi else f2 is the function g such that, V x , if f (x) is true then g (x) = f l (x) and
otherwise g (x) = f 2 (x) .

This language has the expressive power of the algebra without powerset of [I]:

Proposition 2.1 The following operations are definable in H R A : the database projections, carteszan product,
equality at all types, set difference, set intersection, set membershrp, set inclusion, selection over any predicate
definable in NRA, nest, unnest. See [GI.

Now we consider a new primitive operation, the powerset:

powerset : { s } -+ { { s) }

and denote with N R A (p o w e r s e t) the language NRA extended with powerset. While all queries express-
ible in NRA are in PTIME, N R A (p o w e r s e t) can obviously express exponential queries. More interestingly,
N R A (p o w e r s e t) can express P T I M E queries, which are riot expressible in m A : Abiteboul and Beeri prove in
[I] that transitive closure can be expressed in N R A (p o w e r s e t) . In contrast, we know from Paredaens [12] and
Wong [15], that transitive closure is not expressible in N R A . But the obvious way of expressing transitive closure
in h l R A (p o w e r s e t) is through a.n e~ponent~ial space query. We prove in the following t,ha,t. exponential space is
indeed needed.

3 The Complexity of Evaluation in NRA(powerse t)

In order to define the complexity of an evaluation in H R A (p o w e r s e t) , we present an eager evaluation strategy
for this language, and a complexity lneasure on the complex object,^. Thus, our main result will depend (1) on
the particular evaluation strategy and (2) on the complexity measure. "Reasonable" complexity measures for
complex objects are polynomially related, so our result still holds for other reasonable coinplesity measures. In
contrast, it is not obvious whether it still holds for a lazy evaluatioi~ stra.tegy.

We define a denotation C for a complex object by the gra.mmar:

c ..- ..- x I false I true I () I (C, C) I {C, . . . , C)

where x E N. We consider only well-typed complex objects. No duplicates a,re allowed in the denotation of
complex objects of set type, i.e. in {C1, . . . , C,), Ci and Cj must denot,e dist,inct objects, when i # j . The size

of some complex object C is defined by: size(x) = size(fa1se) = size(true) = size(()) = 1, size((C1, C2)) =
1 + size(C1) + size(C2) and size({C1, . . . , C,)) = 1 + size(C1) + . . . + size(C,).

We consider to be equal those complex objects denoted by sets with different orders of their elements, e.g. {C1, C2)
and {Cz,C1). Note that this does not affect the definition of the size.

In defining the eager evaluation strategy of J\/RA(powerset) we adopt the natural semantics style, as found in
[lo]. Under this style, for some function f E NRA(powerset) and complex objects C, C', we write f (C) JJ. C' to
mean " f (C) evaluates to C'". The binary relation 4 is defined by the following set of rules:

where z = y. where x # y.
B()U{) ~ (~ ~ , C ' L) U C I U C ' L = (x, y) & true = (x, y) .lJ false

empty({)) U true e v t ~ ((C 1 , . . .)) U false true() 4 true false() JJ. false

f (C) U true f l (C) U C' f (C) .u false f2(C) U C'
if f then fl else f2(C) .lJ C' if f then f l else f2(C) U C'

where Ci, . . . , Ci, are t,he subsets of {Cl , . . . , C,)
powerset({Cl, . . . , C,)) {C:, . . . ,Can}

Thus, an evaluation f (C) 4) C' (which we sometiines abbreviate f (C) u), can be viewed a.s a tree, whose nodes
are labeled by the rules above, and whose root contains f (C) d,J C'. The hezght of the tree depends only on f , not
on C . But the width of this tree may depend on C : the branching factor at each node ma.y depend on the size
of the complex object(s) at that node (see the map rule).

The complexity of some evaluation f (C) J,l is defined to be the size of the largest colnplex object occurring in
the derivation tree of f (C) U. This complexit,y measure is robust: e.g. the total number of nodes of the evaluation
tree is polynomially bounded by this complexity, while the sum of the sizes of all conlplex objects in a tree is
polynomially related to it.

4 Main Results

def Let rn = ((0, I) , (1 ,2) , (2 , 3) , . . . , (n - 1, n.)), i.e. r, is a complex object of type {N x N) represe~lt~i~lg a particular
def

binary relation (a chain). Also, let q , - t c (r ,) be its transitive closure, q, = {(z, y) (0 < x < y 5 n) . Our
main result is:

Theorem 4.1 For any function f E NRA(powerset) of type f : {N x N} -+ {N x N) such that f (r ,) .U q , for
every n > 0, the complexity of f(r,) .l.l is n(2""), for some c > 0.

The proof is given in section 5. As a consequence, transitive closure is not expressible in an efficient way
in NRA(powerset). In fact, the theorem implies the stronger result that deternzai~istic transitive closure (i.e.
transitive closure of a graph whose nodes have outdegree 5 1, see [a]) is not. efficiently expressible.

We prove an additional interesting property. For any number m 2 0, define the mth approximatioil of powerset :
{s) --, {{s}) to be some N R A function powerset,, which returns all subsets of cardinality 5 m.. Formally,

def d ef
powerseto(x) = {@) and powerset,+l(x) = {{u) U s I u E x , s E powerset,(x)}. For some function
f E N'RA(powerset), define the mth approximation of f , f m , to be the result of replacing all occurrences of
powerset in f with powerset,.

Proposition 4.2 For any function f : {N x N) -+ s in NRA(powerset), either there exzsts some approximation
fm off such that f,(r,) = f(r,), Vn > 0, or the complexity of f(r,) JJ i s R(2',), for some c > 0.

The proof is given in section 5. We also conjecture that all efficient functions in niRA(po,ruersei) are alrea.dy in
N R A , but it is not 'clear whether the techniques used in proving theore~n 4.1 can be generalized.

Could separation results from complexity theory offer us a shorter proof of theorem 4.1 ? The question is motivated
by the observation that one can use such separation results to prove that transitive closure is not expressible in
N Z A , as follows. Recall that the class ACO is the class of functions f : (0, I)* + (0, I)* co~nputable by a.
"uniform" family of circuits made of NOT gates and unbounded fan-in AND and O R ga.tes, having polynomial
size and constant depth (see [4]): it is easy to see that ACo C NLOGSPACE, where NLOGSPACE is the
class of functions computable by a nondeterministic Turing Machine with O(1ogn) work space (see, e.g. [7]).
It is known that transitive closure is complete for NLOGSPACE, w.r.t. first order reductions ([8]), hence, if
transitive closure were expressible in N R A , then n/RA = NLOGSPACE. By generalizing Immerman's result
that F O ACO ([9], [4]), we can prove N R A C ACo. On the other hand, using some result by Furst, Saxe and
Sipser, and independent by Ajitai, one can show tha.t ACo # NLOGSPACE (see [4]); hence transitive closure
cannot be expressed in NRA.

Trying to reason along the same lines for the tractable fragment of hiRA(powerset), we consider the class TCo,
which is defined similarly t-o ACO, but by allowing the circuit,^ to conta.in an a,dditioiial type of gates, t,he th,reshold
gates: a threshold gate is labeled by some number k , and its output is 1 iff at least k of its inputs are 1 (see [4]).
The following hold: ACO C TCo 5 NLOGSPACE. We can prove:

Proposition 4.3 All functions in n/RA(powerset) h,nviizg polynomtally bo.tlnded co11.plex2ty are in TCO

But this does not suffice to prove t1ia.t transitive closure is not efficiently expressible in ,W'XA(powerset), because
it is still open whether TCo # NLOGSPACE. However, a proof of the fact that TCo # NLOGSPACE would
imply a weaker version of theorern 4.1, namely that transitive closure is not expressible in n/RA(powerset) with
polynomially bounded complexity.

5 Proof of the Main Theorem

Recall that r, = {(0,1) , (1,2) , . . . , (n - 1, n)}, for all n > 0. The idea, is t,o express, synt.actically, a.11 possible
complex objects which can occur in the evaluation tree of f (rn) , without using space exponentia.1 in n, for all
f E NR.d(powerset), and to observe that t c (r ,) is not among them. For t,his, we develop the 1a.nguage of abstmct

expressioi~s. Think of an abstract expression A of type s as denoting soille complex ol~ject of types s , for every
n > 0. Examples of abstract expressions a.re ((2, x , y) (x = 0, n; y = 0, n) and {(x, x + 1) when z # n I x = 0, n}.
The latter denotes r,, for each n > 0.

5.1 Abstract Expressions

def We consider an infinite set of var iables to be given, like x, y, a , P . . ., ranging over the set [n] = {O, 1 , 2 , . . . , n},
and define s imp le express ions e to be (1) a positive number c or (2) n - c where c is a positive number or
(3) 1 + c where x is a variable and c is a number. E.g. 7, n - 9, n, x, x + 3, y - 8 are simple expressions. But
x + y, n - x , 2 * x are not.

We define a s imp le coi ldi t ion to be a condition of the form e = el, or e # e', where e , e' are simple expressions.
A condi t ion is obtained by combining simple coilditions with V (or), A (and), true and false. E.g. z = y+ 5 A y #
z - 1 V x # y + 1 A y = z + 5 is a condition.

An a b s t r a c t express ion is: (), e (where e is a simple expression), true, false, (A l l A?) where A1, A2 are abstract
expressions, {A I X I = 0, n ; . . .zk = O,n} (when k = 0 this becomes the singleton set { A }) , A1 U Az and
(A1 when C1; A2 when Cz; . . . Al when CI) , where A1,. . . , Al are abstract expressio~ls and C1, . . . , Cl are pairwise
disjunctive conditions (i.e. Ci A Cj is equivalent to false, for i # j). The latter construct is called g u a r d e d
expression, and the conditions C1,. . . Cr are called the gua rds .

Examples of abstract expressioris are: 3 , n - 5, {(x, x + 2) when (x # n A x # i z - 1) I x = 0, n}. Also {2,5,12) is
an abbreviation for the abstract expressions (2) U (5) U (12). We only consider typed abstract expressions, e.g.
{A (x = 0, n) is an abstract expression of type {s} provided that A is an abstract exprrssion of type s . As usual,
we distinguish b o u n d and f r ee variables in some abstract expression A.

Let n > 0, A be an abstract expression of type s and let p be an envzronnzeal, i.e. some function assigning values
in [n] to the free variables of A. Then, we associate to each abstract expression A of type s , a complex object
[Alp of type s , in the obvious way. [Alp niay not be defined (e.g. when no guard in a guarded abstract expression
is true). E.g., when p(x) = 1, then [{(x, y) when z # y I y = 0, n)]p = ((1, O), (1 ,2) , (1,3) , . . ., (1, n.)). Clearly,
when A is closed, then [Alp does not depend on p, and we abbreviate it with [A]. E.g. [[{O when false)] = 0.

Note that for any abstract expression A, size([A]p) is bounded by some polynomial P (n) .

The abstract expressions enjoy the followi~~g properties, which allow us to prove that transitive closure is not
efficiently expressible in NRA(powerset):

1. Abstract expressions are closed under application of functions in ,n/RA (lemma. 5.1).

2. r, can be expressed as an abstract expressions, but its transitive closure tc(r,) cannot (see lemma 5.3)

3. Any set expressed by an (even open) abstract expression has either O(1) or L?(iz) elements, and, hence, ally
function in NRA(powerset) applied to some abstra.ct expression is either another abstract expression or
has exponential complexity (lemma 5.8).

5.2 Evaluation of Abstract Expressioils

The key lemma is given below:

L e m m a 5.1 (Evalua t ion l e m m a) Let A be sor~te (itot ~~ecessarily closed) abstract expressroa of type s , and
f E N R A . Then there is some abstract exyressioit A' sc~ch that f (A) A', 7nenrtzilg that Vn,Vp, f([A]p) l,l [A1]p.

Proof. We prove it straightforward, by induction on the structure of f . We illustrate some of the cases:

Case g o f . Apply induction on f (A) to get f (A) JJ A' , next, apply induction on g (A 1) , lo get g (A 1) U A".
Clearly, (g o f) (A) 4 A".

Case m a p (f) To compute m a p (f) ({ A / 5 = O , n)) , compute first f (A) U A' (i.e. apply induction hypoth-
esis), and get m a p (f) ({ A I I = 0 , n)) 6 {A' (I = 0 , n) . The other cases are treated as follows:
r n a p (f) (A l when CI; . . . ; A, when C r) = m a p (f) (A l) when C1; . . . ; m a p (f) (A l) when CI , and m a p (f) (A ~ U
A 2) = m a p (f) (A 1) U ? n a p (f) (A 2 1.

Case = This is the case where we are forced to introduce guarded expressions. E.g. = (e , e l) (t r u e when e =
e'; false when e # e l) .

Case e m p t y One can show that for any abstract expression A, there is some condition CA on its free variables
expressing the fact that A is defined. Then e m p t y ({ A 1 2 = 0 , n)) 4 false when 3 s . C A ; t r u e when ~ (3 z . C ~) .
So it suffices to observe that the conditions enjoy a quantifier elimination property, i.e. 3 5 . C A is equivalent
to some quantifier free condition C i .

We shall generalize this lemrna to N E A (p o w e ~ * s e t) (see leinrna 5.8), showing t,ha.t f (A) is eit,her some abstract
expression, or requires exponential space to compute. The key step will be to show tlmt some set { A (5 = 0 , n)
has either O (1) or R (n) elements. The problem in proving that is that some elements A (2 , a and A (5 ' , $ may
be equal, even when 2 # Z (here y' are t,lle other free varia.bles in A, besides 2). In order t.o count t,he distpinc.t
elements, let P be a fresh tuple of variables, and A' = A[5' /ql i.e. A with the variables 2 substituted by 3. The
inequality A # A' can be expressed as a simple condition D(S, i', 3: whenever i and 3 satisfy D, A (i , y3 and
A (P , y3 are distinct elements of the set. So we are left to prove that some conditio~l D(Z , 2') y) is satisfied by
O (1) or Q (n) dist,inct Z's.

5.3 Affine and Variable Affine Spaces

We are interested in the satisfiability of conditions for n is large enough. Thus, we say that some condition
C(Z), where i = (z l , . . . , x k) is satisfiable, if it is satisfiable in t,he cla.ssica1 sense for n large enough, i.e. iff
3no > 0 , V n 2 no, 31 E [n,Ik such that C (5) is true.

We shall coilcentrate on conjunctive conditions, defined to be conjullcts of siil~ple conditions. A convenient
way to think of satisfiable conjunctive conditions is to view them as a f i n e spaces. We define a.n affine space
to be a subset U of [nIk, of the form {E'(G) 1 (Y E [n]J ' , r (Z)) , where Z (Z) is a, vector of simple expressions whose
free variables are exactly d , and r (d) is a conjunction of negative simple conditions. p is called the dimension
of U , and the variables d are called the paranletem of the affine spa.ce. The affine spaces enjoy the following
properties:

Proposition 5.2 1. For a n y satisfiable conjunct ive condi t ion C(Z) , U = (5 (C (5)) zs a n a f i n e space. C o n -
versely , a n y a f i n e space U i s o f th i s for-171, for- s o m e satisfiable c o l ~ j u n c t i v e c o ~ ~ . d i t z o ~ l C (2) .

2. An a . n e spaces U of dinzensio~a p has nP - O (n P - l) (= O(nJ ')) elemelrts. Hence, a n a j j i ~ t e space of
d i r n e ~ ~ s i o n 0 has exact ly 1 e l e ~ i ~ e n t . A s a consequence, ally a f i i i e space i s n o ~ i e ~ n p t y .

3. T h e in te r sec t ion of t w o a f i n e spaces U n U' i s e i ther e m p t y o r allother a f i n e space

As a consequence we have:

Corollary 5.3 N o abstract express ion can denote tc(rn) for all n > 0.

Proof. Indeed, tc(r,) must have elements. But one can prove that any closed abstract expression of type
{N x N) denotes a union of affine spaces: none of them can have dimension 2 (else we get n2 - O(n) elements),
so their union has at most O(n) elements, and it cannot denote tc(xn). 0

With some care, we can view a satisfiable colljunctive condition C(Z, 9 as a variable a f i n e space V (9 . Namely,
we define a variable affine space to be a set V(y3 = {Z(G, y3 1 ti! c ' ~ [n]P, I'(Z, y3), in which I?($, y3 is a conjunction
of negative conditions.

Example 5.4 U1 = {(3,cul - 5, az, a l) I cu' E [nI2) i s a n a f i n e space of d i m e n s i o n 2; i t corresponds t o t h e
condi t ion C(x l , xz,x3,24) = (XI = 3 A 2 2 = 2 4 - 5) . U2 = {(n - 3, a1, a 2 , a3) I Z E [nI3 A a1 # a 2 A a1 # a g + 5)
i s a n a f i n e space of d i m e n s i o n 3. Also , U 3 (~) = {(a + 2, y - 1) (a E [n] A a # n A cu # y - 3 A y # 1) i s a variable
a f i n e space, o f d i m e n s i o n I , wh ich i s e m p t y w h e n y = 1 .

The properties mentioned in proposition 5.2 can be extended to variable affine space. We only state this for item
1 :

Proposition 5.5 For a n y satisfiable co~ t junc t i ve co~zd i t ion C(S, 9, th.ere are sonae a@ne space I i and sonae
variable a f i n e space V($ such tha t C (Z , g i s eqmzaalen,t t o y' E I1 A E V($, and, for n large enough,, Vy E
U, V(y3 # 0. T h e converse i s also t r u e .

For some (variable) affine space U(y3 and dimension i, if ei(G) depends on some parameter a , we say that U ($
is free along the dimension i. Else (if ei(Gu') is constant or depends on some $, we say that U(y3 is bound at the
dimension i. In the above example, bot,h Ul and U2 are free along t,heir dimensions 2,3 a.nd 4, and bound along
dimension 1. U3(y) is free along dimension 1 and bound along dimension 2.

5.4 The Powerset of Abstract Expressioils

Let D(Z, Z', fl be some condition, where I, H have the same lengt,h p, and y' has length q . \Ve think of D as
defining, for each E [n]q, a binary relation on [n]" namely Z and 2' are related iff D (i , Z', 3. Now consider
y' E [n]q and a sequence of m different values in [n]p, S1,. . . , &,. We say that this sequence i s included in D
for {, iff D(Zi ,Zj , f) , forall 15 i < j 5 rn.

Lemma 5.6 Let D(Z,Z1,y3 be a c o i ~ u n c t i u e conditzon as described above, such tha t for arbzirarlly large n there
i s s o m e i j E [n]q a n d a sequence of m = 4 d i s l i~zc t vectors Zl, Zz, 23, Z4 included i n D for g, The71 there zs sonae
a f i n e space U 5 [n]q such thaa for a n y C E Gr there i s s o m e sequence of length in = C l (r 1) i i ~ c l u d e d rn D for ij.

Proof. Obviously D is satisfiable, in the sense of section 5.3. We start by splitting D into D (I , Z', y3 =
E (I , F) A F(Z, f) A F1(i ' , $, such that E(Z, T) co~ltains exactly those conditions which niention both one variable
from 2 and one from 2'. The conditions mentioning only variables in y' can be included arbitrarily in F or F'.

Now consider the condition G (I , y? '%f F (i , y3 A F'(2, y3 (i.e. we substitute i' wit,h 5 in F') . We observe that
both G(12, y3 and G(Z3, y3 are true, hence, G is satisfiable, in the sense of section 5.3. By proposition 5.5, G (i , 9
is equivalent to y' U A rc' E V ($, for some affine space U and variable a.flfine space V (3 = {Z(Z,g 1 r (G, 3) of
nonzero dimension. More, 12, Z3 V(y3 and t l y ' ~ U,b'?, 2' E V (3 , F(Z, 3 A F1(5', 3 is true.

Next we take care of the condition E(Z, i t) , which we split into positrue and negatave simple conditions, E(5,5') =
Ep(Z, 2') A EN(?, Z'). First we prove that EP(g2, Z2) and Ep(Z3, i3) are both true. Indeed, consider some

condition xi = xi + c in Ep . Since Ep(Z1, Zs), Ep(22,?3) and Ep(Z1, Z2) are true, we conclude that x2 satisfies
the condition xi = xj + c , and, in fact, tha.t Ep(Z2, Z2) is true. Similar, Ep(Z3,23) is true.

We process, one by one, all conditions in Ep, restricting U and V(y3 for each of them, such as to guarantee that
Vy'E U, V l , H E V(y3, Ep(Z, Z') holds. Let x; = 25 + c be such a condition. Four cases call occur:

(1) V(y3 is bound along the dimensions i and j (see section 5.3). (2) V($ is free along one dimension and bound
along the other. (3) V($ is free along both dimensions i and j, and ha9 the same parameter variable a in both
places (this includes the case i = j) . (4) V(y3 is free along both dimensions i and j, and has different parameter
variables a t these dimensions. In cases (I) , (2) and (3) we add the condition ei = ej + c , which in case (1) may
restrict U, in case (2) restricts V(y3, and in case (3) is a tautology. In case (4), for some pa.rticular n, let v be
the value of position i in Z1, &, s3 (one can see that all of them must have the same value on position i) . The we
impose the condition ej = v Aej = v -c , which affects only V(y3. In all four cases, we can prove that the resulting
U and V(y3 satisfy U # 0 and V($ has a nonzero di~llension (because V(y3 has at least two elements, Z2, Z3).
More, V(y3 has constants (not Z's or 3 s) on both dimensions i arid j, hence Vy'E U , any two Z, 2' E V(y3 will
satisfy the condition xi = xi + c .

Finally consider, one by one, each of the negative conditions in EN, say xi # xj +c. We distinguish the same four
cases as above. Cases (1) and (2) are treated similarly, but without decrea.sing the dimensions of I/ and V(y3.
For the cases (3) and (4), the c~ndit~ion xi # xi + c transla.t,es to crl # a;, + c', where 1 and I' are equal in case
(3) and different in case (4). Here, we just "remeber" the constant 1 c' 1 . Let y he the largest such constant. In
the end, we get some affine space U and variable affine space V(y3 = {e'((Eu', y3 Z) I (G , $1, with the same dimension
r > 0 as the previous one, with the property tha.t for any y 'E U and any Z, 2' V(/(y'), such that all parameters
for x and 2' differ by more than y (i.e. I a! - cuf, I> y , for all 1, l ') , then D(Z,Li", 3 is true.

Since r(G, y3 contains only negative conditions, one can find, for every n sufficiently large and any E U , some
cu' satisfying r (Z , 3, whose elements are "small", i.e. a, 5 6 , V l , where 6 is independent of T I . Then, obviously,
there is a sequence of length & included in D for y'.

Next, we make use of the following lemma:

Lemma 5.7 ([5], pp. 104, theorem I) Let G be a complete, undirected graph turth CYL_"~(= ~ ~ ~ - - l ~ ~ !) vertices,
whose edges have been colored with red or blue. Then there is a conzpleie subgraph with 171 vertzces haviit.g all edges
colored with the same color.

As a consequence, if some disjunction D = Dl V . . . V Dk includes a "long" sequence, then a t least one of its Dl
1 includes a sequence of length rn. (Here "long" could be rnr,, where rnl = rn. mi+l = CFI:,~.)

Now we can generalize lemma 5.1 for N R A (p o w e r s e t)

Lemma 5.8 Let A be some (not necessarily closed) abstract ezpresszon of type s , C some c o ~ ~ d i t ~ o ~ ~ . and f : s -+ t
i n i \ /Rd(powerse t) . Then one of the followrng holds:

1. There is some abstract expressio~l A' such that, for any p satisfying C , we have f([A]p) J,L [A'np. W e abbre-
viate: f(A) JJ A' WHEN G. More, there is some approximation f,,, off such th,al f,,(A) .lJ A' WHEN C.

2. The complexity of f(A) .lJ WHEN C is Q(2Cn), for some c > 0

Proof. The proof is done by induction on the structure of f . All cases, except potuevsei, are straightforward
extensions of those in lemilla 5.1. E g. for the case (y o f)(A) 4J WHEN C, we have to argue, in addition,
that, if f (A) J,L WHEN C has exponential complexity, then so has (g o f) (A) \+'HEN C'. Otherwise, f (A) J)

A' WHEN C, and we argue similarly for g(A1) l). If the latter doesn't have exponential complexity either,
then, by induction, we also get numbers m, rn' s. t . f,(A) U A' WHEN C and grn/(A1) l,l A" WHEN C. Pick
m = max(m, m').

Note tha t the condition C is enriched when computing f (A) , with A a guarded expression, or with f a zf then else
function.

So i t remains t o consider the case powerset. We only look a t the case when the abstract expression is of the form
{A 1 I = 0, n) (the other two cases, A U A' or the guarded expression case, are reduced to this one). Then, it
suffices t o prove tha t one of the following cases must occur:

1. There is some number m, independent of n (dependent only on C and A), such for any n and for any y'
satisfying C($, the set {A I 2 = 0, n) has a t most m elements. More, in this case we can actually find
abstract expressions A 1 , . . . ,A, naming these a t most in elements. I11 this case powerset({A 1 5 = 0, n)) JJ
A', were A' is just the set of all 2" subsets of {A1, . . . , A,}. Obviously, in this case f is equivalent to the
m ' th approximation of powerset, i.e. powerset({A (2 = 0, n)) = powersetrn({.4 (I = 0 , n)) , under the
condition C.

2. For every n , there is some environment p satisfying C(y3, such that t,he set [{A I S = 0, iz)lJp contains a t
least R(n) distinct elements. Then condition 2 holds.

Suppose the first condition does not hold, i.e. for any rn > 0, we can find n and p (an environment satisfying C)
under which the set has > in elements. Let A' be A[2 ' /4 , i.e. fresh variables Z' are substituted for 2 . Recall tha t
equality is definable a.t all t8ypes in AfRA (proposition 2.1). We eva.lua.t,e = (A, A'), using len~irla 5.1: the result
is of type B, so it must have the form false when D l (S , 3,j'); trtte when D2(S. 2, d7). Consider the condition

D(S, 2',$ sf C($ A Dl(?, 2',$: for any m > 0, there is some ij and a sequence of length in included in D for
y'. Writing D in conjunctive normal form, by leinma 5.7, a t least one of is conjuncts D' satisfies the conditions of
lemma 5.6. For D', we apply lemma 5.6, and get an affine space U , such that for any p assigning values in U t o fj,
we have (1) C is true, and (2) [{A (Z = 0, n)]p has R (n) elements. Hence, the complexity of f({A I S = 0, n)) l)
is Q(2',).

Now we are ready t o prove our main results, which we restate here:

Theorem 4.1 For any f u n c t i o ~ ~ f E N R d (p o w e r s e t) of type f : {N x N) + {N x N) s,t~ch that f (r ,) l,l q , for
every n > 0, the complezity of f(r,) l) is R(2cn), for soine c > 0.

Proposition 4.2 For any function f : {N x N) + s in NRA(powerse t) , ezther there exzsls sonze approazinatzon,
fm off such tha t f,,,(r,) = f (I-,,), Vn > 0, o r the conaplezity off (v,,) dJ zs R(2C"), for sonle c > 0.

Proof. Let f E iZTRA(powerset), f : {N x N) + s be such that the complexit,y of f(r ,) JJ is not Q(2"). Taking
C = t rue , only case 1 of lemma 5.8 can hold, herice there is some approxirnation f,, of f performing the same
computation on r, (which proves proposition 4.2), and there is some abstract expression denoting i ts result; by
corollary 5.3, i ts result cannot be tc(r,), which proves theorem 4.1.

6 Conclusions

We have proven tha t transitive closure, although known to be expressible with pozuei*set, is not expressible with
powerset in a n efficient way. We conjecture tha t any query which call he computed efficiently with powerset,
can also be computed without powerset, but this problem remains open. I t would prove t11a.t 'we cannot use the
powerset in any tractable way'.

7 Acknowledgments

We would like to thank Val Breazu-Tannen and Peter Buneman for their suggestions and support.

References

[l] Serge Abiteboul and Catriel Beeri. On the power of 1a.nguages for the manipulation of complex objects. In
Proceedings of International Workshop on Theory and Applications of Nested Relations and Complex Objects,
Darmstadt, 1988. Also available a s INRIA technical report 846.

[2] Serge Abiteboul and Victor Vianu. Generic computation and its complexity. In Proceedings of 23rd ACM
Symposium on the Theory of Computing, 1991.

[3] Alfred V. Aho and Jeffrey D. Ullman. Universality of data retrieval languages. In Proceedings 6th Symposium
on Principles of Programming Languages, Texas, January 19'79, pages 110-120, 1979.

[4] David Mix Barrington, Neil Immerman, and Howard Straubing. 011 uniformily within NC' . Journal of
Computer and System Sciences, 41:274-306, 1990.

[5] Bela Bollobas. Graph Theory: A n Introductory Course. Springer-Verlag, 1979.

[6] Val Breazu-Tannen, Peter Buneinan, and Limsoon Wong. Naturally embedded query languages. I11 J . Biskup
and R. Hull, editors, LNCS 646: Proceedings of 4th Internatzonal Conference on Database Theory, Berlin,
Germany, October, 1992, pages 140-154. Springer-Verlag, October 1992. Available as UPenn Tech~lical
Report MS-CIS-92-47.

[7] J . Hopcroft and J . Ullnian. Introduction to automata theory, langunges, an,d comp~itation. Addison-Wesley,
1979.

[8] Neil Immerman. Languages that capture coinplexity classes. SIAM Journal of Compntzng, 16:760-778, 1987.

[9] Neil Immerman. Expressibility and parallel complexity. SIA M Journ a1 of Compzitrng, 18:625-638, 1989.

[lo] Gilles Iiahn. Natural sema.ntics. In Proceedings of Symposium on Theoretzcal Aspects of Computer Science,
pages 22-39. Springer-Verla.g, 1987.

[ll] Jan Paredaens and Dirk Van Gucht. Possibilities and limitations of using flat operators in nested algebra
expressions. In Proceedings of 7th ACM Syntposzum on Principles of Database Sysie~~zs,Austin, Texas, pages
29-38, 1988.

[12] Jan Paredaens and Dirk Van Gucht. Converting nested relational algebra expressions into flat algebra
expressions. ACM Transaction on Database Systems, 17(1):65-93, March 1992.

[13] H.-J. Schek and M. H . Scholl. The relational model with rela.t,ion-va.lued a.t,t,rihut.es. Infor~n.atioir Systenzs,
11(2):137-147, 1986.

[14] S. J . Thomas and P. C. Fischer. Nested relational structures. In P. C. 1i;anella.kis and F. P. Preparata,
editors, Advances in Computing Research: The Theory of Databases, pa.ges 269-307, London, England, 1986.
JAI Press.

[15] Limsoon Wong. Normal forms and conserva.tive properties for query languages over collection types. In
Proceedings of 12th ACM Symposium on Principles of Database Systems, pages 26-36, Washington, D. C.,
May 1993. Full paper available as UPenn Technical Report MS-CIS-92-59.

