
Dyn-FO: A Parallel, Dynamic Complexity Class

(Preliminary Version)

Sushant Patnaik Neil Immerman*

University of Massachusetts, Amherst University of Massachuset ts, Amherst

patnaik@cs.umass. edu immerman@cs.umass. edu

Abstract

Traditionally, computational complexity has con-

sidered only static problems. Classical Complexity

Classes such as NC, P, NP, and PSPACE are de-

fined in terms of the complexity of checking - upon

presentation of an entire input – whether the input

satisfies a certain property.

For many, if not most, applications of computers

inchdng: databases, text eWors, program devel-

opment, it is more appropriate to model the process

as a dynamic one. There is a fairly large object be-

ing worked on over a period of time. The object is

repeatedly modHied by users and computations are

performed.

Thus a dynamic algorithm for a certain class of

queries is one that can maintain an input object,

e.g. a database, and process changes to the

database as well as answering queries about the

current database.

Here, we introduce the complexity class, Dynamic

First-Order Logic (Dyn-FO). Thk is the class of

properties S, for which there is an algorithm that

can perform inserts, deletes and queries from S,

such that each unit insert, delete, or query is first-

order computable. This corresponds to the sets

of properties that can be maintained and queried

in first-order logic, i.e. relational calculus, on a

relational database.

We investigate the complexity class Dyn-FO. We

show that many interesting properties are in Dyn-FO

including, among others, graph connectivity, k-

edge connectivity, and the computation of mini-
mum spanning trees. Furthermore, we show that

*Research partially support cd by NSF grant C CR-

9207797.

several NP complete optimization problems admit

approximation algorithms in DynjFO. Note that

none of these problems is in static FO, and this

fact has been used to justify increasing the power

of query languages beyond first-order. It is thus

striking that these problems are indeed dynamic

first-order, and thus, were computable in first-order

database languages all along.

We also define “bounded expansion reductions”

wYlch honor dynamic complexity classes. We prove

that certain standard complete problems for static

complexity classes , such as AGAP for P remain

complete via these new reductions. On the other

hand, we prove that other such problems includlng

GAP for NL and lGAP for L are no longer complete

via bounded expansion’ reductions. Furthermore,

we show that a version of AGAP called AGAP+

is not in Dyn-FO unless all of P is contained in

parallel linear time.

Our results shed light on some of the interesting

differences between static and dynamic complexity.

1 Introduction

Traditional complexity classes are not com-

pletely appropriate for database systems. Un-

fortunately, appropriate Database Complexity

Classes have not yet been defined. This paper

makes a step towards correcting this situation.

In our view, the main two differences between

database complexity and traditional complexity

are:

Permission to copy without fee all or part of this material is 1. Databases are dynamic. The work to be
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the done consists of a long sequence of small

title of the publication and its date appear, and notice is given updates and queries to a large database.
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee

Each update and query should be performed

and/or specific permission. very quickly in comparison to the size of the

database.
SIGMOD/PODS 94- 5/94 Minneapolis, Minnesota USA
@ 1994 ACM 0-89791 -639-5/94/0005 ..$3.50

210

http://crossmark.crossref.org/dialog/?doi=10.1145%2F182591.182614&domain=pdf&date_stamp=1994-05-24

Computations on databases are for the most

part disk access bound. The cost of

computing a request is usually tied closely

to the number of disk pages that must be

read or written to fulfill the request.

Of course, a significant percentage of all uses

of computers have the above two features. In

this paper we focus on the first issue. Dynamic

Complexity is quite relevant in most day to day

tasks. For example: Texing a file, Compiling a

program, Processing a visual scene, Performing

a complicated calculation in Mathematical, etc.

Yet an adequate theory of dynamic complexity

is lacking. (Recently, there have been some

significant contributions in this direction, e.g.

[MSVT93]. Note that dynamic complexity is

different although somewhat related to On-line

complexity which is receiving a great deal of

attention lately.)

We will define the complexity class Dyn-FO

to be the set of dynamic problems that can

be expressed in first-order logic. What this

means is that we maintain a database of

relevant information so that the action invoked

by each insert, delete, and query is first-order

expressible. This is very natural in the database

setting. In fact, Dyn-FO is really the set of

queries that are computable in a traditional

first-order query language.

Many interesting queries such as connectivity

for undirected graphs are not first-order when

considered as static queries. This has led to

much work on database query languages such

as Datalog that are more expressive than first-

order logic,

We show the surprising fact that a wealth

of problems, including connectivity, are in

Dyn-FO. Thus, considered as dynamic prob-

lems – and that is what database problems

are – these problems are already first-order

computable. The problems we show to be

in Dyn-FO include: reachability y in undirected

graphs, maintaining minimum spanning forest,

k-edge connectivity and bipartiteness. All reg-

ular languages are shown to be in Dyn-FO.

We even show that decent approximation al-

gorithms for several NP complete problems are

in Dyn-FO. Previously, Dong and Su, in [DS93]

have shown that reachability in directed, acyclic

graphs and in function graphs is in Dyn-FO.

The static versions of all these problems are, of

course, not first-order.

1.1 Related Work

In [DST93], Dong, Su and Topor consider

the incremental evaluation problem for Datalog

queries, namely, repeatedly evaluating the same

DataJog query to a database that is being up-

dated between successive query requests. They

define a first order incremental evaluation sys-

tem (FOIES), with respect to a given Datalog

query, where the incremental evaluation is car-

ried out by a non-recursive Datalog program.

They point out that non-recursive Datalog pro-

grams are much better than recursive ones us-

ing elaborate data structures for database ap-

plications, since they reduce the number of rela-

t ional join operations. Our approach is similar

to their approach in the sense that both store

derived relations for reuse after updates. How-

ever, Dyn-FO is a general complexity class and

ilt involves both insertions and deletions. Mono-

tone Dyn-FO (which allows only insertions) is

equivalent to FOIES. Defining the arit y of a

I)yn-FO expression as the arity of the auxil-

iary (non-input) relations used in the first or-

der logic formulae for handling updates, we see

that the notion of space-free FOIES is related to

devising minimum arit y Dyn-FO1 expressions,

in thesense that problems in space-free FOIES,

by definition, have minimum arit y Dyn-FO ex-

pressions. The central theme in the incremen-

tal approach, namely, to use the difference be-

tween successive database states and the answer

to the query in one state to reduce the cost of

evaluating the query in the next state, plays

a, role in maintaining materialized views upon

updates ([J92], [GMS93]), and in integrity con-

straint simplification ([LsT87], [N82]). In these

studies, the authors investigate how to maintain

first-order definable views efficiently under up-

dates to the underlying database. In our frame-

vvork, we can interpret their approaches as de-

termining ways to implement fast Dyn-TIME

solutions for a subclass of D yn-FO. For exam-

ple, [GMS93] show that a very restricted sub-

class of Dyn-FO is in Dyn-TIME[l].

The design of dynamic algorithms is an active

field. See, for example, [E*92], [R92], [CT91],

[F83], amongst others. This paper is also

informed by [M SVT93] which does some of

the ground work for a complexity theory of

dynamic complexity.

1We shall use Dyn-FO interchrmgably to denote a
class of decision problems and a language

211

This paper is organized as follows. In section 2,

we begin with some background on Descriptive

Complexity. In section 3, for any static

complexity class C, we define the corresponding

dynamic class, Dyn-C. The class Dyn-FO

is the case we emphasize. Then, in section

4, we present several of the above mentioned

Dyn-FO algorithms. In section 5, we describe

and investigate reductions honoring dynamic

complexity. Finally, we conclude with a list of

a few of the many directions that we feel should

be pursued.

2 Descriptive Complexity:

Background and Definitions

Our approach depends on insights and intu-

itions developed via an alternate notion of

complexity, Descriptive Complexity, that en-

sues from considering the power of a language

needed to ezpress some property, in contrast to

the traditional approach of measuring the com-

plexity of checking a property. This was first

studied by Fagin in [Fa74] where he gave a char-

acterization of non-deterministic polynomial

time (NP) as the set of properties expressible in

second-order exist ential logic. Later, Gurevich,

Immerman, Vardi, and others showed that each

natural complexity class has a natural char-

acterization from a descriptive point of view,

[G83, 187,189,191, Var].

It typically turned out that that “natural” com-

plexity classes have “natural” descriptive char-

acterizations. For example, space corresponds

to number of variables; and, parallel time is

linearly related to quantifier-depth. Sequential

time on the other hand does not seem to have a

natural descriptive characterization. We like to

think of this as yet another indication that se-

quential time is not a natural notion, simply an

artifact of the so-called “Von-Neumann bottle-

neck”. As another example, the class P, consist-

ing of those problems that can be performed in

a polynomial amount of work, has an extremely

natural characterization as (FO + LFP) – first-

order logic closed under the ability to make in-

ductive definitions.

It is reassuring that our notions of naturalness

in logic correspond so nicely with naturalness

in complexity theory. In the present work we

venture into the terrain of dynamic complexity.

What is natural is not yet clear. We use the

intuitions gained from the descriptive approach

to aid us in our search.

In this section we recall the notation of De-

scriptive Complexity. See [189] for a survey and

[IL89] for an extensive discussion of the reduc-

tions we use here including first-order projec-

tions.

We will code all inputs as finite logical struc-

tures, i.e., relational databases. A vocabulary

T = (R;l ,.. R;*, cI, et) is a tuple of input

relation and constant symbols. Let STRUC[~]

denote the set of all finite structures of vocabu-

lary T. We define a complexity theoretic prob-

lem to be any subset S ~ STRUC[~] for some

T.

For any vocabulary T there is a corresponding

first-order language ~(~) built up from the

symbols of r and the logical relation symbols,

= and <, (which refers to a total ordering on

the universe), using logical connective: A, V, 1,

variables: z, y, z, and quantifiers: V, 1.

In traditional static complexity, the entire input

structure A is fixed and we are interested in

deciding whether A 6 JS for a relevant property,

S. In the dynamic case, the structure changes

over time. The actions we have in mind are a

sequence of insertions and deletions of tuples

in the input relations. We wdl usually think

of our dynamic structure, A = ({0, 1, . . . n –

l}, RI, R., cI, . . . , Ct), as having a fixed size

potential universe, IAI = {0,1,.. .n – 1}, and

a unary relation RI, specifying the elements

in the active domain. The initial structure of

size n for this vocabulary will be taken to be

~fl = ({0,1, . ..n–l}. {o}, o,. ... o, o,..., o),

having RI = {O} indicating that the single

element O is in the active domain and all the

other relations are empty.

2.1 First- Order Reductions

Here we briefly describe first-order reductions,

a natural way of reducing one problem to

another in the Descriptive context. First-

order reductions are used in Section 5 to build

new reductions that honor dynamic complexity.

Furthermore, reductions are used in Section 3

as a motivation for the definition of Dynamic

Complexity. More information about first-

order reductions can be found in [IL89].

Definition 2.1 Let S ~ STRUCT[a] and T C

STRUCT[~] be two problems and T = (R:’ . ..R~’).

212

Let 1 = {po...qt} be a set of t + 1 formulas

where the free variables of Pi are a subset of

{ul, . ..uk.a.]. I induces a mapping

1: STRUCT[a] + STRUCT[~]

such that if A c STRUCT[C] then

I(A) = (1(24), RI, Rt)

such that

1(U) = {i E{ O,..., nl}]A~p o(i)})}

= {(UIU2 . . .Uk) E Z.@ I A + p~(12)}

and the instantiation of each ~ is determined

by Pi in the following way

(1(A) ~ &((ul, Uk) . . . (uk.(a,_ll, Uk.=,)))

@ (A ~ ~i(~l, Uk.ci))

where (ul, ~k) denotes Ulnk–l + uznk–2 +

0.. +uk element of {O, . ..jnk – 1}.

If 1 is a many-one reduction from S to T, i.ej

AES@I(A)ET

Then I is called a k-ary first order interpreta-

tion of S to T.

Definition 2.2 A first order projection (fop)

is a first-order interpretation such that each of

the formulae q., pt is of the form

aOV(aIA ~l)V. .. V(aTAar) (1)

where the ~i’s are mutually exclusive formulas

in which no relation symbols occur, and each

/li is a literal (i.e.) a relation symbol or its

negation. Since I’(A) + ~((ul, uk) . . .

(W(a,-1), u~.ai)) when A ~ ~i(ulj

u~.ci), then Ri((ul, uk) . . . (u~.(ai_l),

u~.ai)) would be satisfiable in I(A) when a.

is true or when ~j is true for some j and the

corresponding A8 is true as well. Thus, every

bit in the representation on I(A) is determined

by at most one blt in the representation of A,

3 Dynamic Complexity Classes

We thi~k of an implementation of a prob-

lem 5 Q STRUCIO] as a mapping, 1 from

STRUC[a] to STRUC[r] where T ~ STRUC[r]

is an easier problem. The map 1 should be a

many-one reduction from S to T meaning that

any structure A. has the property S iff l(d)
haa the property T. (Actually, in our definition

below, the mapping I will map a sequence of in-

serts and deletes T to a structure. In the inter-

esting special case when 1(F) depends only on

the corresponding structure A and not which

sequence of inserts and deletes created it, we

call 1 memoryless.)

We are thinking and talking about a structure

A s STRUC[C], but the structure that we

actually have in memory and disk and are

manipulating is l’(d) E STRUC[r]. In this

way, each insert or delete on A is interpreted

as a corresponding series of actions on 1(A).

The fact that I is a many-one reduction insures

that the query asking whether d c S can be

answered according as whether 1(A) E T.

Next we give the formal definition of dynamic

complexity classes. The issue is that the

structure 1(A) can be updated efficiently in

response to any insert or delete to d. In

particular, if T E FO and all such inserts

and deletes are first-order computable, then

S E Dyn-FO.

3,1 Definition of Dyn-C

For any complexity class C we define its dy-

namic version, Dyn-C, as follows. Let a =

(R;l... R:*, cl, ct., ct) be a vocabulary and let

S ~ STRUC[U] be any problem. Let ‘Rn,m =

{ins(i, ti), del(i, it), set(j, a) I 1 < i < s, ii c

{ID,n–l}a~. l<j<t}be the set bepos-

sible requests to insert tuple ii into the relation

R<, delete tuple ii from relation ~, or set con-

stant Cj tO lL

Let evaln,a : 7Z~,a - STRUC[U] be the

naturally defined evaluation of a sequence of

requests, initialized by evalfi,c(0) = An.

Define, S c Dyn-C iff there exists another

problem T c STRUC[r] such that T E C and

tlhere exist maps,

f : R:,& - STRUC[r];

g : STRUC[r] X 7& -+ STRUC[~]

satisfying the following properties.

For alls c X&, and F c R&, ~(evaln,a(~s)) =

9(~(ev&,e(7)), S)

213

3. llf(~)l = ll-k,~(~)l”tlJ, where for any

structure, A, IIAII denotes the size of A@.
2

4. The functions g and the initial structure

f(0) are computable in complexity C, (as

a function of n).

We will say that the above map f is memoryless

if the value of ~(~) depends only on eval~,m(~).

In the above, if only inserts and queries are con-

sidered, i.e., no deletes, then we get the class

Dyn~-C, the semi-dynamic version of C. One

can also consider amortized versions of these

two classes. Furthermore, there are some cases

where we would like extra, but polynomial, pre-

computation to compute the initial structure

f(0). If we relax condition (4) in this way, then

the resulting class is called Dyn-C+ – Dyn-C

with polynomial precomputation.

We have thus defined the dynamic complexity

classes Dyn-C for any static class, C. Two

particularly interesting examples are Dyn-FO,

and Dyn-TIME[t(n)] for t(n) c o(n) where

the later is the set of problems computable

dynamically on a RAM in time t(n).

4 Problems in Dyn-FO

Let graph reachability denote the following

problem: given a graph, G, and vertices m, y,

determine if there is a path from z to y in G.

We shall use lGAP, UGAP, GAP (acyclic), re-

spectively, to denote graph reachability on di-

rected graphs with out-degree at most 1, undi-

rected graphs and acyclic directed graphs where

the inserts preserve acyclicity. It is well known

that the graph reachability problem is not first-

order expressible and this has often been used

as a justification for using database query lan-

guages more powerful than FO [CH82]. Thus,

the following two theorems are striking.

Theorem 4.1 UGAP is in Dyn-FO.

Proof We maintain a spanning forest of

the underlying graph via relations, F(z1 y) and

PV(Z, y, u) and the input relation, E. F(z, y)

zThis expects that the complexity class C is closed
under polynomial increases in the input size. For more
restricted classes C, such as linesr time, we insist that

1~(~)11= ~(lev&,o(3~).

means that the edge (z, y) is in the current

spanning forest. PV(Z, y, u) means that there

is a (unique) path in the forest from z to y

via vertex u. The vertex, u, may be one of

the endpoints. So, for example, if F(z, y) is

true, then so are P(z, U, z) and P(z, y, y). We

maintain teh undirected nature of the graph by

interpreting insert (E,a, b) or delete(E,a, b) to do

the operation on both (a, b) and (b, a).

The first operation of interest is: Insert(E,a, b):

We denote the updated relations as E’, F’ and

PV’. In the sequel, we shall use P(z, y) to ab-

breviate P(z, y, z), and Eq(z, y, c, d) to abbre-

viate the formula,

((z=. Ay=d)V(Z=d Ay=.)).

Maintaining the input edge relation is trivial:

I?(Z, y) E -E(Z, y) v Eq(z, y, a, b)

The edges in the forest remain unchanged, if

vertices, a and b, were already in the same

connected component. Otherwise, the only new

forest edge is (a, b).

I“(z, y) s Z’(Z, y) V (Eq(z, y, a, b) A --@(u, b))

Now all that remains is to compute PV’.

The latter changes iff edge (a, b) connects two

formerly disconnected trees, and in this case,

the new tuples added are the pairs of vertices

and tree (or, forest) edges from the two disjoint

trees (one containing a and the other, b) that

are merged,

Pv’(z, y, z) =

PV(Z, y,z) V (Eq(z, y,a, b) A (z = avz = b)) V

-IP(z, y) A (%, v) Eq(u, v, a, b) A P(z, u) A P(w, y)

A(z=a Vz=b V pV(Z, u,z)

v Pv(v, y, z))

Delete(E,a, b): If edge (a, b) is not in the

forest (m F(a, b)), then the updated relations

are unchanged, except that E’(a, b) is set to

false. Otherwise, we first identify the vertices

of the two trees in the forest created by the

deletion, and then we pick an edge, say e, out

of all the edges (if any) that run between the

two trees and insert e into the forest, updating

the relations, PV and F, appropriately.

We define a temporary relation T to denote the

PV relation after (a, b) is deleted, before the

new edge, e, is inserted. T(z, y, z) s

PV(Z, y, Z) A 7(PV(Z, y, a) A PV(Z, y, b))

214

Using T, we then pick the new edge that must

be added to the spanning forest. New(z, y)

is true if and only if edge (z, y) is the

minimum 3 edge that connects the two

disconnected

New(z, y) s

components:

E(z, y) A T(a, z, a) A T(b, y, b)A

(Vu, v)(E(u, v) A T(a, u, a)

A T(b, v, b)) - (z < u

V(z=u Ay <v))

El, Ff and PV’ are then defined as follows:

E’(z, y) s E(z, y) A lEq(z, y, a, h)

We remove (a, b) from the forest and add the

new edge.

F’(z, y) = (F(z, y) A =Eq(z, y, a, b))

V New(z, y) V New(y, c)

The paths in the forest, from z to y via z, that

did not pass through a and b, are valid.

Also, new paths have to be added as a result of

the insertion of a new edge in the forest.

pv’(z, y, z) s T(z, y, Z) V

[(au, v)(New(u, v) V New(v, u)) A T(z, u, z)

A T(y, v, y) A (T(z, u, Z) A T(y, v, z))]

The proof of correctness is straightforward. ~

We give a new Dyn-FO algorithm for the

following result.

In the case where there is a path from x to

y using the edge (a, b), consider any path not

using this edge. Let u be the last vertex along

this path from which a is reachable. Note that

u # y because the graph was acyclic even before

the deletion of edge, (a, b). Thus, the edge,

(u, v), described in the above formula must

exist and acyclicity insures that the path x +

u .+ v ~ y does not involve the edge, (a, b).

The proof of correctness is straightforward. I

LeL TR denote the following problem: For G, a

directed acyclic graph, recall that the Transitive

Reduction, TR(G), is the minimal subgraph of

G having the same transitive closure as G.

Corollary 4.3 Transitive Reduction for directed

ac~clic graphs is in memoryless D yn-FO.

Proof We maintain the path relation, P, as

in Theorem 4.2.

Insert(E,(a, b)): If P(a, b) already holds, then

thsre is no change. Otherwise, we have to

remove some edges from TR:

TR’(z, y) s (TR(z, y) A P(a, b))

V[lP(a, b) A (z = a A y = b) V [TR(z, y)

AT(P(z, a) A P(4 Y))]]

Delete(E,(a, b)): We have to determine the

new edges that might be added in TR. Then,

New(z, y) is defined as follows:

New(z, y) ❑ E(z, y) A lTR(z, Y)A P(z, a)A

Theorem 4.2 ([D S93]) lGAP and GAP (acyclic)

are in Dyn-FO.

P(b;yj A [(vz)(i+;z)A ‘P(z;y)) -+

P(b, z)V P(z, a)]

TR’(z, y) s
Proof lGAP follows easily from UGAP. For (TR(z, y) A V(Z = a A y = b)) V New(z, y)
the GAP (acyclic) case, the inserts are assumed

to always preserve acyclicity. We maintain the

path relation, P(z, y) which means that there
The proof of correctness is straightforward. ~

is a path from x to y in the graph.
Let Minimum Spanning Forest denote the fol-

Insert(E,a, b): lowing problem: given an undirected graph G

P’(z, y) ~ P(z, y) V (P(z, a) A P(b, y))
with weights on the edges, determine the min-

imum weighted spanning forest of G. We may

Delete(E,a, b): assume W.-l. O. g. that w-eights are distinct and

hence, the minimum spanning tree is unique

p’(z, y) s p(z, y) A [+P(z, a) A P(z, y))V (since otherwise, ties can be broken by impos-

(%, v) P(z, u)A P(u, a)A E(u, v) A 7P(v, a) ing a lexicographic ordering on the edges along

AP(v, y) A(v#b Vu# a)] with its weights).

215

Theorem 4.4 Minimum Spanning Forest is in

Dyn-FO.

Proof The general idea is to maintain the

forest edges and non-forest edges dynamically

and to maintain the relations PV(Z, y, e) and

F(z, y) as in the case of UGAP. Let W(a, b)

denote the weight of edge (a, b). The difference

from UGAP is that we have to maintain the

minimum weighted forest. That changes our

update procedures in the following way.

Deletion of an edge, say (a, b), is handled

as follows. We determine, using PV, all the

vertices that can be reached from a in the

tree and all those that can be reached from b.

These give the vertices in the two trees that

the original tree splits into. Then, instead of

choosing the lexicographically first non-forest

edge that reconnects the two pieces, we choose

the minimum weight such edge, and insert

it. PV is updated accordingly to reflect the

merging of two disconnected trees into one.

When an edge, say (a, b) is inserted, we de-

termine if there exists a path between a and

b. If there is no path, then (a, b) merges two

trees into one, and PV is updated as before for

UGAP. Otherwise, using PV, we can determine

the forest-edges that appear in the unique path

in the forest between b and a, and check to see

if weight of the new edge, (a, b) is less than the

weight of any of these edges. If not, then (a, b)

is not a forest edge and nothing changes. Oth-

erwise, let (c, d) be the maximum weight edge

on the path from a to b. We make F’(c, d) false

and F’ (a, b) true and update PV accordingly.

The proof of correctness is straightforward. ~

We next show that similar simple algorithms

exist for Bipartiteness, Edge Connectivity, Least

Common Ancestor queries (in rooted trees),

Maximal Matching and Maximal Independent

Set (in bounded degree graphs). These latter

two have no known sub-linear time fully dy-

namic solutions.

Theorem 4.5 ([P194]) Let k be a jixed con-

stant. Dyn-FO algorithms ezist for the follow-

ing problems:

1. Bipartiteness,

2. k-Edge Connectivity,

3. Maximal Matching in undirected graphs,

4. Least Common

Proof Omitted.

It is an interesting

approximations to

Ancestor in rooted trees,

phenomenon that constant-

certain NP complete prob-

lems can be maintained by FO relational for-

mulae. Consider the well-known ~-approximate

solution to the triangular Traveling Salesman

Problem (ATSP). Modifying the Dyn-FO algo-

rithm for maintaining a minimum spanning tree

to maintain an Euler tour of the tree simulta-

neously enables us to show that

Theorem 4.6 ([P94]) A ~-approximation to

A TSP i5 in Dyn-FO.

Proof Omitted. 9

Corollary 4.? A ~-approximation to A TSP is

in Dyn- TIME[@ log n].

Proof Follows from the result in [E*92] that

minimum spanning tree is in Dyn-TIME[@ log n],

and the proposition in [P94] that Euler tour of

a spanning tree can be maintained in constant

time. B

A ~-approximate (greedy) solution to Mini-

mum Node Cover and any Maximal Indepen-

dent Set for bounded (say, k) degree graphs

(and hence, a &approximate solution) can

also be maintained in Dyn-FO. It is well known

that MAX-SNP, an approximation class intro-

duced by Papadimitriou and Yannakakis in the

framework of first-order logic in [PY88], can

be approximated to within some fixed c in

polynomial time, but this algorithm unfortu-

nately does not lend itself to a Dyn-FO solution.

It would be interesting to determine whether

there exists a generic D yn-FO solution for the

entire MAX-SNP class that is e-approximate,

for some fixed constant e, depending only on

the MAX-SNP problem as usual (and not the

size of the input to the problem). However,

it is possible to show that approximate solu-

tions to a subclass of MAX-SNP, that includes

MAX SAT and MAX CUT, can be maintained

in D yn-FO, in fact, in Dyn-TIME[l] ([P94]).

216

5 Dynamic Reductions

Now we define appropriate reductions for com-

paring dynamic complexity classes. For these

classes first order reductions are too powerful,

We restrict them by imposing the following ew

pansion property, cf. [STV93] for a similar re-

st riction.

Definition 5.1 Bounded expansion FO reduc-

tions (bfo) are FO interpretations (Definition

2.1) such that each bit of the input structure

affects at most a constant number of bits in

the output structure. If S is reducible to T via

bounded-expansion, first-order reductions, we

write S ~~~0 T.

In a bfo reduction, the initial structure, &,~

must be mapped to a structure with only a

bounded number of tuples in its relations. If

this condition is relaxed, then we get bfo+

reductions.

Recall that a projection (Definition 2.2) has

the property that each bit of the output is

determined by at most one bit of the input.

The bounded expansion property is sort of the

converse of this. Due to lack of space we just

state or briefly sketch the relevant properties of

bfo’s. The full details maybe found in [P194].

Proposition 5.2 For any problems S and T,

if T E Dyn-FO and S <~~. T, then S E

Dyn-FO. If T E Dyn-FO+ and S < bfo+ T,

then S E Dyn-FO+.

Proof Given a bfo reduction from S to T, any

change to an input, A, for S corresponds in a

given first-order way to a bounded number of

changes to I(A). Since T E Dyn-FO, so is S. ~

It turns out that most natural reductions for P

and NP complete problems are either bounded

expansion, or can be easily modified to be so

(see [P94], [M94]). For classes contained in NP,

we can show, for example,

Proposition 5.3 A GAP remains complete for

P via bfo+ reductions.

Proof In [187], it is shown that CVAL (or,

equivalently AGAP) is complete for P using

first-order projections. The latter basically

describe the circuit (or, graph) that encodes

the polynomial sized computation tableau of

a polytime Turing machine, where the input

bits need be read only once, at the bottom

level of the tableau. Hence, they are bounded

expansion reductions. The precomputation is

needed to construct the whole circuit. n

For any problem S, that is complete via S~O

reductions, there is another problem S+ that is

ccjmplete via ~~~. reductions. Namely, in S+, a

portion of the structure is “understood” to be

given by some fixed first-order formula, PO. For

example, AGAP+ is given as the set of “graph

inputs” H~ such that H~ coupled with po(Ao,~)

results in a graph in AGAP. Problems, S+, t bus,

are represented by an immutable fixed, first-

order formula, plus the usual (dynamic) input

part.

Lemma 5.4 For any problem S, hard for a

cornplezity class C via bfo+ reductions 9 is

hard for C via <,,0 reductions.

An interesting corollary results, indicating that

AGAP+ is probably not in Dyn-FO. Let

CRAM [t(n)] be the set of problems computable

by uniform CRCW-PRAMS using polynomially

mmch hardware. It is known that FO =

CRAM[l]. It follows that:

Proposition 5.5 Dyn-FO ~ CRAM[n]. Thus,

if A GAP E Dyn-FO+ then P ~ CRAM[n] with

polynomial time precomputation. If A GA*

E Dyn-FO, then P G CRAM[n].

Things are not as nice for lower complexity

classes: L and NL. The reason is that bfo’s

preserve the number of times that the input

is read. (We don’t care about this for P

and above as we may simply copy the input,

reading it once.) We can thus prove that the

standard complete problems for L and NL are

not complete under bfo’s:

Theorem 5.6 1 GAP (GAP) is not complete

for L (NL) via bounded expansion reductions

ulith precomputation.

P’roof In [BRS9 1], the authors define the

following problem: Let F3 denote the field with

3 elements. Let n = 2’. Let A denote the

217

2r x 2“ dimension Sylvester matrix, i.e. an entry

~j of A is 1 (in F3) if the dot product of binary

vectors, i and j, over Z2 is O and –1 (in F3),

otherwise. Let

f(X, Y) = 1, if XTAY = O (in F,)

= O, otherwise

where A is the Sylvester matrix and X and

Y are n column input vectors over F3. Let

NBP~ (~) denote the size of a non-deterministic

branching program computing f such that any

input variable is read only k times along any

accepting path. It was shown by Borodin,

Razborov and Smolensky that

Fact 5.7 ([BRS91]) ~~~k(f) > ezp(n(~)).

For a fixed k, let k-read only (NL) L denote

the class of problems in (non-deterministic)

Logspace such that each input bit is read

only k times (on any accepting computation).

The following property of bounded expansion

reductions is readily proved.

Proposition 5.8 Let S, T be problems. Let

C be any complexity class that is closed with

respect to FO reductions. Let k, k’ be fixed

constants. If S ~bfo T and T E k-read only C

then S E k’-read only C.

lGAP (GAP) is in k-read only L (NL), since

any input bit is read at most once (on any

accepting computation). Since NL is exactly

the class of polynomial sized non-deterministic

branching programs, by the above theorem, f is

not in k-read only NL, for any fixed constant k.

But on the other hand, f is clearly in L. Hence,

assuming that lGAP (or, GAP) is complete for

L via ~~to reductions would imply that f <bto

lGAP. Hence, it would follow from the above

proposition that f G k-read only L (NL), for

some fixed k, which is a contradiction.

In [STV93] the authors define a variant of

GAP, COLORGAP as follows: given an acyclic

directed graph, G = (V, E), edges colored O or 1,

two distinguished vertices, s and t,a partition

of the vertices into equivalence classes, VI,

Vk, and a bit vector C[l, ,.., k], determine if

there exists a path in G from s to t such that

all edges on the path directed out of vertices

belonging to equivalence class Vi have color Ci.

Restating their result in our framework,

Fact 5.9 ([S TV93]) COLOR GAP is complete

for NL via < ~fo+ reductions.

We can define a similar variant of the lGAP

problem, COLORIGAP, as follows: given a

directed graph, G = (V, E), with nodes of out-

degree at most 2, and edges colored O or 1 such

that if a vertex has out-degree 2 then the edges

out of it have different colors, two distinguished

vertices, s and t, a partition of the vertices into

equivalence classes, VI, Vk, and a bit vector

C[l,..., k], determine if there exists a path in

G from s to t such that all edges on the path

directed out of vertices belonging to equivalence

ClaSS Vi have color Ci.

Theorem 5.10 COL OR1 GAP is complete for

L via < bfo+ reductions.

Proof Given any logspace Turing machine,

M, with a binary alphabet and an input w

(all 0’s initially) of length n, we precompute

the polynomial sized acyclic directed graph,

G, where every vertex denotes a configuration

of M, i.e. a Boolean encoding of the state,

the working tape contents and the position

of the input tape head and the working tape

head, and the edges correspond to the moves

of M, i.e. E(z, y) iff configuration z leads to

configuration y in one move of M. Initially, for

any vertex, z, all the edges out of z are colored

O, 1 according to the value of the input bit being

read, and no two edges out of x have the same

color, since M is deterministic. Partition the

vertices such that vertex, x, is in partition i

iff M reads the i-th input in the configuration

corresponding to z, and the bit vector C(i)

equals the value of the i-th input bit, There

is a path from the vertex corresponding to

the initial configuration, s, to that of the final

configuration, f, in G iff M accepts w.

The edges and vertices for the COLORIGAP

problem can be expressed by a FO interpreta-

tion (see, for example, [IL89]). The equivalence

classes and the color vector (initially all O’s) are

trivially expressed by FO interpretations. Now,

whenever an input bit, say the j-th bit, flips, we

just have to flip the corresponding color vec-

tor bit, C(j). The reduction, therefore, has the

bounded expansion property. I

218

6 Dyn-FO versus NC1, L and NL

We have shown that lGAP and GAP(acyclic)

are in D yn-FO. These problems are complete

for L and NL respectively. However, the

problems do not stay complete via bfo’s and so

it does not follow that NL, or even L, or even

NCl is contained in Dyn-FO. We can prove the

following, but most relations between Dyn-FO

and static complexity classes are open.

Theorem 6.1 The following classes of prob-

lems are in Dyn-FO:

1. All regular languages,

2. Dk, the Dyck language on k parentheses, for

any k.

The following classes of problems are in Dyn-FO+:

3, k-read only L, for any k,

~. k-read only NL, for any k.

Proof

1. Let Q denote the state set of any DFA. The

idea is to maintain the fixed sized mapping

Q ~ Q that is induced by every symbol of

the input word, w (Iw [= n) at the leaves of

a balanced binary tree, and at every internal

node the composition of the mappings of its

children. The height of the tree is log n.

Since, the information stored at any node is

only of constant size (2 IQ]), on changing any

symbol, say w [i], a FO formula can guess the

O(log n) bits along the unique path from

leaf i to the root and verify it against the

values of the stored tree relation and then

update it in constant time (by computing

the new composition at the internal nodes

or by a table look-up at the leaf).

2. We show the D2 case. The theorem follows

by an easy adaptation. D2 can be parsed

using the level trick: assign a level to each

parenthesis starting at one and ignoring the

differences in parenthesis type. The level

of a parenthesis equals the number of left

parentheses to its left (including it) minus

the number of right parentheses strictly to

its left. A right parenthesis matches a left

one if it is the closest parenthesis to the

right on the same level. A string is in D2

iff all parentheses have a positive level and

each left parenthesis has a matching right

parenthesis of the same type.

In [BC89], the authors showed that D2 E

TCO. We basically note that the relations

they used can be updated in FO. Let

LEFT(RIGHT)(i) s parenthesis at position

i is a left (right)t ype

LEVEL (i, 1) s parenthesis at position i is

at level 1

MATCH (i, j) s parenthesis at position i

matches parenthesis at j

D2 s input is in D2.

LEFT, RIGHT, MATCH and D2 can be

described by FO formulae. For example,

D2 s (Vi)(31)(/ >0 A LEVEL(i, Z))A

(Vj)(3k)LEFT(j)A RIGHT(k)A MATCH(j, k)

Let {#z : ~(z)} denote the number of Z’S

such that f(z) is true. LEVEL

expressed as:

LEVEL(i, 1) ~ (~y)(y = #a : z < i

A OPEN(Z)]A

is then

.,,
(3z)(z = #z : z < iA

CLOSE(Z))

Ay>z Ai=y–z

Clearly LEVEL is in DYN-FO i.e. LEVEL

can be updated in FO: under an insert (z,’ ~1)

operation, for example, we have for i <

z, LEVEL’(i, 1) same as LEVEL (i, 1), for

i > z, LEVEL’(i, 1) iff LEVEL(i, 1 – 1),

and for i = z, LEVEL’ (Z, 1) iff for some

m, LEVEL(Z – 1, m) and ((1 = m – 1

and OPEN(Z – 1)) or (CLOSE(Z – 1) and

1 = m)). The deletes and insert of a closed

parenthesis can be handled similarly.

3. Given a logspace Turing machine, M, we use

the standard polynomial (actually FO) pre-

computation (see, for example [187], [P]) to

build the acyclic directed graph, G, (with

out-degree at most 1) corresponding to M‘s

computation on blank input. Then, for

any bit change in the input, by assump-

tion, since it is read only constant num-

ber of times, only constantly many edges

are altered in G. Thus, we can maintain the

reachability on G in DYN-FO by composing

219

4.

the DYN-FO algorithm for lGAP constant

number of times.

Given a non-deterministic logspace Turing

machine, M, we use the standard polyno-

mial (actually FO) precomputation (see, for

example [187], [P]) to build the acyclic di-

rected graph, G, corresponding to M’s com-

putation on blank input. Then, for any bit

change in the input, by assumption, since

it is read only constant number of times,

only constantly many edges are altered in

G. Further we can assume the new edges

that result are always such that acyclicity

of G is preserved, since w.1.o.g. the com-

putation graph can always be made cyclic.

Thus, we can maintain the reachability in-

formation for G in DYN-FO by composing

the DYN-FO algorithm for (acyclic) GAP

constant number of times. n

Note that proofs of 3. and 4. above actually

show that

Theorem 6.2 1. 1 GAP is complete for k-

read only L via < ~fo+ reductions.

.2. GAP is complete for k-read only NL via

< bfo+ reductions.

7 Conclusions

We have defined dynamic complexity classes,

and their reductions. In particular, we have

begun an investigation of the rich dynamic

complexity class D yn-FO. Much work remains

to be done. We point towards a few of the many

directions.

1.

2.

3.

Does Dyn-FO contain any of the complexity

classes: TCO, NC!l, L, NL? We conjecture

that TCO ~ Dyn-FO and that AGAP @

Dyn-FO, thus P ~ Dyn-FO.

Further work needs to be done concerning

the role and value of precomputation in the

dynamic setting.

Many of our constructions showing prob-

lems in Dyn-FO could be improved. For ex-

ample, in Theorem 4.1, is UGAP E Dyn-FO

using only relations of arit y 2? The tradeoff

of %umber of extra bits saved” versus “sav-

ings in dynamic time” deserves a great deal

of further study,

8 Acknowledgements

Thanks to Ron Fagin for helpful

a previous version of this paper.

comments on

References

[ACF90]

[A*90]

[BC89]

[BRS91]

[CF189]

[cH82]

[CT91]

[DS93]

[DST93]

B. Alpern, L. Carter and E. Feig. Uni-

form memory hierarchies. In Proceed-

ings of the Thirty-jira t st Symposium

on Foundations of Computer Science,

pages 600-608, 1990, IEEE.

B. Alpern, R. Hoover, B. K. Rosen,

P. F. Sweeney and F. Kenneth Zadeck.

Incremental evaluation of computa-

tional circuits. In Proceedings of the

Fir8t Sympo8ium on Discrete Algo-

rithms pages 32–42, 1990, ACM-SIAM.

D. M. Barrington and J. C. Corbett.

On the relative complexity of some

languages in NCl. In Technical Re-

port pages 89–22, 1989, Department of

Computer Science, University of Mas-

sachuset ts, Amherst.

A. Borodin, R. Razborov

and S. Smolensky. On lower bounds

for read-k times branching programs.

In Preprint, 1991, Department of Com-

puter Science, University of Toronto.

J. Cai, M. Fiirer and N. Immerman.

An optimal lower bound on the number

of variables for graph identiflcat ion. In

Proceedings of the Thirtieth Sympo8ium

on Foundation of Computer Science

pages 612–617, 1989, IBEE.

A. Chandra and D. Harel, Structure

and complexity of relational queries.

In Journal of Computer and System

Sciences 25 pages 99-128, 1982.

R. Cohen and R. Tamassia. Dy-

namic expression trees and their appli-

cations. Proceedings of the Second An-

nual SODA, 1991, ACM-SIAM.

G. Dong and J. Su. Incremental

and decremental evaluation of transi-

tive closure by first-order queries. In

Preprint, 1993, Department of Com-

puter Science, University of California,

Santa Barbara.

G. Dong, J. Su and R. Topor. First-

order incremental evaluation of Data-

log queries. In proceeding of the inter-

national Conference on Database The-

ory, Lecture Notes in Computer Science

646, 1992, Springer Verlag.

220

[E*92]

[Fa74]

[F83]

[GMS93]

[G83]

[191]

[189]

[IL89]

[187]

[J92]

[LST87]

D. Eppstein, Z. Galil, G. F. Italiano

and A. Nksenzweig. Sparsification -

A technique for speeding up dynamic

graph algorithms. In Proceedings of the

Thirty- 8econd Symposium on Founda-

tions of Computer Science, 1992, IEEE.

R. Fagin. Generalized first-order spec-

tra and polynomial-time recognizable

sets. In Complexity of Computation,

(cd. R. Karp), SIAM-AMS Proceedings

7, pages 27-41, 1974, SIAM-AMS.

G. F. Fredrickson. Ambh.lent data

structures for dynamic 2-edge connec-

tivity and k smallest spanning trees. In

Proceedings of the Thirty-second Sym-

po8ium on Foundations of Computer

Science, 1991, IEEE.

A. Gupta, I. S. Mumick and V. S. Sub-

rahmanian. Maintaining views incre-

mentally. In Proceedings of the 1993

ACM SIGMOD, pages 157-166, 1993,

ACM.

Y. Gurevich. Algebras of feasible

functions. In Proceedings of the

Twenty-fourth Sympoaiumon Founda-

tions of Computer Science, pages 210–

214, 1983, IEEE.

Neil Immerman. DSPACE[nk] =

VAR[k + 1]. In Proceedings of the Sizth

Symposium on Structure in Complex-

ity Theor~, pages 334-34o, July 1991,

IEEE.

N. Immerman. Descriptive and compu-

tational complexity. In Computational

complexity theory, ed. J. Hartmani8,

Proceedings of Symposium in Applied

Mathematics, 38, pages 75-91, 1989,

AMS.

Neil Immerman and Susan Landau.

The complexity of iterated multiplica-

tion. In Proceedings of the Fourth An-

nual Sympo8ium on Structure in Com-

plexity Theory pages 104-111, 1989,

IEEE; revised version to appear in in-

formation and Control.

Neil Immerman. Languages that cap-

ture complexity classes. In SIAM Jour-

nal of Computing 16, No. 4, pages 760-

778, 1987.

H. Jakobsson. On materializing views

and on-line queries. In Proceedings of

International Conference on Databa8e

Theory, Berlin, pages 407–420, October

1992.

J. W. LLoyd, E. A. Sonenberg and

R. W. Topor. Integrity constraint

checking in stratified databases. In

Journal of Logic Programming, 4(4),
pages 334–343, 1987.

[M94] J. A. Medlna-Peralta. On NP-

completeness under First Order Projec-

tions. In Working paper, 1994, Com-

puter Science Department, University

of Massachusetts, Amherst.

[MSVT93] Peter Bro Mdtersen, Sairam Subrama-

[N82]

[PY88]

[P]

[P94]

[P194]

[R92]

[STV93]

[u]

[Var]

nian, Jeffrey Scott Vit ter, and Roberto

Tamassia. Complexity models for incre-

mental computation. In Preprint, 1993.

J-M. Nicolas. Logic for improving in-

tegrity checking in relational databases.

In Acts Informatica, 18(3), pages 227-

253, 1982.

C.H. Papadlmitriou and M. Yan-

nakakis. Optimization, approximation

and complexity classes. Proceedings

of the Twentieth ACM Symposium on

Theory of Computing, pages 229-234,

1988, ACM.

C. H. Papadimitrou. In Computational

Complexity, Academic Press, 1994.

S. Patnaik. The dynamic complexity

of approximation. In Technical Report,

1994, Computer Science Department,

University of Massachusetts, Amherst.

S. Patnaik and N. Immerman. Dyn-FO:

A parallel dynamic complexity class. In

Technical Report, 1994, Computer Sci-

ence Department, University of Mas-

sachusetts, Amherst,

M. Rauch. Fully dynamic biconnec-

tivity in graphs. Proceeding of the

Thirty-third Annual IEEE Symposium

on Foundation of Computer Science,

1992, IEEE.

S. Sairam, R. Tamassia and J. Vlt ter.

A complexity theoretic approach to in-

cremental computation. Proceedings of

the Second Symposium on Theoretical

A8pect8 of Computer Science, 1993.

Jeffrey D. Unman. In Principles of

database and knowledge-bade 8y8tem8,

Volume 11, 1989, Computer Science

Press, Rockville, MD.

M. Vardi. Complexity of relational

query languages. In Proceeding of

the Fourteenth Symposium on Theory

of Computation, pages 137-146, 1982,
ACM.

221

