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Abstract

We present a functional framework for database query lan-

guages, which is analogous to the conventional logical frame-

work of first-order and fixpoint formulas over finite struc-

tures. We use atomic constants of order O, equality among

these constants, variables, application, lambda abstraction,

and let abstraction; all typed using fixed order (< 5) func-

tionalities. In this framework, proposed in [21] for arbitrary

order functionalities, queries and databases are both typed

lambda terms, evaluation is by reduction, and the main pro-

gramming technique is list iteration. We define two fami-

lies of languages: TLI~ or simply-typed list iteration of or-

der t + 3 with equality, and MLI~ or ML-typed list iteration

of order i+3 with equality; we use i+3 since our list represen-

tation of databases requires at least order 3. We show that:

FO-queries G TLI~ c MLI~ G LOGSPACE-queries ~

TLI~ = MLI~ = PTIME-queries ~ TL12, where equality

is no longer a primitive in TLIz. We also show that ML

type inference, restricted to fixed order, is polynomial in the

size of the program typed. Since programming by using low

order functionalities and type inference is common in func-

tional languages, our results indicate that such programs

suffice for expressing efficient computations and that their

ML-types can be efficiently inferred.

1 Introduction

Motivation and Background: The logical frame-

work of first-order and fixpoint formulas over finite

structures has been the principal vehicle of theoretical

research in database query languages; see [17, 18, 12, 13]

for some of its earlier formulations. This framework has

greatly influenced the design and analysis of relational

and complex-object database query languages and has
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facilitated the integration of logic programming tech-

niques in databases. The main motivation has been

that common relational database queries are expressible

in relational calcuhis/algebra [17], Dataiogl and various

jixpoint Zogics [4, 5, 29, 13, 14]. Most importantly, as

shown in [23, 38], every PTIME query can be expressed

using Datalog’ on ordered structures; and, as shown

in [4], it suffices to use Datalog= syntax under a variety

of semantics to express various fixpoint logics. In addi-

tion, extensions have been proposed to this framework

to manipulate complex-object databases, based on high-

order formulas over finite structures, e.g., [2, 1]; see [3]

for a short overview.

Despite the success of logical frameworks, it is

not clear how to use them for the description and

manipulation of object-oriented databases. Functional

programming, with its emphasis on abstraction and on

data types, might provide more insight into object-

oriented database problems. There is a growing

body of work on functional query languages, from

the early FQL language of [11] to the more recent

work on structural recursion as a query language

[8, 10, 9, 25, 39]. In this context, it is natural

to ask: “Is there a functional analog of the logical

framework of first-order and fixpoint formulas over finite

structures?” In [21] we partly answered this question

by computing on finite structures with the typed A-

calculus. In this paper, we cent inue our invest igat ion

with a focus on fixed order fragments of the typed

A-calculus, where order is a measure of the nesting

of type functionalities. We show these fragments are

functional analogs of relational calculus/algebra and

fixpoint characterizations of PTIME.

The simp/y typed A-calculus [15] (typed A-calculus

or TLC for short) with its syntax and beta-reduction

strategies can be viewed as a framework for database

query languages which is between the declarative calculi

and the procedural algebras. We use the “Curry

view” of TLC without type annotations and infer

monomorphic or simple types. We also use TLC=,

the typed A-calculus with atomic constants and an

equality on them, and the associated delta-reduction
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of [15]. By adding let-polymorphism to TLC, Milner’s

ML language [34, 35] combines the convenience of type

inference and the flexibility of polymorphism. So we

also consider ML-typings. We refer to Section 2 for

the necessary background in TLC (Section 2.1), ML

(Section 2.2), and list iteration (Section 2.3).

The expressive power of TLC was originally analyzed

in terms of computations on simply typed Church

numerals (see, e.g., [6, 19, 36] ). Unfortunately, the

simply typed Church numeral input-output convention

imposes severe limitations on expressive power. Only a

fragment of PTIME is expressible this way (i.e., the

extended polynomials). This does not illustrate the

full capabilities of TLC. That more expressive power

is possible follows from the fact that provably hard

decision problems can be embedded in TLC, see [37, 33],

and that different typings allow exponentiation [19].

One way of expressing all of PTIME, while avoid-

ing the anomalies associated with representations over

Church numerals was recently demonstrated by Leivant

and Marion [31]. By augmenting the simply typed

lambda calculus with a pairing operator and a “bottom

tier” consisting of the free algebra of words over {O, 1}

with associated constructor, destructor, and discrimi-

nator functions, they obtained various calculi in which

there exist simple characterizations of PTIME. (Since

Cobham’s early work there have been a number of in-

teresting junctional characterizations of PTIME, e.g.,

[16, 20, 7]). In summary, to exhibit the power of TLC

one must add features as in [31] and/or modify the

input-output conventions.

In [21] we re-examined the expressive power of

the typed A-calculus, but over appropriately typed

encodings of finite structures. We examined both the

“pure” TLC and the “impure” TLC= and we obtained

the following results: (1) TLC expresses exactly the

elementary queries and, thus, is a functional language

for the complex-object queries of [1]. (2) Every PTIME-

query can be embedded in TLC so that its evaluation

can be performed with a PTIME reduction strategy.

(3) Every PTIME-query can be embedded in TLC=,

where the order of type functionalities is 4, so that its

evaluation can be performed with a PTIME reduction

strategy.

In this paper we analyze fixed order fragments of TLC

and TLC=. More specifically we use: atomic constants

of order O, equality among these atomic constants, vari-

ables, application, lambda abstraction, and let abstrac-

tion; all typed using at most order 5 functionalities. In

this framework queries and databases are both typed

lambda terms, evaluation is by reduction, and the main

programming technique is list iteration. We define two

families of languages: TLI~ or simply-typed list itera-

tion of order i+ 3 with equality, and MLI~ or ML-typed

list iteration of order i+3 with equality (we use i+3 since

our list representation of databases requires at least or-

der 3). Our input-output conventions are detailed in

Section 3, for inputs (Section 3.1) and for queries (Sec-

tion 3.2). We assume knowledge of the logical database

framework.

Contributions: Our new results are detailed in Sec-

tions 4–7 and are as follows:

(1) In Section 4.1 we show that: FO-queries ~

TLI~ ~ MLI~. These proofs are variants of those

in [21], but on encodings that are more economical in

order of functionality. We also show that by varying the

typing of equality (but not its order) it is possible to

express Parity, Majority and other non-FO queries. In

Section 4.2 we briefly review the embedding of PTIME-

queries in TLI~ of [21] and illustrate the use of types.

For all these programs there are PTIME reduction

strategies.

(2) In Section 5 we investigate the flexibility of ML-

typing. We show that for fixed order functionalities

ML-type inference is PTIME in the size of programs.

In general, type inference is EXPTIME-complete in

the size of programs [26, 27]. Thus, in our MLI

languages type inference is provably efficient. These

languages do simplify our calculations. For example,

PTIME-queries ~ MLI~ is provable without any of the

“type laundering” techniques of [211.

(3) In Section 6 we present th~ main analytic results

of this paper. These are upper bounds on the express-

ibility of the TLI and MLI languages for i = O, 1. To

show these upper bounds we have to reason based on our

input-output conventions. More specifically we prove

that: TLI~ ~ MLI~ ~ PTIME-queries and TLI~ ~

MLI~ ~ LOGSPACE-queries. These proofs involve an

analysis of the structure of programs (Section 6.1) and

an evaluator of programs (Section 6.2), which uses re-

duction plus specialized data structures. One conse-

quence of this analysis is a functional characterization

of PTIME that differs from those of [16, 20, 7, 31] in

the sense of having the fewest additions to TLC—just

equality over atomic constants.

(4) In Section 7 we show that every PTIME-query

can be embedded in TL12, or TLC where the order

of type functionalities is 5, so that its evaluation can

be performed with a PTIME reduction strategy. This

improves on [21] since it removes equality and still uses

fixed order.

Finally, we would like to note that our analysis

(except for the ML type inference) is for terms of order 5

or less. Beyond order 5 we believe (although we have not

worked out the details here) that it should be possible

to combine our basic machinery with the reductions

of [28, 22, 30] to express various exponential time and

space classes.

We close with some open questions in Section 8.
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2 Typed Lambda Calculus Programs

2.1 The Simply Typed Lambda Calculus:

TLC and TLC=

TLC: The syntax of TLC types is given by the

grammar T s t [(7 + 7), where t ranges over a set of

type vartabies. For example, CYis a type, as are (a e /3)

and (a ~ (a ~ a)). TLC A-terms are given by the

grammar ~ s * [ (~~) I Ax. S, where z ranges over a

set of expression variables, and by well- typedness. By

standard convention, the type a + ~ --+ ~ stands for

~ + (/3 + ~) and the A-term PQR stands for (PQ)R.

WelLtypedness of expressions is defined by the follow-

ing inference rules, where r is a function from expres-

sion variables to types, and I’[~: u] is the function I“

augmenting or updating 17 with r’(z) = a:

(VAR)

(ABs)

r(x) = u

r~x:u

(APP)
rl-e:ueu’ 17he’:u

rl-ee’:u’

We call a A-term E well-typed (or just typed) if r F E: u

is derivable by the above rules, for some I’ and u.

In the above definition, we have adopted the ‘(Curry

View” of TLC, where types are inferred for unadorned

terms using the (Var), (Abs), and (App) rules. Equiva-

lently, we could have chosen the “Church View,” where

types and terms are defined together and A-bound vari-

ables are annotated with their type (i. e., we would have

Jz: o. e instead of Ax. e in the (Abs) rule). In fact, in our

encodings below we will often provide type annotations

to make the type of a term clear.

For typed ~-terms e, e’, we write e Da e’ (a-reduction)

when e’ can be derived from e by renaming of a A-bound

variable, for example h. ~y. y ba k. J.z. z. We write

e Dp e’ (~-reduction) when e’ can be derived from e

by replacing a subterm in e of the form (Az. E)E’ by

E[E’/~] (E with E’ substituted for all free occurrences

of z in E). Reduction preserves types. Let b be the

reflexive, transitive closure of ba and b~.

TLC=: We obtain TLC= by enriching the simply-

typed A-calculus syntax with: (1) a count ably infinite

set {o~, o~, . . .} of atomic constants of type o (some

fixed type variable), and (2) introducing an equality

constant Eq of type o -+ o -+ r -+ 7 -+ r (for some fixed

type variable r different from o). The type inference

system is the same with one modification: the I“s must

treat the constants as free variables associated with the

fixed types o and o + o ~ r -+ r + r, respectively.

The reduction rules of TLC= are obtained by enrich-

ing the operational semantics of TLC as follows. For

every pair of constants Oi, Oj: o, we add to D the reduc-

tion rule

These are known as delta reductions.

TLC and TLC= enjoy the following properties,

see [15, 6]:

Church-Rosser: If e be’ and e b e“, then there exists

a A-term e’” such that e’ b e’!’ and e“ D e’”.

Strong normalization: For each e, there exists an

integer n such that if e be’, then the derivation involves

no more than n individual /3-reductions.

Principal Type: A typed A-term E has a principal

type, that is a type from which all other types can be

obtained via substitution.

Type Inference: One can show that given E it is

decidable in linear time whether E is a typed A-term.

Also, given r t- E: u it is decidable in linear time if

this statement is derivable by the above rules. (Both

these algorithms use first-order unification, e.g., see [26].

They work with or without type annotations and with

or without constants in the Ins.)

Functionality Order: The order of a type, which

measures the higher-order functionality of a A-term of

that type, is defined as o(t) = O for a type variable t,

and O(U’ ~ u“) = max(l + o(u’), o(cr’’)). We also

refer to the order of a typed ~-term as the order of

its type. Note that, the order of the fixed type variables

o and r is O, The above definitions and properties hold

for fragments of TLC and TLC=, where order of terms

is some fixed k. In such fragments we use the above

inference rules (Var), (Abs), and (App), but with all

types restricted to order k.

2.2 let-Polymorphism: Core-ML

Core-ML: The syntax of core-ML is the syntax of

TLC augmented with one new expression construct:

g = z I (g:) I Az. S I letx=~in~. The

simplest way of explaining ML types involves the same

monomorphic types and rules (Var), (Abs), and (App)

used for TLC with one additional rule that captures the

polymorphism (see [26]):

(LET)
r & e’:a’ r 1- e[e’/z]:a

17tletx=e’ine:u

We call a A-term E MLtyped if r 1- E: u is derivable

by the (Var), (Abs), (App), and (Let) rules, for some

17 and u. The operational semantics for let z =

M in iV is the same as for (kc. iV)i14. So core-ML has

the same expressive power as TLC. However, core-ML

allows more flexibility in typing,

For example, let z = (Az. z) in (zz) is in core-

ML but (Az. ZX)(AZ. z) is not in TLC; the equivalent
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program in TLC is what we get after one reduction of

(A%. ZZ)(AZ. z), namely (Az. .z)(Az. z).

The analogous definitions, expressibility, principal

type and type inference properties hold for core-ML=,

where constants and their equality are added as in

TLC=. Order of functionality is defined in the same

way. There are two differences: (1) Type inference is no

longer in linear time but EXPTIME-complete [26, 27].

(2) Arbitrary order core-ML, core-ML=, TLC, and

TLC= all have the same expressive power, but for

fixed order type inference allows more core-ML than

TLC programs to be typed, so it might provide more

expressibility.

2.3 Element ary Recursion via List It erat ion

We briefly review how list iteration works. Let

{ZI, Z2,..., xk } be a set of hterms, each of type a; then

L= Ac:a+u+ u. An:u. cz~(cz~. . .(cz~ n)...)

is a A-term of type (a ~ u ~ u) -+ u - a, for any

type u—in other words, L is a typable term no matter

what type a we choose (though one fixed term must

be chosen when we compute). We abbreviate this list

construction as [Zl, zz, . . . . ~k]; the variables c and n

abstract over the constructors cons and nil.

For example, a standard coding of Boolean logic uses

True = ~x: r. ~y: T. x and False= Ax: T. Ay: T. y, both of

type Bool s ~ ~ r + ~. Define the exclusive or as

Xor = ~p: Bool. Aq: Bool. k: r. Ay: T. p(qyz)(qxy), and

the parity of a list of Boolean values as

Parity s AL: (Bool + Bool + Bool) + Bool + Bool.

L Xor False.

Unlike circuit complexity, the size of the program

computing parity is constant, because the iterative

machinery is taken from the data, i.e., the list L. List

iteration is a powerful programming technique, which

can be used in the context of TLC and TLC= to encode

any elementary recursion [37, 33]. However, some care

is needed if one is to maintain well-typedness [21].

3 Representing Databases and Queries

3.1 Databases as Lambda Terms

Relations are represented in our framework as follows.

Let O= {01, 02,... } be the set of constants of the TLC=

calculus. For convenience, we assume that this set of

constants also serves as the universe over which relations

are defined.

Let ?’ = {(ol,l, ol,z, . . ..ol. k), (oz,l, oz,z, oz, k ),,,), ...,

(%)1, %,2,..., om,k)} ~ Ok be a k-ary relation over O.

An encodang T of r is the A-term

Ac. An.

(col,~o~,z. .ol,~

(coz,# 02,2.. .Oz,k

. . .

(com,l %)2.. .Om,k n).. .)),

which can be thought of as a generalized Church

numeral that not only iterates a given function a certain

number of times, but also provides different data at each

iteration.

If r contains at least two tuples, the principal type

clfFis(o~... +o+a+a)+a +a, where

or is a free type variable. 1 The order of this type is 2,

independent of the arity of r. We abbreviate this type

as o;. Instances of this type, obtained by substituting

some type expression O for u, are abbreviated as o!, or,

i-f the exact nature of O does not matter, as o:.

It is fairly easy to see that a principal type of o:

characterizes the generalized Church numerals in the

following sense:

Lemma 3.1 Let f be any TLCT term without free

variables and an normal form (i. e., with no beta-

or delta-reduction possible) of type o;, where u M

u type variable different from o. Then eather f ❑

)\c. col,l . . . o~,k or f ❑ ~ for some re!at~on r ~ Ok.

Remark: Since the two terms Ac. Col,l . . . ol,k and

J\c. An. CO1,l . . . ol,kn, q-convert (see [6]) to each other,

they cannot be distinguished at the type level. For this

reason, we allow both forms as valid representations of

relations cent aining just one tuple.

3.2 Query Languages

We now define our query languages. For purposes of

comparison we use the same syntax in both TLI and

ML1 definitions. That is, in MLI we interpret the

outermost A’s as let ‘s. The other let’s in MLI can

be eliminated, without problems of expressibility or (as

we later show) type inference.

IDefinition 3.2 A query program of arity (kl, . . . . kl, k)

in TLI~ (the language of typed list iteration of order

i + 3 with equality) is a typed TL ~ term Q of order

i + 3 such that: Q has the form JRI . . .JR1. M and for

ever-y database of arity (kl, . . . . k. encoded by =. . .fi

it is possible to type (AR1 . . . AR1. M)fi. . .fi as o~.

IDefinition 3.3 A query program of arity (kl, . . . . kl, k)

in MLI~ (the language of ML-typed list iteration of or-

der i + 3 with equality) is a typed core-ML= term Q of

torder i + 3 such that: Q has the form AR1 . . AR1. M

(and for every database of arity (kl, . . . . kl) encoded by

??. . .E it is possible to ML-type (~Rl . . . AR1. M)fi. . .T

as o~ wtth the btndings ARI . . . ARl typed as let ‘s.

1 E ~ is ~mpt~ OT contains only one tqie, tfis type is OdY m
instance of the principal type of 7.
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These definitions are semantic because they involve

quantification over all inputs. By Lemma 3.1 and the

fact that r is a type variable different from o, it is easy to

see that every program in these languages is guaranteed

to have a correct output given correct inputs. These

semantic definitions can be made syntactic:

Lemma 3.4 Gtven (kl, . . . . Ict, k) and a typed A-term

(JR, . . .AR1. M) of TLF or core-i14L= of order i + 3

one can eflciently decide ~f tt ts a query program of arzty

(k,,..., kl, k) of TLC or ML~, Moreoverj all inputs

to this term can be typed with the same monomorphic

type.

Remark: In the setting of these query languages

input and output terms are monomorphically typed.

However, unlike [19, 36], we allow that the monomorphic

types of inputs and outputs differ. Outputs are always

typed as oj but inputs can be typed as o;. This

convention is necessary for expressing all of PTIME.

4 Embedding Queries in TLI~ and TLI~

To illustrate the power of list iteration, we show how

to express various well-known database queries in TLI~

and TLI~. Our encodings show that TLI~ expresses

relational algebra and that TLI~ expresses all PTIME

queries. If, in addition to the typing Eq: o * o -+

7 ~ I- A r prescribed in Section 2.1, we also allow

Eq to be typed as Eq: 0-0 --t 0-0 ~ o (thereby

introducing a weak form of polymorphism), we obtain a

version TLI~ of TLI~ that expresses relational algebra,

parity, majority, and (deterministic) graph accessibility.

4.1 Embedding in TLI~ and TLI~

Relational Algebra: In [21], we showed how to

express relational algebra using list iteration. Due to

a different input/output format, our encodings involved

A-terms of order 5. With straightforward modifications,

these terms work under the present input/output

conventions and the rank drops down to 3. We give

the Cartesian product and intersection operators as

examples and refer the reader to [21] for the other

operators.

Times: o~ -+ O( -+ o~+l ~

JR: Oz. AS: 0;.

Ac:Od. .-0~7-An:An: r.

R(Axl:o. . . kk: O. AT: ‘T.

S(Ayl:o.. .Ay,:o. Au:T.

Czl. . .~~yl. ..yl U)T)n

R(Axl:o. . .bk:o. AT: T.

(Memberzl . ..z~S)(czz kT)T)n)T)n

where

&
Member: o -+ ~. . +o+o~-+Bools

~xl:o. ..~xk:~l?,:o; o;.

~u:T. All: T.

R(Ayl: o... )Iyk :0. AT: T.

Eqxly~(Eqx~ y~. ..(Eqzkyku T)T) . ..T)v

Parity: The following term computes whether a rela-

tion R contains an odd or even number of tuples. If

the cardinality of R is even, the output is the singleton

list [1], otherwise it is the singleton list [0] (here O and 1

are TLC constants). The type of Eq in this example is

0 + 0-0 + o a o, i.e., this term is a TLI& query.

Parity: o: ~ o~ ~

JR: 0;.

Ac:o-+T+T. An:T.

C(R(AX1: O... ~~k:o. AP:o. (Eq PO) 10)0) n

Majority: Here the input consists of a binary rela-

tion R, where each tuple contains a unique constant in

the first column (to make the tuple unique) and either

the constant 1 or the constant O in the second column.

The task is to determine whether there are more 1‘s

than O’s in the second column. The following term de-

cides this, reducing to [1] if the answer is ‘(yes” and

to [0] otherwise. It uses the “labels” in the first column

of R as numbers, treating the (unique) constant in the

first column of the i-th tuple of R as the number i – 1.

Again, this term is a TLI& query.

Majority: o: -+ o; ~

AR: O:.

Ac:o+T+T. An:T.

c ( Compare~

(R(AcI:o. ~XZ:O. ~T’:o.

(Eq Xz 1) (Succ~ T) T) First~)

(R(~x,:o. ~XZ:O. ~T:o.

(Eq z, O) (Succ~ T) T) First~)

OOl)n

Here, FirstR, SUCCR, and CompareR are functions that

operate on the “labels” in the first column of R. ~h’stR

returns the label of the first tuple in R, (SUCCR z)

returns the label of the tuple following the one labeled z,

and ( CompareR x y a b c) compares the positions in R of

the tuples labeled x and y, reducing to a if x precedes y,

to b if z and y are equal, and to c if y precedes z. These
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terms can be written as follows:

FirstR s

R(kcl:o. Az2:o. AT:o. W) O

(SUCCR z) =

R (Azl: o. AZ2: o. AT: o. Compare~ ZI ZTTZI) z

(COmpareR z y a b c) ~

R(}zl: O. ~z~: O. AT: O.

Eqzyb(Eqxl za(EqzlycT)))b

Deterministic Graph Accessibility: Suppose that

G is a directed graph in which each node has at most one

outgoing edge. The (deterministic) graph accessibility

problem consists of determining, for two given vertices

(u, v), whether there is a path in G from u to v. We

assume that G is given as a binary relation R containing

tuples of the form (z, Parent(z)) and that S is a binary

relation containing a single tuple (u, v). The following

TLI~ term decides whether u is an ancestor of v in G,

reducing to [1] if the answer is “yes” and to [0] otherwise.

The idea is to use the list R twice: in an inner loop, to

compute the parent of a vertex, and in an outer loop,

to iterate the parent operation until either the desired

vertex is found or IR] iterations have been done.

DGAP:o~ ~ 0: -+ 0: 5

AR: 0;. AS: 0;.

~C:O+’T+T. ~n:T.

c(S (~uv: o. AW: o. Eqv (Ancestor u) 10) O) n ,

where

(Ancestor u) s

R(Az1: o. AZ2: o. AT: o. (Eq Tv) T(Parent T)) u

and

(Parent v) = R(Az1: o. XC2: o. AT: o. (Eqzl v) z, T) v

It is interesting to note that deterministic graph acces-

sibility is LOGSPACE-complete for first-order reduc-

tions [24], but only if vertices can be labeled by tuples

of constants. This means that an instance of the prob-

lem consists of a 2k-ary relation R such that each tu-

ple (zl, . . ..x~. yl, . . . , Y~ ) E R denotes an edge from

the vertex labeled (ZI, . . . . xk ) to the vertex labeled

(YI ,..., Yk).

It seems that this more general version of graph

accessibility cannot be expressed in TLI~, since it

requires list iteration over tuples of constants, which

cannot be encoded as TLC= objects of order O. Thus,

the expressive power of TLI~ appears to fall short of

LOGSPACE. It is possible to express all of LOGSPACE

by adding tuples of constants as primitive objects to the

language, but this would sacrifice the simplicity of the

framework to some extent. (It can be shown that the

TLI: ~ LOGSPACE result of Section 6 holds true even

if TLI~ is augmented with a polymorphic equality and

tuples; so TLI~ + tuples = LOGSPACE.)

4.2 Embedding in TLI~

TLI~ is not powerful enough to compute fixpoints of

relational queries, because the language only allows the

iteration of mappings from order-zero objects to order-

zero objects. It is necessary to go to TLI~ so as to

iterate mappings from relations to relations. That TLI~

is sufficient follows from the encodings given in [21], plus

the fact that over a known domain, relations can be

represented by order-one objects, namely characteristic

Jbnctions. The characteristic function $, of a k-ary

relation r is a TLC= term of type o + . . ~ o -+ Bool,

such that for any k constants oil, , Oik,

(fr oil . . .
{

u )if(o~l, . . ..o~~ Cr,
O~kUV) b ~

if(o~l,..., o~k)~r.

Since the domain of a query can be computed from the

input relations (by forming the union of all columns), it

is possible to write ~-terms FuncToList and ListToFunc

that translate between the iterator and characteristic

function representation of a relation. Using these

operators, a fixpoint query can be expressed in TLI~

essentially as follows:

TzAR1... ARl.

FuncToList

(Crank

(M. Af. ListToFunc(Q (FuncToList f)))

(ListToFunc Nil)),

where Q = AR. Q’ is the encoding of the first-order

(query to be iterated (with R1, . . ., R1 occurring free

in Q), Nil = Ac. An. n denotes the empty list, and Crank

is a sufficiently large cross product of the input relations,

/serving as a “crank” to iterate Q a polynomial number

of times.

As explained in [21], additional care is necessary

to make T typable using monomorphic types. This

is because the inputs RI ~. . . . R1 are used to iterate

both over order-one objects (in Crank) and over order-

zero objects (in Q). With monomorphic types, this is

normally impossible. However, [21] shows how to get

around this problem by introducing a “type-laundering”

operator that essentially turns it erat ions over order-zero

objects into iterations over order-one objects. By using

this operator inside Q, the term T becomes typable in

the monomorphic type system.

A much simpler way around this problem is the use

of let-polymorphism: By rewriting T as

let R1=fiin. ..let Rl=fi in
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FuncToList

(Crank

(~;. Af. ListToFun. (Q (FuncToList f)))

(ListToFunc Nil)),

where fi, . . . . flare the encodings of the input relations,

the variables RI, . . . . Rf are declared to be polymorphic,

so it does not matter that their occurrences in Crank

and Q require different types. We will show in the next

two sections that the presence of let does not affect the

expressive power of TLI~ and that for fixed order, let-

expressions can be type checked in polynomial time, so

the introduction of let-polymorphism facilitates a more

natural programming style at no additional cost.

5 let-Polymorphism and MLI;

As shown in the previous section, ML polymorphism

provides flexibility in programming fixpoints. The let

construct is used in the various MLI’s to receive the

inputs, but also can be used in the body of the program.

The occurrences of let in the program body can be

eliminated by reduction at the expense of program body

length [26]. A problem with use of let in the program

body is that type inference may become inefficient. We

show, however, that the fixed order restriction can be

used to eliminate this inefficiency.

Theorem 5.1 For each fixed k, type inference in

order k core-ML= is polynomial in the program size.

The proof has two parts. The first part involves the

rules (Var), (Abs), and (App). In general, to achieve

PTIME type inference in TLC one must use directed

acyclic graph representations of types. For fixed order,

we show that tree representations of unbounded fan-out

and fixed depth suffice. The second part involves the

rule (Let). Using the tree representations of the first

part it is possible to produce a polynomial bound on

the fan-out of the tree representations.

6 PTIME and the Power of TLI~

In this section, we show that TLI~ and MLI~ queries

can be evaluated in time polynomial in the size of

the input relations. The evaluation algorithm is

essentially a ~-reduction engine, augmented with certain

“optimizations)’ made possible by the restrictions on the

I/O-behavior and the order of the query term. These

“optimization” ensure that all terms occurring during

the reduction sequence are of polynomial size.

6.1 The Structure of TLI~ Terms

In the following, let Q be a fixed TLI~ or MLI~ term,

We can assume that Q is in normal form, because the

reduction to normal form can be done in a preprocessing

step that does not figure in the data complexity of

the query. We can also eliminate all let-expressions

from Q by replacing every subterm of the form “let

x = N in Ivf” with lbf[N/x] and by agreeing that

variables corresponding to input relations are to be

polymorphically typed.

It is convenient to introduce some terminology for the

subterms of Q. Since Q is in normal form, every subterm

of Q is of the form ~xl.~x2 . . .~xk. f~l . . .Ml, where

k,l>O, xl,..., xk and f are variables, and Ml, . . . . A41

are terms. An occurrence of a subterm T is called

complete if k and 1 are maximal, i.e., if the occurrence is

not of the form (k. T) or (TS). In this case, Ml, . . . . lf~

are called the arguments off and f is called the function

symbol governing the occurrence of Lfi for 1 < i < 1.

It is easy to see that for every occurrence of a subterm

of Q, there is a smallest complete subterm containing

that occurrence. In particular, every occurrence of a

variable in Q not immediately to the right of a ~ is

the governing symbol for a well-defined (but possibly

empty) set of arguments.

In order to simplify the evaluation algorithm, we

will first preprocess Q into an equivalent query term

with certain structural properties. This transformation

is independent of any input relations, i.e., its data

complexity is O(1). The following definition specifies

the special kind of term the evaluation algorithm

operates on.

Definition 6.1 Let Q be a TLIf term mapping 1 rela-

tions of arities kl, . . . . kl to a relation of arity k. Q M

said to be in canonical form if the following conditions

are true:

1.

2’.

3.

4.

5.
6.

7.

Q is of the form ARI . . .AR1. Ac. An. Q’.

Every occurrence of R, in Q’ (where 1< i < 1) is of

the form Ri(Axl . . ~xk,. ~f. M)NTI . . .Tm, where

ki M the arity of the i-th input relatzon, f is a

variable of order < 1, A4 and N are terms of

order ~ 1, and T1 , . . . . Tm (where m > O) are terms

of order O. We call f the accumulator variable for

this occurrence of Ri.

Every occurrence of Eq in Q’ has exactly 4 argu-

ments.

Every occurrence of c in Q’ has exactly k + 1

arguments, where k ts the arity of the output

relation.

Every occurrence ofn in Q’ has exactly O arguments.

The only (free or bound) vartables in Q of non-zero

order are Rl, . . . . RI, c, and accumulator variables.

Q M an normal form.

Lemma 6.2 Let P be a TL~ term mapping 1 relatzons

of arities kl, . . . . kl to a relation of arity k. Then

there is a TL~ term Q in canonical form such that

P and Q define the same database query, Z.e., for every

legal input ~, . . . . R, the normal forms of (PR1, . . . ,~)

and(QR1, ..., ~) encode the same relation. Q can be

effectively determined from P.
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The proof involves executing a series of transformations

of P that successively establish properties (1) to (7) of

the canonical form without changing the semantics of P.

For example, property (1) can be established by re-

placing P with JRI. JR2 . . .JR1. Ac. An. PRIR2 . . . Rlcn

and property (2) can be established by replacing ev-

ery occurrence of Ri in P by (At. An. R;(kcl . . .Jzk,. Af.

Czl . . . z~tf)n) and reducing to normal form.

Lemma 6.3 If Q = ARI . . .AR1. Ac. An. Q’ is in canon-

tcal form, then every complete subterm t of Q’ has the

form AS. M, where 2 is a vector of order-zero variables

and possibly one accumulator variable and M has one

of the following forms:

1. Ri(Axl:o. . .~xk,:o. ~f:u. M)NTI . . .Tm,

2. EqSTUV,

3. CT1 . . .TkTk+l,

4. fTl . . . Tm, where f is an accumulator variable,

5. x, where x is a variable of order O or a constant.

(By definition of an accumulator variable, Z contains an

accumulator variable if and only if t is the jirst argument

of an occurrence of some Ri.)

Proof: By property (6) of the canonical form, the

only variables that may be A-bound inside Q’ are

accumulator variables and variables of order O, so only

these can occur in Z.

Let s be the top-level symbol of M, i.e., M =

SM1 . . . Mn. By property (6), there are five possibilities

for s: it can be one of RI, . . . . Rl, in which case

property (2) implies that M is of form (l); it can be Eq,

in which case property (3) implies form (2); it can be c,

in which case property (4) implies form (3); it can be an

accumulator variable, in which case form (4) applies; or

it can be a variable of order O or a constant, in which

case form (5) applies. •1

6.2 The Evaluation Algorithm

The formal specification of the evaluation algorithm is

too long to be included here. Instead, we will give an

informal description of the underlying ideas.

An evaluation algorithm for TLI~ terms essentially

has to deal with the five kinds of expressions listed in

Lemma 6.3. Once R1, . . . . RI are instantiated, these

expressions normalize to terms of the form X2. M, where

; is a (possibly empty) vector of order O variables

and M is a A-free term of order O built from Eq, c,

variables of order O, and constants. Unfortunately,

these normal forms can be of exponential size for two

reasons: (1) an exponential number of occurrences of Eq

or (2) an exponential number of occurrences of c. A

PTIME evaluation algorithm must deal with these two

situations.

Problem (1) can be handled by the following obser-

vation. Even though a normal form t may contain

an exponential number of occurrences of Eq, there is

only a polynomial (in the size of the domain) num-

ber of different assignments of constants to variables

of type o in t,thus many occurrences of Eq in t must

be redundant. Suppose that O = {ol, . . . . ON} is the

database universe and that t is of the form ~;. M, where

M is A-free. Let xl, . . . . Xm be the variables of M

of type o and let Mil,,,,,i~ denote the normal form of

mr[zl:=oi,, ..., Zm: = Oim]. Clearly, M~,, ,.)im does not

ccmtain any occurrences of Eq. Now consider the term

M’ s (Eqxl 01

(Eqxzol

. .

(@~m ol MI,l,...,I,1

(=%xrno2Ml,1,,,,l,2

(Eqzm 0~-~ Ml,l, ,1,~-1 M1,...JJv)) . . .)

(EqX202

(Eqzm o, I’141,2,.. ,,,,

(Eq Xm 02 I’vf1,2,...,1,2

This term has a polynomial number of occurrences of Eq

arranged as a “decision tree’) with the terms Mi,,,, ,,i~

at its leaves. Furthermore, M’ is equivalent to M in the

sense that for every choice of constants (oil, . . . . o~~ ),

the terms MIx1:= oil, . . .,zm:= o~~] and M’[xl: =

oil, ..., zm:= o~m] convert to each other. Since the

variables Z1, . . . . Zm must eventually be instantiated

with constants anyway (the final output of a query does

not contain any variables of type o), the evaluation

algorithm can return the term t’ s J;. M’ instead of t

without affecting the final result.

Problem (2) can be handled as follows. The terms

mri,,.,,,;m defined above are A-free and contain only

ccmstants, variables of type r, and the symbol c. It

is easy to see that each such term must be either a

ccmstant, a variable, or a list-like structure

Col,l 01,2. . .Ol, k

. . .

(COm,I 0m,2 . . .Om,k Z)) . . .) ,

where z is some variable of type ~. If such a

term is of exponential size, then only because the

list contains many duplicates. It is easy to see that

elimination of these duplicates does not affect the
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output relation produced by a query, even though it

may cause the computed representation of the output

to be different (it will be the duplicate-free version

of the original representation). Thus, the evaluation

algorithm is free to remove duplicates from every term

Mi,,,,,,i~ it constructs, thereby always returning terms

of polynomial size.

Using the above polynomial-size representation of

order 1 terms, the evaluation of a canonical form query

AR1 AR1. Ac. An. Q’ on input m, . ...77 now proceeds

as a recursive descent into Q’. Subterms of the form

R~ (M. ~f. M)NT1 . . . T~ are evaluated by evaluating iV

first and then evaluating the “loop body” M once for

each tuple in r~, from last to first, with Z bound to the

current tuple and ~ bound to the result of the previous

iteration (in decision tree format ). The final result

of the loop is then applied to the evaluated values of

T1. ..Tm.

Subterms of the form (Eq STUV) or (cT1 . . . T~+l)

are evaluated by evaluating the arguments first and

then constructing a decision tree for the result. Finally,

subterms of the form fTl . . . T~ are evaluated by

substituting the evaluated arguments (which must be

order O terms) into the decision tree for .f.

It is easy to see that this procedure terminates after a

number of steps polynomial in the size of ~, . . . . fi and

that the work performed at each steps is polynomial

as well. Also, it does not matter to the evaluation

algorithm whether RI, . . . . R/ are monomorphically or

polymorphically typed. Hence, we have the following

result:

Theorem 6.4 Database quertes dejined by terms in

TL~ and ML~ can be evaluated tn PTIME.

Combining this result with the encoding of fixpoint

queries in TLI~ presented in Section 4.2, we obtain:

Theorem 6.5 The database queries dejinable by TL~

and ML~ terms are exactly the PTIME queries.

Note that TL1 and ML1 queries can discern the ordering

of the tuples in the input encoding (see, e.g., the

Compare operator in Section 4.1), so TLI~ and MLI~

express all PTIME queries, not just the generic ones.

If the evaluation strategy described above is special-

ized to TLI~ and MLI~ terms, it can be shown that

the resulting algorithm can be performed in logarith-

mic space. Thus, we have:

Theorem 6.6 Database queries dejined by terms in

TL~ and ML~ can be evaluated in LO GSPACE.

7 Eliminating Equality: PTIME in TL12

Once list iteration over order 2 objects is allowed,

it becomes possible to express PTIME queries in the

“pure” calculus, i.e., without Eq and constants. This is

done by coding the constants as projection functions (of

order 1) and writing a A-term Eq (of order 2) that tests

two projection functions for equality. More precisely, if

the database universe is the set O = {ol, . . . . ON}, then

the i-th atom is encoded as the projection function

7r~RAzl...Azzizi

and equality is encoded as
N–1 N–2 N–1

Ap. Aq. Au. Av. p(qum)(qvum) . ..(qmu)

which, when applied to two projection functions ~,N and

~JN, reduces to Auv. u if z’ = j and to Auv. v otherwise.

Relations are encoded as iterators in the usual way,

except that explicit constants are replaced by the

corresponding projection functions. Note that the

arity of the projection functions changes with the

size of the database universe, so the encoding of a

relation r depends not only on r itself, but also on

the database that r appears in. The same goes for

the equality predicate: different databases may need

different encodings of Eq. Hence, tn. this setting Eq has

to be part of the input.

It is easy to see that the encoding of fixpoint queries

described in Section 4.2 works unchanged in this new

setting, except that the symbol Eq has to be A-bound

at the outermost level. The order of the query terms

increases by 1, because the characteristic function of

a relation now becomes an order 2 object (mapping k

projection functions to a Boolean). It follows that:

Theorem 7.1 TL12 expresses every PTIME query.

8 Conclusions and Open Problems

We have presented embedding of database query

languages in low order fragments of the typed A-calculus

as well as a new functional characterization of PTIME.

We have shown that in fixed order fragments of the

typed ~-calculus there is sufficient expressive power for

the PTIME-queries and that type inference is efficient.

A number of interesting open problems remain. (1)

Determine the exact expressive power of TLI and

MLI for i = O and various versions of equality. (2)

Determine the expressive power for TL12, as well as

for higher orders, see [28, 22, 30]. (3) Determine

functional characterizations of other complexity classes,

in particular NP, PHIER and PSPACE, see [18, 23, 38,

5]. (4) Study optimal reduction strategies [32] in the

TLC. (5) Study languages that combine list iterators

and set iterators ala [8, 10, 9, 25, 39].

References

[1] S. Abiteboul and C. Beeri. On the Power of Languages

for the Manipulation of Complex Objects. INRIA

Research Report 846, 1988.

230



[2] S. Abiteboul, C. Beeri, M. Gyssens, and D. Van Gucht.

An Introduction to the Completeness of Languages

for Complex Objects and Nested Relations. In S.

Abiteboul, P. Fischer, and H. Schek, editors, Nested

Relations and Complex Objects in Databases, pp. 117–

138. LNCS 361, Springer Verlag, 1987.

[3] S. Abiteboul and P. Kanellakis. Database Theory Col-

umn: Query Languages for Complex Object Databases.

SIGACT News, 21 (1990), pp. 9-18.

[4] S. Abiteboul and V. Vianu. Datalog Extensions for

Database Queries and Updates. J. Comput. System

Sci., 43 (1991), pp. 62-124.

[5] S. Abiteboul and V. Vianu. Generic Computation and

its Complexity. In Proceedings of the 23rd ACM STOC

(1991), pp. 209-219.

[6] H. Barendregt. The Lambda Calculus: Its Syntax and

Semantics. North Holland, 1984.

[7] S. Bellantoni and S. Cook. A New Recursion-Theoretic

Characterization of the Polytime Functions. In Pro-

ceedings of the 24th ACM STOC (1992), pp. 283–293.

[8] V. Breazu-Tannen, P. Buneman, and S. Naqvi, Struc-

tural Recursion as a Query Language. In Proceedings

DBPL3, pp. 9-19, Morgan- Kaufmann, 1991.

[9] V. Breazu-Tannen, P. Buneman, and L. Wong. Natu-

rally Embedded Query Languages. In Proceedings 4th

lCDT, pp. 140–154. LNCS 646, Springer Verlag, 1992.

[10] V. Breazu-Tannen and R. Subrahmanyam. Logical

and Computational Aspects of Programming with

Sets/Bags/Lists. In Proceedings of the 18th lCALP,

PP. 60–75. LNCS 51o, Springer Verlag, 1991.

[11] P. Buneman, R. Frankel, and R. Nikhil. An Imple-

mentation Technique for DB Query Languages. ACM

Trans. on Database Systems, 7 (1982), pp. 164-186.

[12] A. Chandra and D. Harel. Computable Queries for

Relational Databases. J. Comput. System Sci., 21

(1980), pp. 156-178.

[13] A. Chandra and D. Harel. Structure and Complexity of

Relational Queries. J. Comput. System Sci., 25 (1982),

pp. 99-128.

[14] A. Chandra and D. Harel. Horn Clause Queries and

Generalizations. J. Logic Programming, 2 (1985),

pp. 1-15.

[15] A. Church, The Calculi of Lambda-Conversion.

Princeton University Press, 1941.

[16] A. Cobham. The Intrinsic Computational Difficulty

of Functions. In Y. Bar-Hillel, editor, International

Conference on Logic, Methodology, and Philosophy of

Science, pp. 24-30. North Holland, 1964.

[17] E. Codd. Relational Completeness of Database Sub-

languages. In R. Rustin, editor, Databsse Systems,

pp. 65-98. Prentice Hall, 1972.

[18] R, Fagin. Generalized First-Order Spectra and

Polynomial-Time Recognizable Sets. SIAM-AMS Pro-

ceedings, 7 (1974), pp. 43–73.

[19] S. Fortune, D. Leivant, and M. O’Donnell. The Expres-
siveness of Simple and Second-Order Type Structures.

J. of the ACM, 30 (1983), pp. 151–185.

[20] Y. Gurevich. Algebras of Feasible Functions. In Proc.

of the 24th IEEE FOCS (1983), pp. 210–214.

[211] G. Hillebrand, P. Kanellakis, and H. Mairson.

Database Query Languages Embedded in the Typed

Lambda Calculus. In Proceedings of the 8th IEEE

LICS (1993), pp. 332-343.

[22] R. Hull and J. Su. On the Expressive Power of

Database Queries with Intermediate Types. J. Com-

put. System Sci., 43 (1991), pp. 219-267.

[23] N. Immerman. Relational Queries Computable in

PTIME. Info. and Comp., 68 (1986), pp. 86-104.

[24] N. Immerman. Languages that Capture Complexity

Classes. SIAM J. Comp., 68 (1986), pp. 86-104.

[25] N. Immerman, S. Patnaik, and D. Stemple. The

Expressiveness of a Family of Finite Set Languages. In

Proceedings of the l(lth ACM PODS (1991), pp. 37-52.

[26] P. Kanellakis, H. Mairson, and J. Mitchell. Unification

and ML-type Reconstruction. In Computational Logic:

Essays in Honor of Alan Robinson, pp. 444-478. MIT

Press, 1991.

[27] A. Kfoury, J. Tiuryn, and P. Urzyczyn. An AnaJysis

of ML Typability. In Proceedings 17th Colloquium on

Trees, Algebra and Programming, pp. 206-220. LNCS

431, Springer Verlag, 1990.

[26] A. Kfoury, J. Tiuryn, and P. Urzyczyn. The Hierarchy

of Finitely Typed Functional Programs. In Proceed-

ings 2nd IEEE LICS (1987), pp. 225–235.

[29] P. Kolaitis and C. Papadimitriou. Why Not Negation

By Fixpoint? J. Comput. System Sci., 43 (1991),

pp. 125–144.

[30] G. Kuper and M. Vardi. On the Complexity of Queries

in the LogicaJ Data Model. Theoretical Comput. Sci.,

116 (1993), pp. 33-57.

[31] D. Leivant and J.-Y. Marion. Lambda Calculus Char-

acterizations of Poly-Time. In Proc. of the Inter. Conf.

on Typed Lambda Calculi and Applications, Utrecht

1993. (To appear in Fundamental Informaticae.)

[32!] J.-J. L&y. Optimal Reductions in the Lambda-

CSJCUIUS. In J. Seldin and J. Hindley, editors, To

H. B. Curry: Essays in Combinatory Logic, Lambda

Calculus and Formalism, pp. 159-191. Academic

Press, 1980.

[33] H. Mairson. A Simple Proof of a Theorem of Statman.

TCS, 103 (1992), pp. 387-394.

[34,] R. Milner. A Theory of Type Polymorphism in

Programming. J. Comput. System Sci., 17 (1978),

pp. 348-375.

[35] R. Milner. The Standard ML Core Language. Poly-

morphism, 2 (1985), 28 pp.

[36] H. Schwichtenberg. Definierbare Funktionen im X

Kalkiil mit Typen. Archiv fiir mathematische Logik

und Grundlagenforschung, 17 (1976), pp. 113–114.

[37] R. Statman. The Typed ~-Calculus is not Elemen-

tary Recursive. Theoretical Computer Sci., 9 (1979),

pp. 73-81.

[38] M.Y. Vardi. The Complexity of Relational Query

Languages. In Proceedings of the 14th ACM STOC

(1982), pp. 137-146.

[39] L. Wong. Normal Forms and Conservative Properties

for Query Languages over Collection Types. In Pro-

ceedings 12th ACM PODS (1993), pp. 26–36.

231


