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ABSTRACT
Centrality is an important notion in network analysis and is
used to measure the degree to which network structure con-
tributes to the importance of a node in a network. While
many different centrality measures exist, most of them apply
to static networks. Most networks, on the other hand, are
dynamic in nature, evolving over time through the addition
or deletion of nodes and edges. A popular approach to an-
alyzing such networks represents them by a static network
that aggregates all edges observed over some time period.
This approach, however, under or overestimates centrality
of some nodes. We address this problem by introducing a
novel centrality metric for dynamic network analysis. This
metric exploits an intuition that in order for one node in a
dynamic network to influence another over some period of
time, there must exist a path that connects the source and
destination nodes through intermediaries at different times.
We demonstrate on an example network that the proposed
metric leads to a very different ranking than analysis of an
equivalent static network. We use dynamic centrality to
study a dynamic citations network and contrast results to
those reached by static network analysis.
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1. INTRODUCTION
The structure of many complex systems, from biological and
social systems to the World Wide Web and more recently
the Social Web, can be represented as a network. Ability to
analyze networks in order to identify important nodes and
discover hidden structure has led to important scientific and
technological breakthroughs. As a single profound exam-
ple, PageRank [23] algorithm, which ranks Web documents
by analyzing the structure of hyperlinks between them, has
revolutionized both Internet search and commerce. Network
analysis algorithms are also used to discover communities of
like-minded individuals [20], identify influential people [17]
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and blogs [18], rank scientists [24] and find important scien-
tific papers [29, 6, 26]. With few exceptions, these metrics
and algorithms have been applied to static networks. Real-
world networks, however, are dynamic in nature, because
their topology can change over time with addition of new
nodes and edges or removal of existing ones.

This paper defines a novel centrality metric for dynamic net-
works. The metric generalizes the path-based centrality used
in network analysis [4, 12] which measures centrality of a
node by the number of paths, of any length, that connect
it to other nodes. The dynamic centrality metric exploits
an intuition that in order for a message sent by one node
in a network to reach another after some period of time,
there must exist a path that connects the source and des-
tination nodes through intermediaries at different times. A
distinctive feature of this metric is that it is parameterized
by factors that set both time and length scale of interactions.
These parameters can in some cases be estimated from data.
We use dynamic centrality to rank nodes by the number of
time-dependent paths that connect them to other nodes in
the network. In addition to discovering best connected, or
influential, nodes, the method can identify nodes that are
most connected to a specific node and, therefore, have high-
est influence on it. We perform detailed analysis of a toy
dynamic network and show that dynamic network analysis
can lead to a vastly different ranking than analysis of an
equivalent static network. We also study a real-world dy-
namic network that represents scientific citations data set.
We find optimal parameters for the metric by fitting it to
the citation chains’ temporal and length distributions. We
show that dynamic centrality can produce a radically dif-
ferent view of what the important nodes in the network are
than static measures and leads to new insights about the
structure of the dynamic network.

In Section 2 we review existing research on network analysis
and identify challenges in extending it to dynamic networks.
We define dynamic centrality in Section 3 and present math-
ematical formalism that allows us to compute it from the
snapshots of the network over time. We demonstrate in
Section 3.3 how this metric can be used to rank nodes in a
dynamic network. In Sec. 4 we apply dynamic centrality to
study the scientific papers citations network and show that
dynamic centrality can lead to a drastically different view of
importance than analysis performed on an equivalent static
network.
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2. BACKGROUND AND RELATED WORK
Centrality metrics: Centrality determines node’s impor-
tance in a network. This measure is dependent on the net-
work structure. The simplest centrality metric, degree cen-
trality, measures the number of edges that connect a node
to other nodes in a network. Over the years many more
complex centrality metrics have been proposed and studied,
including Katz status score [16], α-centrality[4], between-
ness centrality [10], and several variants based on random
walk [27, 21, 19], the most famous of which is PageRank [23].
The path-based centrality metrics [4] measure the extent to
which a node can influence, or control how much information
flows to, other nodes in a network.

Consider, specifically, α-centrality defined by Bonacich[4],
which measures the total number of attenuated paths of any
length between nodes i and j. Let A be the adjacency matrix
of a network, such that Aij = 1 if an edge exists from i to j
and Aij = 0 otherwise. α-centrality matrix is given by:

Cs(α, β) = βA+ βαA ·A+ · · ·+ βαnAn+1 · · · (1)

where β is the attenuation factor along a direct edge (from
the originating node) in a path, and α is the attenuation
factor along an indirect edge (from any intermediate node)
in a path. Although attenuation factors along subsequent
edges in a path could in principle be different, for simplicity,
we take them all to be the same, namely α. The first term in
the equation above gives the number of paths of length one
(edges) from nodes i to j, the second the number of paths
of length two, and so on.

The tunable parameter α sets the length scale of interac-
tions. For α = 0, α-centrality takes into account direct
edges only and reduces to degree centrality (weighted by β).
As α increases, Cs(α, β) becomes a more global measure,
taking into account more distant interactions. Nodes can
be ranked according to the number of paths that connect
them to other nodes. In previous work [11, 12] we used this
framework to identify both locally and globally influential
nodes, as well as discover community structure of networks.

Dynamic networks: While most of network analysis re-
search focused on static networks, recently researchers began
to study dynamic networks, whose topology changes in time
through the addition or removal of nodes and edges. [5] rep-
resented a dynamic network by time series, or snapshots,
of the network, each of which aggregates links over a time
scale much shorter than the entire observation period. They
studied how degree centrality evolves in a dynamic network.
[9] observed that activation of links in a dynamic network
creates a flow of information that leads to coherent clusters.
They introduced a metric to study these structures and their
evolution. The metric modifies the traditional clustering
coefficient. Specifically, it measures the number of trian-
gles in which a node of degree v participates. Similarly, [3]
proposed a formal framework for identifying communities
within dynamic networks based on the temporal structure
of underlying interactions. Our focus in this paper is not
to identify coherent structures or groups in a dynamic net-
work. Instead, we want to define an intuitive metric that
enables us to rank nodes in a network. We generalize α-
centrality to dynamic networks. Using this metric we can
rank nodes by how well they are connected to other nodes

in the network through time, thereby identifying important
or influential nodes.

Time-aware ranking: Closely related to dynamic net-
work analysis is the problem of time-aware ranking of Web
pages in information retrieval. This research is motivated
by the observation [1] that PageRank’s Web ranking algo-
rithm is biased against newer pages, which may not have
had enough time to accumulate links to give it a high rank.
Several methods have been proposed to address the recency
bias in PageRank, including [1, 30, 2, 8]. In general terms,
these methods weigh edges in the network by age, with newer
edges contributing more heavily to a page’s importance. Our
motivation is different. Rather than focus on improving
the rank of newer nodes, we focus instead on defining a
time-aware centrality metric that takes the temporal order
of edges into account.

Authors of [22] considered the temporal order of edges in
the flow of information on a network. They proposed Even-
tRank algorithm, a modification of PageRank, that takes
into account a temporal sequence of events, e.g., spread of
an email message, in order to calculate importance of nodes
in a network. This approach takes into account the effect
of the dynamic process on ranking. In contrast, we con-
sider the effect of the dynamic network topology on ranking.
These approaches are somewhat related: our method can be
said to estimate the expected value of all temporal sequences
taking place on the network.

Scientific citations: Ranking scientific publications is
an interesting application for dynamic network analysis. A
long line of bibliometrics research attempted to define ob-
jective metrics for identifying important scientific papers,
researchers, publication venues, and institutions. The now-
accepted measures for evaluating the impact of papers and
individual researchers include citations count and h-index [14].
A breakthrough in this field came with the representation of
the body of scientific literature as a multi-partite network
consisting of authors, papers, and publication venues, where
a link between an author and a paper denotes a researcher’s
authorship of the paper, a link between two papers indi-
cates a scientific citation, etc. This representation allows
the structure of the network to be considered in ranking
papers and authors.

Scientific papers citations data set can also be considered a
dynamic network, in which newly published papers create
edges to existing papers by citing them. Unlike a generic
dynamic network, however, edges in a citations network are
never destroyed. All previous work treated a citations net-
work essentially as a static network that aggregates all cita-
tions links created over some time period. [6] implemented
PageRank algorithm on such an aggregated network to find
most influential papers. [24] divided the entire data pe-
riod into homogeneous intervals containing equal numbers
of citations and applied a PageRank-like algorithm to rank
papers and authors within each time slice, thereby, enabling
them to study how an author’s influence changes in time.
In order to address PageRank’s bias for older papers, [29]
introduced CiteRank, a modified version of PageRank, that
explicitly takes paper’s age into account. CiteRank per-
forms a random walk on a citations graph, but initiates the



walk from a recent paper i chosen randomly with probabil-

ity pi = e
agei
τ , where agei is the age of the paper and τ

characteristic decay time. The random walk, however, was
performed on an aggregated network. Authors estimated
parameters of the random walk by fitting papers’ CiteRank
score to the number of citations accrued by them over some
time period. [26] described FutureRank, an algorithm that
predicts paper’s PageRank scores some time in the future.
FutureRank implicitly takes time into account by partition-
ing data in time, and using data in one period to predict
paper’s ranking in the next. Similar to [24]’s approach, Fu-
tureRank combines influence rankings computed on the pa-
pers and authors networks into a single score. This score
is shown to correlate well with the paper’s PageRank score
computed on citations links that will appear in the future.
However, no previous method took the temporal order of
citations edges into account. The method proposed in this
paper, on the other hand, ranks scientific publications by
explicitly taking temporal constraints on citations links into
account.

3. DYNAMIC CENTRALITY METRIC
A dynamic network as a network whose topology changes
over time through addition or removal of edges. Let t be
the smallest time interval in which there is no change in
the topology of the network. Following [5], we represent
network at time ti(i ∈ 1, · · · , n) by a graph Gti = (Vti , Eti)
with Vti nodes and Eti edges between them at time ti. We
define A(ti) as the adjacency matrix corresponding to Gti .
A time series of network snapshots Gt1 , Gt2 , · · ·Gtn (where
ti − ti−1 ≤ t) could then be used to represent a dynamic
network over the time period ∆1,n = {t1 . . . tn}.
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Figure 1: Example network. (a) Snapshots of the
network showing only connected nodes at times
t1, t2, t3 and t4. (b) A static network that aggregates
different snapshots into a single network.

Figure 1(a) shows four snapshots of a hypothetical dynamic
network, with only connected nodes displayed. Note that
edges are directed. A common method to analyze such a
dynamic network is to create a static network that aggre-
gates edges observed at all times. Such aggregate network
is shown in Fig. 1(b). However, aggregating over all edges
loses important temporal information that can help eluci-
date the structure of a dynamic network [5]. Consider how
information spreads on a dynamic network. Node i will only
be able to send a message to node j at time tk if and only if
there exists an edge between i and j and that time. Specifi-
cally, consider how a message sent by node 1 may reach node
5. In the static network, there are three acyclic paths from
1 to 5: 1→2→4→5, 1→2→3→4→5, and 1→2→3→5. Not
all these paths are physically realizable, however. If a node
does not retain a message but transmits it in the next time
step, the only meaningful path is 1→2→3→4→5. Using this
intuition, we define a novel centrality metric for dynamic

networks that computes the number of paths between nodes
i to j that exist over a period of time.

3.1 Memoryless Formulation
We assume that the future state of the network Gtk+1 de-
pends only on its current state Gtk , and none of its past
states. This implies that each node propagates information
it receives in the current time step at the very next time step.
We model information spread on a network as a memoryless
dynamic process:

• with probability βtk , a node initiates transmission of
information by sending a message to its neighbors at
time tk

• with probability α
tk+1

k , a node sends the message it
received at time tk to its neighbors at time tk+1

Although in principle, the attenuation factors α and β can
change with time and distance from the source, which can be
easily modeled in this framework, for simplicity we assume
that all αti

k = α and βti = β. The expected amount of
information sent by node i at time t1 that reaches node j at
time tn via a sequence of intermediate nodes is given by the
(i, j)’s element of the dynamic centrality matrix :

Cd
t1→tn(β, α) = βA(t1) + βαA(t1)A(t2) + · · ·

+βαn−1A(t1) · · ·A(tn) . (2)

Let ∆1,n be the time interval {t1, . . . , tn} that information
propagates from any node i at time tk to any node j at
time tn, 1 ≤ k ≤ n. The cumulative expected amount of
information reaching node j from node i in a given time
interval ∆1,n is given by the i, j’s element of the cumulative
dynamic centrality matrix:

Cd(β, α,∆1,n) =

n∑
k=1

Cd
tk→tn(β, α). (3)

3.2 Formulation with Memory
In many dynamic networks, the future state of the network
Gtk+1 may depend not only on its current state, but also on
(possibly all) its past states Gti(i < k). In a social network,
for example, two individuals will remember an interaction
they had, even if it happened a long time ago. Since in most
situations more recent interactions are more important, we
model this by introducing memory decay characterized by
the retention probability γ (0 ≤ γ ≤ 1) and retention length
m (m ∈ 1, · · · , n). We model this as dynamic process with
the following properties:

• with probability β a node initiates transmission of in-
formation by sending a message to its neighbors at
time tk

• with probability α a node passes the message it re-
ceived at time tk to its neighbors at time tk+1.

• with probability γ a node retains the message it re-
ceived at time tk until time tk+1.

The retained adjacency matrix R(tn) at time tn depends on
adjacency matrices at the previous times:

R(tn, γ) =


A(tn) + γA(tn−1) · · ·+ γn−1A(t1), if n < m

A(tn) + γA(tn−1) + · · ·
+ γm−1A(tn−m+1), otherwise



Following Section 3.1, the retained dynamic centrality matrix
can then be given as:

RCd
t1→tn(β, α, γ) = βR(t1, γ) + βαR(t1, γ)R(t2, γ)

+ βα2R(t1, γ)R(t2, γ)R(t3, γ) + · · ·
+ βαn−1R(t1, γ) · · ·R(tn, γ) (4)

and the retained cumulative dynamic centrality matrix over
the time interval ∆1,n as:

RCd(β, α, γ,∆1,n) =

n∑
k=1

RCd
tk→tn(β, α, γ) (5)

(a) dynamic

(b) static

Figure 2: Dynamic vs static centrality scores for
nodes in the dynamic network shown in Fig. 1. (a)
Total dynamic centrality scores for different val-
ues of γ over time period ∆1,4. (b) Total static
centrality scores for cumulative networks over time
periods ∆1,2, ∆1,3, and ∆1,4. Lines correspond to
α = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 respectively, from the
bottom.

3.3 Ranking in Dynamic Networks
A basic problem in network analysis is ranking nodes to
identify important or influential ones. We use dynamic cen-
trality metric to rank nodes in a dynamic network. The
intuition behind the ranking scheme is based on the diffu-
sion of information on a network. Suppose that node i sends
a unit of information at time t1. The expected amount of
information reaching node j from i over a time interval ∆1,n

is given by RCd
ij(α, γ,∆1,n).1 The total amount of informa-

tion sent by i that reaches all other nodes in the network is
measured by the dynamic centrality of i:

DCi(α, γ,∆1,n) =
∑
j

RCd
ij(α, γ,∆1,n). (6)

This metric measures how connected node i is to other nodes
in the network over some period of time ∆1,n. Ranking
nodes by how well connected they are allows us to identify
the most influential nodes in a dynamic network over a pe-
riod of time.

Dynamic programming can be used to efficiently compute
dynamic centrality. As can be seen in algorithm 1, in each
iteration, ri depends only on ri−1 and R(tn−i, γ). Since the
network at time ti(i ∈ 1, · · · , n) is given by graph Gti =

1Since β factors out of the equations, without loss of gener-
ality we set β = 1.

(Vti , Eti), in the naive implementation of this algorithm,
taking |E| = | ∪i Eti | and |V | = | ∪i Vti |, each iteration
has a runtime complexity of O(|E|) and space complexity
of O(|V | + |E|). Assuming that the main memory is just
large enough to hold ri, ri−1 and DC(α, γ,∆1,n), the i/o
cost for each iteration is O(|E|). If main memory is large
enough to hold only ri, and assuming efficient data structure
such as a sorted link list is used to store R(tn−i, γ), i/o cost
is O(|V | + |E|). Since this formulation of dynamic central-
ity is very similar to that of PageRank [23], similar block
based strategies can be used to further improve speed and
efficiency of computing dynamic centrality [13] [15]. Like
PageRank, dynamic centrality can be implemented using
the map-reduce paradigm [7], guaranteeing the scalability
of this algorithm and its applicability to very large datasets.

Algorithm 1 Dynamic centrality

Input
{R(tk, γ) : ∀k ∈ 1, 2 · · ·n}: Retained adjacency matrices
α, β: attenuation factors
e:unit vector (n× 1)
Output
DC(α, γ,∆1,n): Dynamic centrality vector
Initialize
r0 ← βR(tn, γ)e
DC(α, γ,∆1,n)← r0
for i = 1 to n− 1 do
ri ← R(tn−i, γ)(βe+ αri−1)
DC(α, γ,∆1,n)← DC(α, γ,∆1,n) + ri

end for

In addition to ranking nodes, dynamic centrality can be used
to identify nodes that have the most influence on a given
node over some period of time, or have been most influenced
by it. For example, to find the node that is most influenced
by i, we identify node j with the largest value of RCd

ij , given

by Eq. 5. Similarly, RCd
ji gives the influence of node j on i

and can be used to identify nodes that have had the most
influence on i over some period of time.

Tunable parameters α and γ enable us to use dynamic cen-
trality to study the structure of dynamic networks at differ-
ent time and length scales. As described in Section 2, α sets
the length scale of interactions. As α grows, longer paths
become more important, and dynamic centrality takes into
account increasingly larger network components. Parame-
ter γ sets the time scale of the interactions. For γ = 0.0,
only the most recent interactions are taken into account. As
γ grows, older interactions are also considered. In the ex-
treme case of perfect retention or memory, γ = 1.0, every
past interaction is remembered, similar to how a cumulative
version of a dynamic network is constructed.

We apply dynamic centrality to study the toy network shown
in Fig. 1(a). Figure 2 plots dynamic centrality score of each
node, which is given by DCi(α, γ,∆1,4). Each plot shows
results for a different value of γ, and each line in the plot
corresponds to a different value of α from 0.0 to 1.0 in steps
of 0.2 from the bottom. For γ ≤ 0.5 node 2 has the highest
score for all values of α, and is therefore, highest ranked, al-
though for α = 0.0, γ = 0.0 node 3 has the same DC score as
node 2. While both 2 and 3 have two outgoing edges, a larger
number of longer paths originate from node 2 (2→3→4→5,



2→4→5, 2→3→5) than node 3 (3→4→5, 3→5). In the case
of perfect memory (γ = 1.0), node 2 is the highest ranked
node for α ≤ 0.4. As longer paths become more important
at larger values of α, node 1’s influence grows and it becomes
highest ranked. As the earliest node to send a message, it is
the origin of the longest paths in the network.

We compare dynamic centrality-based rankings with those
produced by an equivalent static metric that computes the
number of attenuated paths in an aggregate network shown
in Fig. 1(b) regardless of the time the links were formed.
To compute the static centrality score, we use Cs

i (α) =∑
j C

s
ij(α), where Cs

ij(α) is given by Eq. 1. Figure 2(b)
shows static centrality scores for cumulative network that
aggregate edges over time periods ∆1,2, ∆1,3, and ∆1,4. The
aggregate network corresponding to the period ∆1,4 is shown
in Fig. 1(b). Static centrality leads to a radically different
ranking. In the static networks that aggregate edges over pe-
riods ∆1,2 and ∆1,3, node 1 is considered most influential,
except for small values of α in the middle plot, when node
2 becomes more influential. Because of cycles introduced at
the last time step (by 5→2 edge), the static centrality scores
computed for the network aggregated over the period ∆t,4

(last plot in Fig. 2(b)) grow large with α.2 Node 2 is most
important for all values of α, followed closely by nodes 1
and 3. Surprisingly, node 5 is judged to be very influential,
surpassing node 4 in score. This is obviously wrong, since
only a single path of length one originates from node 5 in
the dynamic network.

(a) dynamic

(b) static

Figure 3: Influence of node 1 on others in the dy-
namic vs static centrality formulations. (a) Dynamic
influence of node 1 on others in the dynamic net-
work for different values of γ over time period ∆1,4.
(b) Static influence of node 1 on others in cumula-
tive networks over time periods ∆1,2, ∆1,3 and ∆1,4.
Lines correspond to α = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 re-
spectively, from the bottom.

In addition to ranking nodes, we can look at a given node’s
influence on other nodes in the network. Figure 3 shows
the influence of node 1 computed using Eq. 1 and Eq. 5, for
different values of α and γ. Again, the static and dynamic
formulations lead to different views of influence. Dynamic
centrality metric finds that node 1 has most influence on
node 2, although as α and γ increase, its influence on node
4 grows to be comparable to its influence on node 2. This

2We keep the first 10 terms in the sum in Eq. 1. This keeps
Cs from growing too large.

is reasonable, because since node 1 is directly connected to
2, we expect it to have most influence on that node. Node
4 is connected to node 1 through nodes 2 and 3, and will
also be highly influenced by it. Although node 5 is also
linked to 1 by multiple paths, these paths are longer than
those connecting node 1 to 3; therefore, node 1’s influence
on 5 should be less than on 4. However, the static centrality
metric applied to the aggregate network finds that node 1
has biggest influence on node 5, followed by 4 and 2. Even
when links are aggregated over a shorter period, ∆1,3, node
4 is most influenced by 1 at larger values of α.

In summary, static and dynamic formulations of centrality
lead to widely different views of importance in a dynamic
network. We claim that by taking into account constraints
on information flow imposed by the temporal ordering of
edges, dynamic centrality formulation leads to a more accu-
rate understanding of the structure of dynamic networks.

4. CITATIONS NETWORK
The citations data set consists of articles uploaded to the
theoretical high energy physics (hep-th) section of the arXiv
preprints server from 1993 to April, 2003.3 There are about
28,000 articles with about 350,000 citations. Each article is
identified by a unique number, with first two digits repre-
senting the year of submission. Data was cleaned by remov-
ing citations to articles that appeared in the future, as well
as citations of the article to itself.

We partition the data by year to construct snapshots of the
dynamic network in consecutive years. The citations made
by papers uploaded to arXiv during some year form the
edges of the snapshot for that year. A year may not be
an optimal partition of the data, since a small number of
articles published in one year cite others published in the
same year, but it is a convenient time scale to measure sci-
entific production and interaction between researchers. We
transpose the adjacency matrix to reverse direction of edges
so that it represents the flow of influence from cited to cit-
ing articles. Citations data can be alternately represented
by a static network that aggregates all edges that appear
over some time period, e.g., 1993–2003. Several researchers
analyzed the structure of the static aggregate network, e.g.,
with PageRank algorithm, to identify influential articles [25,
6, 29, 26]. In contrast, we explicitly take the dynamic nature
of the network into account.

4.1 Parameter Estimation
Dynamic centrality metric contains parameters α and γ.
While varying their values turns dynamic centrality into a
tool to study the structure of the network at different time
and length scales, a natural question is what are the appro-
priate values for these parameters? If we have enough data
about the network, we can estimate them directly from the
data. In this section we describe the methodology to esti-
mate optimal values of α and γ for the ArXiv data.

To estimate α, we find the distribution of citation chains that
span consecutive years. In other words, we set γ = 0, so that
no older citations are retained. Nj gives the total number
of chains of length j that start in year tn−j+1 and end in

3www.cs.cornell.edu/projects/kddcup/datasets.html
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Figure 4: Parameter estimation for the arXiv data
set. (a) Distribution of the number of citations
chains of different length with fit. (b) Distribution of
the fraction of citations to papers published x years
previously with fit.

year tn. Assuming that the probability of picking a chain
is proportional to the probability of transmitting a message
along the chain, Nj decays geometrically with α. Therefore,
the probability of choosing a citations chain of length j is
given by αj . The expected number of citation chains is
E(Nj) = αE(Nj−1). Figure 4(a) plots the distribution of the
number of chains in the ArXiv data set that end in the year
tn = 2002. This distribution is well fit (with R2 = 0.9999)
by E(Nj) = c · 0.2289j , where c = 2.4606× 1012. This gives
us α = 0.2289 for the arXiv data set. At this value of α, the
mean path has length 1/(1 − α) = 1.3. This is consistent
with the observation that citations chains have length ' 2
[29, 6].

To estimate γ, we assume that citation retention probability
decays geometrically with time [25]. Let Cj

k be the number
of papers at time j − k cited by papers at time j. Since the
number of citations increases in time, we calculate W j

k =

Cj
k/

∑
k C

j
k, the fraction of papers appearing at time j − k

that are cited by papers at time j. Taking the average of
W j

k for all j, gives the expected fraction of citations in a
given paper to papers published k years before it, E(Wk).
Therefore according to our hypothesis, E(Wk) = γE(Wk−1).
Figure 4(b) plots this distribution for papers in the arXiv
data set. Data is well fit (R2 = 0.9992) by E(Wk) = d ·
(0.7722)k, where d = 0.36. Hence, γ = 0.7722.
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Figure 5: Evolution of influence of three articles. (a)
Dynamic centrality scores computed over a rolling
three year window vs time. (b) Number of citations
received by papers each year vs time.

4.2 Influence of Individual Articles
Dynamic centrality, Eq. 6, provides insights into evolution
of scientific topics and influence of individual articles. Fig-

ure 5(a) shows how DC scores of three articles change in
time. These articles were randomly chosen from among the
articles ranked highest by PageRank. DC scores of the three
articles were computed over a sliding three year window us-
ing optimal parameters α = 0.2289 and γ = 0.7722. This
time window means that the longest citations chains DC will
consider are of length three. Since there is evidence that re-
searchers do not often follow citations links more than two
levels deep [29, 6], a window of size three will adequately
capture longer range interactions in this network. Evolution
of article’s centrality (Fig. 5(a)) shows a similar trend to the
number of new citations it receives each year (Fig. 5(b)).

In addition to ranking articles, dynamic centrality allows us
to directly measure the influence of one article on another.
An article will often directly cite another that influenced it.
At other times, however, we can trace the history of intellec-
tual contribution through the chain of citations even in the
absence of direct citation. The more citations chains link
an article to a given article, the more influential the former
will be. Table 1 lists the articles found to have the biggest
influence on the three articles in figure. 5. Only a fraction of
these articles are directly cited by the three target articles.
Article 9409089 (by L. Susskind) deals with the relationship
between string theory and black holes. This appears to be
a highly specialized topic. Five of the ten articles found to
have most influence on 9409089 were authored by Susskind
and collaborators. Articles 9503124 (by E. Whitten) and
9711200 (by J. Maldacena) deal with the more general topic
of mathematics of string theory. There is significant overlap
in the topics of these papers, as manifested by overlap in the
influencing articles. Interestingly, five of the most influential
articles (9207053, 9209016, 9402002, 9303057, 9304154) were
authored by A. Sen, pointing to that authors importance in
the field. Although we do not report it, it is interesting
to see the papers that were most influenced by the target
papers. All three target papers highly influenced articles
on Supersymmetry, supergravity, holographic renormaliza-
tion, and AdS/CFT correspondence. Articles 9503124 and
9711200 also influenced papers dealing with “branes”, a pop-
ular subfield of string theory that emerged in the late 1990’s.

While it is difficult for a non-specialist to fully evaluate these
results, they appear to be significant. It is highly unlikely
the list of papers that highly influenced 9409089 would for-
tuitously include so many papers dealing black holes and
gravity. Likewise, non-existence of magnetic monopoles vio-
lates electric-magnetic symmetry, or duality, which has ap-
parently attracted much speculation by string theorists. Ap-
pearance of so many papers dealing with these topics in the
list of papers that influenced 9503124 and 9711200 cannot
by coincidental. These observations give us confidence that
dynamic centrality discovers significant relations in the data.

4.3 Overall Influence and Ranking
In addition to its usefulness in studying trends in citations
data, we can also use dynamic centrality to compute the
overall influence of articles over some period and rank them
accordingly. This is a common task in bibliometric analysis.
While many metrics have been developed to address this
problem, most familiar ones are citations count and PageR-
ank. Figure 6 shows Spearman’s rank correlation coefficient
between DC rankings and rankings based on total citations



9409089 9503124 9711200

influenced by cites influenced by cites influenced by cites

9311037 High Energy Asymptotics of Multi–Colour QCD 1 9207053 Electric Magnetic Duality in Str. Th. 0 9207053 Electric Magnetic Duality in Str. Th. 0
9308139 Strings, Black Holes and Lorentz Contraction 1 9211056 Magnetic Monopoles in Str.Th. 0 9205027 Supersymmetry as a Cosmic Censor 0
9402125 String Thermalization at a Black Hole Horizon 1 9209016 Electric-Magnetic Duality . . . 0 9207016 Noncompact Symmetries in Str. Th. 0
9306069 The Stretched Horizon and Black Hole Complementarity 0 9402002 Strong-Weak Coupling Duality in 4D Str. Th. 1 9211056 Magnetic Monopoles in Str.Th. 0
9307168 String Theory and the Principle of Black Hole Comple-

mentarity
0 9208055 Putting String/Fivebrane Duality to the Test 0 9305185 Duality Symmetries of 4D Heterotic

Strings
0

9308100 Gedanken Experiments involving Black Holes 0 9207016 Noncompact Symmetries in String Th. 0 9209016 Electric-Magnetic Duality . . . 0
9204002 Classical and Quantum Considerations of 2d Gravity 0 9205027 Supersymmetry as a Cosmic Censor 1 9208055 Putting String/Fivebrane Duality to

the Test
0

9201061 Are Horned Particles the Climax of Hawking Evapora-
tion?

0 9303057 Magnetic Monopoles 0 9304154 Duality Symmetric Actions 0

9201074 Black Hole Evaporation in 1+1 Dimensions 0 9304154 Duality Symmetric Actions 0 9303057 Magnetic Monopoles 0
9207034 Quantum Theories of Dilaton Gravity 0 9407087 Monopole Condensation, And Confinement In

N=2 Supersymmetric Yang-Mills Theory
1 9410167 Unity of Superstring Dualities 0

Table 1: Ten articles that had the most influence on each of the three target articles computed at optimal
α and γ. Cites column has “1” if the target article cites the listed article. Titles of target articles are: “The
World as a Hologram” (9409089), “String Theory Dynamics In Various Dimensions” (9503124), and “The
Large N Limit of Superconformal Field Theories and Supergravity” (9711200).
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Figure 6: Spearman’s correlation between dynamic
centrality-based rankings over the period 1993 –
2000 and rankings based on articles’ total citations
count and PageRank over the same time period.

count and PageRank. All metrics were computed for the pe-
riod 1993–2000 inclusively. DC rankings are best correlated
with total citations count for α = 0, γ = 0. This is reason-
able, since at these parameter values only direct edges (i.e.,
citations) contribute to DC. Correlation decreases with both
α and γ, as longer paths and memory are taken into account.
For α ∼ 1, γ ∼ 1 DC rankings are very different from those
based on citations count. Correlation with PageRank,4 on
the other hand, which was computed on the aggregate static
network, is highest for α = 0, γ = 1. Again, this is expected,
since for these parameter values dynamic network resembles
the static network. Correlation with PageRank is worst for
α = 1, γ = 0, i.e., when paths of all length are taken into
account and past citations are not retained.

Table 2 lists ten articles with highest DC scores over the
entire time period along with these articles total citations
count and rank according to PageRank, also computed over
the entire time period. The top-10 list at α = 0.0 is rel-
atively insensitive to the value of γ, with only two articles
9908142 and 9906064 moving out of the top-10 position as
γ → 1.0. For this value of α, DC takes number of citations
into account only, and indeed the list contains articles with
the highest citations counts, which are reported in column
#C.

In addition to direct citations, DC allows us to take longer

4We used 0.1 as the probability of a random jump in our
implementation of the PageRank algorithm.

citations chains into account. Increasing α to 0.2 (which
corresponds to average citations chain of length 1.25) dra-
matically alters the rankings. Recent papers drop in rank-
ings since not enough time had passed to create longer ci-
tations chains to them. For example, article 9711200 that
was ranked 1 moves to position 103. Other papers with far
fewer citations, ∼ 100, move to the top of the list. As γ in-
creases to it optimal value, three papers 9410167, 9510017,
and 9510135 are replaced in the top-10 list by three new pa-
pers (9209016, 9208055, 9303057). Remarkably, two of them
are by the same author, A. Sen.

In summary dynamic centrality leads to a completely dif-
ferent view of importance than citations count and PageR-
ank. Only nine of the 20 articles rated highest by PageR-
ank appear among the top-20 articles rated highest by DC
(using optimal parameter values). Another striking differ-
ence is that Edward Witten authored five of the 20 articles
ranked highest by PageRank, while Ashoke Sen authored
four. Among the 20 articles rated highest by DC, Ashoke
Sen appears as an author seven times and Ed Whitten two
times. While Sen may not be as famous as Whitten, he is a
major figure in string theory, who had a remarkable ability
to write prescient papers [28]. He is also a prolific author,
fifth most productive one in the arXiv data set. Dynamic
centrality is able to discover“hidden gems”by this influential
physicist which are overlooked by other metrics.

5. CONCLUSION
We have presented a novel formulation of centrality for dy-
namic networks that measures the number of paths that ex-
ist over time in a network. Given snapshots of the network
at different times showing the connected nodes, we can cal-
culate dynamic centrality and use this metric to rank nodes
by how well connected they are over time to the rest of the
network. In addition, we can identify nodes that are best
connected to, and therefore, exert most influence on, a given
node. We can also vary the time and length scale parameters
to identify nodes that are globally or locally connected.

Dynamic centrality gives a different view of importance in a
network than other measures, such as static centrality and
PageRank. We illustrated the differences on an example net-
work. In addition, we applied dynamic centrality to study



α = 0, γ = 0 α = 0.2, γ = 0

DC arxiv id title #C PR arxiv id title #C PR

1 9711200 The Large N Limit of Superconformal Field Theories and Supergravity 2414 6 9503124 String Theory Dynamics In Various Dimensions 1114 2

2 9802150 Anti De Sitter Space And Holography 1775 16 9410167 Unity of Superstring Dualities 748 5

3 9802109 Gauge Theory Correlators from Non-Critical String Theory 1641 19 9510017 Dirichlet-Branes and Ramond-Ramond Charges 1155 3

4 9407087 Monopole Condensation, . . . Supersymmetric Yang-Mills Theory 1299 1 9207053 Electric Magnetic Duality in String Theory 102 20

5 9610043 M Theory As A Matrix Model: A Conjecture 1199 9 9205027 Supersymmetry as a Cosmic Censor 191 10

6 9510017 Dirichlet-Branes and Ramond-Ramond Charges 1155 3 9207016 Noncompact Symmetries in String Theory 218 31

7 9908142 String Theory and Noncommutative Geometry 1142 47 9305185 Duality Symmetries of 4D Heterotic Strings 171 14

8 9503124 String Theory Dynamics In Various Dimensions 1114 2 9211056 Magnetic Monopoles in String Theory 68 25

9 9906064 An Alternative to Compactification 1030 35 9510135 Bound States Of Strings And p-Branes 775 12

10 9408099 Monopoles, Duality and Chiral Symmetry Breaking in N=2 Supersymmet-
ric QCD

1006 8 9304154 Duality Symmetric Actions 229 11

Table 2: List of articles with highest total DC scores for α = 0 and α = 0.2 along with their number of citations
(#C) and PageRank (PR) rank.

scientific papers citations network. Even though this data
set has been extensively studied in the past, we were able to
discover interesting new facts, including an influential arti-
cles that were overlooked by other approaches.

Citations networks are limited in their dynamics, since edges
can only appear, but never disappear. We plan to apply our
approach to more general dynamic networks.
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