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Abstract

This paper introduces the SoI problem, that of finding non-optimal
solutions of interest for constrained optimization models. SoI problems
subsume finding FoIs (feasible solutions of interest), and IoIs (infeasible
solutions of interest). In all cases, the interest addressed is post-solution
analysis in one form or another. Post-solution analysis of a constrained
optimization model occurs after the model has been solved and a good or
optimal solution for it has been found. At this point, sensitivity analysis
and other questions of import for decision making (discussed in the pa-
per) come into play and for this purpose the SoIs can be of considerable
value. The paper presents examples that demonstrate this and reports
on a systematic approach, using evolutionary computation, for obtaining
both FoIs and IoIs.

1 Introduction

A field of investigation may make progress in a number of ways. First, and most
fundamentally, progress is realized by advances in solving or gaining better
knowledge of the field’s outstanding problems. Second, a field also advances
when it acquires important new problems and begins to address them usefully.
In this way, the field becomes broader in scope and increases its relevance to the
wider world. Evolutionary computation heuristics have achieved much success
in solving constrained optimization problems. They are widely used in practice
and a vibrant research community continues to make substantial progress in
techniques for using evolutionary computation to solve constrained optimization
problems. This is progress of the first kind.

The contribution of the present paper is of the second kind. In the present
paper we characterize a new, or at least under-investigated, problem pertaining
to constrained optimization. We call it the non-optimal solutions of interest,
or SoI, problem. This we divide into two related subproblems, the non-optimal
feasible solutions of interest, or FoI, problem, and the infeasible solutions of
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interest, or IoI, problem.1 Further, we demonstrate how evolutionary computa-
tion may be used to address these problems, we identify a number of research
issues, and we present initial, baseline results on these issues.

The subject may be framed as follows. First some terminology. Given a
constrained optimization model (COModel), the optimization problem is the
problem of finding an optimal solution to the model. An exactly optimal so-
lution is one such that it satisfies the constraints of the model and there is no
other solution that has a superior objective function value and that also sat-
isfies the constraints. Oftentimes exact solution methods are not available or
effective in finding (exactly) optimal solutions. Heuristics are then used to solve
the problem. We say that a solution obtained by a heuristic method, e.g., by
evolutionary computation, is heuristically optimal if it satisfies the constraints
and there is no known feasible solution that is superior to it in objective func-
tion value. If a solution x is heuristically optimal we say it is the best known
solution; we denote it by x+ and its objective function value by z+. Similarly,
if a solution is exactly optimal we denote it by x∗ and its objective value by z∗,
as is standard in the literature.

The optimization problem is central to the subfield of constrained optimiza-
tion with evolutionary computation (or more broadly, with metaheuristics).
Moreover, a great deal of progress of the first kind has been made and is contin-
uing to be made. This is a vibrant and quite progressive area, as evidenced by
the hundreds of papers published each year investigating and describing use of
evolutionary computation (and metaheuristics generally) to solve COModels.

The optimization problem, however, is not the only interesting and impor-
tant problem pertaining to constrained optimization models. It may be most
important, but it is not unique. We wish to discuss two other problems of con-
siderable interest and import. They complement, and in no way conflict with,
the optimization problem or its methods of solution.

The first of these new problems is the feasibles of interest or FoI problem.
A COModel will (almost always) partition its solutions into two classes: the
feasibles, which satisfy all constraints in the model, and the infeasibles, which
each violate at least one constraint. Roughly speaking (we will be precise in the
sequel) the FOIs are those feasible solutions that are high (assuming maximiza-
tion) in their objective function values relative to z+ and that consume fewer
resources than x+. The FoI problem, then, is the problem of finding the FOIs
for a given COModel.

The second problem we introduce is the complement of the first. Roughly
speaking (again, we will be precise in the sequel) the infeasibles of interest
or IOIs are those infeasible solutions that are high (assuming maximization) in
their objective function values relative to z+ and that are close to being feasible.
The IoI problem is the problem of finding the IOIs for a given COModel.

Both the FoI problem and the IoI problem, then, may be classed under
the more general SoI problem, the problem of finding non-optimal solutions of

1Terminology: We shall also use SoI for solution of interest, plural, SoIs or SOI’S; similarly
for FoI and IoI.
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interest for a constrained optimization model. In what follows we will propose
and investigate algorithms—which we call prioritized solutions algorithms—for
solving the FOI and IoI problems. First, however, a word on why these are
interesting and potentially important problems.

2 Post-Solution Deliberation

Post-solution analysis is what is done after a constrained optimization model
has been formulated, a solution or evaluation procedure applied, and results
therefrom obtained. At this stage of the modeling life-cycle a number of ques-
tions arise naturally, and for applications, most crucially. Post-solution analysis,
according to Greenberg Greenberg (1993a), “is [the] probing into the meaning
of an optimal solution. This includes conventional questions of sensitivity, and
it includes some additional analyses that are unconventional in the sense that
they go beyond textbook definitions.” Post-solution analysis has long been rec-
ognized in the operations research (OR) and management science community
as an important and valuable aspect of applied modeling.2 (See Greenberg
(1993a,b,c, 1994) for a comprehensive discussion from the classical exact solu-
tion, OR perspective.)

One of the important motivations for undertaking post-solution analysis is
to support what has been called the deliberation problem, which considers, at
least in principle, actions that might be taken to revise the model’s assump-
tions. These considerations are based on weighing solution results along with
knowledge not directly reflected in the model. The deliberation problem

. . . arises once a good solution is to hand, call it x+ with value
z+, for a COModel [constrained optimization model]: Should the
best available solution be implemented exactly or should we recon-
sider the model? Are there profitable opportunities to acquire ad-
ditional resources and thereby relax one or more constraints? On
the other hand are there solutions available inferior to x+ in terms
of z, but which would consume substantially less in terms of valu-
able resources? And so on for other deliberations. Kimbrough et al.
(2009)

Classical OR (exactly optimal solutions) methods for post-solution analysis are
most developed for linear programming models. Although there is important
work for integer programming models and for scheduling (see Geoffrion and
Nauss (1977), Greenberg (1998), and Hall and Posner (2004) for reviews) the
results tend to be very model type specific and of limited scope. Moreover,
these methods do not generally apply when the primary solution method is a
metaheuristic, as it often is and must be in practice.

2Post-solution analysis is also called post-optimality analysis, postoptimal analysis and
candle-lighting analysis Kimbrough et al. (1993); Branley et al. (1997); Kimbrough and Wood
(2008); Kimbrough et al. (2009). A related concern is “model busting” which is addressed in
Miller (1998) and used evolutionary computation.
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This brings us to the FoIs and IoIs. They are interesting and are defined as
they are because if they can be effectively populated, the solutions in them can
be used to support deliberation and post-solution analysis, as just described.
They are principled heuristic responses to the need for post-solution analysis.

Briefly, because of space limitations, we can frame post-solution analysis of
COModels as being organized around three types of questions. With what-if?
questions we ask about the consequences of changing the values of one or more
parameters. Sensitivity analysis falls under this heading. Examples: What if
constraint 7 is tightened by 5%? What will be the new optimal solution and
objective value? Why? and why-not? questions are aimed at understanding,
e.g., why job a, instead of job b, was assigned to a certain processor in the
optimal solution. At least part of the answer lies in finding solutions in which
job b is so assigned and then examining the costs and consequences of this,
such as a particular constraint being violated because of b’s heavier use of that
resource. (See Greenberg (1993b) for a nuanced discussion of why-questions in
a classic OR setting.) Finally, what-does-it-take? questions set a goal, such
as a higher value of z or freeing up a certain amount of constrained resources,
and ask for good solutions that satisfy the goal. To anticipate an example: At
optimality z = 644, but what does it take—what do we need to do—to get a
value of z of more than 650? These are all questions of great practical import in
the use of COModels and none of them can be addressed having only the optimal
solution to hand. What this paper is about is how the necessary information
may be obtained.

These considerations put two fundamental questions into play. The first
is Why are the FoIs and IoIs (as characterized above) interesting and useful
to have? Call this the motivation question. The second is Given that we are
interested in FoIs and IoIs, what are effective and comprehensive ways of finding
them? Call this the technical question. We have already given a short answer
to the motivation question: FoIs and IoIs can be used to support, and are what
we need to support, post-solution analysis and deliberation with COModels
(perhaps excluding linear programming models). We can use the FoIs and IoIs
to answer valuable what-if?, why?, and what-does-it-take? questions. What
follows in this paper begins to address both of the motivation and the technical
questions.

3 Complexity of the Problems

The COModels that we are concerned with, e.g., integer programming models
(linear or not), mix-integer programming models (linear or not), are all NP-
hard as optimization problems, and in practice will often (but not always, this
is not necessary, as we shall see shortly) be approached with heuristic solvers.
One approach to obtaining FoIs and IoIs is to alter the COModel’s parameters
systematically in the neighborhood of the boundary and re-solve the model. To
see the problem with this approach, consider only the right-hand side values of
the constraints in a small model, one having just 5 constraints. Assume we are

4

https://www.researchgate.net/publication/238340822_How_to_Analyze_the_Results_of_Linear_Programs--Part_2_Price_Interpretation?el=1_x_8&enrichId=rgreq-df1a5dc2-ac32-42de-85e4-1acdd4cd8d54&enrichSource=Y292ZXJQYWdlOzIyMDc0MDY3ODtBUzoxMTYyNzYxMjI4ODYxNDRAMTQwNDczMzc5NjU0MQ==


Function: RunFI2PopGA(MaxGenerations, FMutationRate, IMutationRate,
FXoverRate, IXoverRate, FPopSize, IPopSize, FPop, IPop).

1. GenerationCount ←− 0.
2. While (GenerationCount ≤ MaxGenerations)

(a) Increment GenerationCount.

(b) TempFeasible, TempInfeasible ←− []

(c) If Size(FPop) > 0, then

i. Create FPopSize progeny (new solutions) by applying mu-
tation and crossover operators at rates FMutationRate and
FXoverRate. Use ObjVal as the fitness value for each solution
in FPop.

ii. For each new solution call EvaluateSolution(Solution). If the
solution is feasible, add it to TempFeasible, else add it to
TempInfeasible.

(d) If Size(IPop) > 0, then

i. Create IPopSize progeny (new solutions) by applying mu-
tation and crossover operators at rates IMutationRate and
IXoverRate. Use InfeasVal as the fitness value for each so-
lution in IPop.

ii. For each new solution call EvaluateSolution(Solution). If the
solution is feasible, add it to TempFeasible, else add it to
TempInfeasible.

(e) FPop ←− TempFPop, IPop ←− TempIPop.

End Function.

Figure 1: Pseudocode for the Basic FI2Pop GA.

interested in infeasibles that are within 5 units of violation on each constraint
and feasibles that have slack of at most 5 on each constraint. This implies
(5 + 5 + 1)5 = 161,051 different models that would have to be solved. If we
are interested in ±10 units on each side of constraints, we get 215 = 4,084,101
different models to solve. And things get worse if we start considering other
parameters in the model. Even if the COModel can be solved very quickly by
an exact optimization solver, these kinds of numbers are overwhelming.

Clearly, except for very small problems, it will not be computationally fea-
sible to sweep out the FoIs and IoIs and re-solve systematically. We need to
sample, unless we have a fast (polynomial) method of generating solutions in
the FoIs and IoIs from a solution (or solutions) obtained by other means. In
general, such methods are not available, or at least they are unknown. There
are special cases (linear programming and changes of basis, and some work in
mixed integer programming Greenberg (1998)) but they are model-specific and

5

https://www.researchgate.net/publication/2470667_An_Annotated_Bibliography_for_Post-Solution_Analysis_in_Mixed_Integer_Programming_and_Combinatorial_Optimization?el=1_x_8&enrichId=rgreq-df1a5dc2-ac32-42de-85e4-1acdd4cd8d54&enrichSource=Y292ZXJQYWdlOzIyMDc0MDY3ODtBUzoxMTYyNzYxMjI4ODYxNDRAMTQwNDczMzc5NjU0MQ==


are not responsive to a pre-defined feasible or infeasible region of interest (e.g.,
infeasible solutions within 5 units of the constraint boundary). Of course, no
potentially useful method should be dismissed; these and similar methods merit
investigation in the present context of deliberation support and the problem of
populating the FoIs and IoIs. In consequence, our investigation has begun with
a general-purpose technical approach and it is mainly on this that we report in
the following sections.

max
xij

z(P,A,b) =
∑
i∈I

∑
j∈J

pijxij (1)

subject to:∑
i∈I

xij = 1 ∀j ∈ J (2)∑
j∈J

aijxij ≤ bi ∀i ∈ I, xij ∈ {0, 1} (3)

Figure 2: Generalized assignment problem (GAP) formulation

4 Prioritized Solutions

Now to the details of our approach to the technical question. It will help to have
before us a representative COModel. We will use the generalized assignment
problem (GAP), an NP-hard problem that is important in practice and that is
prototypical of difficult optimization problems.

An integer programming formulation for GAP is given in expressions (1)–
(3) of Figure 2, where pij is the profit from assigning job j to processor i, aij

the resource required for processing job j by processor i, and bi is the capacity
of processor i. The decision variables xij are set to 1 if job j is assigned to
processor i, 0 otherwise. The constraints, including the integrality condition on
the variables, state that each job is assigned to exactly one processor, and that
the bounded capacities of the processors are not exceeded Kellerer et al. (2004);
Martello and Toth (1990). The parameters of the model are the matrices P
and A, with elements pij and aij , and the vector b with elements bi. Each in-
equality in expression (3) is said to represent a constraint (on the corresponding
processor) and the bis are the right-hand-side (RHS) values.

In solving a GAP we find an (exactly or heuristically) optimal setting of the
decision variables, x+, with corresponding objective value z+ = z(P,A,b)+.
Deliberation and post-solution analysis are about solutions and objective values
of the problem under modification of the parameters, (P,A,b). As we have seen,
it is not practicable to alter the parameters and resolve the model, given the scale
necessary to do this. Our thought is to use population-based metaheuristics,
and evolutionary computation particularly, to populate the FoIs and IoIs as a
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1. Determine: HashAttribute, ConditionAttribute.
2. Initialize: MaxHeapSize, CandidateSolutions.
3. Initialize Heap to MaxHeapSize elements with poor scores on

ConditionAttribute.
4. Heap ←− UpdateHeap(Heap, CandidateSolutions, HashAttribute,

ConditionAttribute).

Function: UpdateHeap(Heap, CandidateSolutions, HashAttribute,
ConditionAttribute).

1. While (CandidateSolutions 6= [])

(a) Candidate ←− head(CandidateSolutions)
(b) CandidateSolutions ←−

tail(CandidateSolutions)
(c) If (Candidate satisfies ConditionAttribute) and (Candidate /∈

Heap) and (HashAttribute of Candidate � HashAttribute of Ex-
tractmin(Heap))), then

i. Deletemin(Heap)
ii. Insert Candidate into Heap.

2. Return Heap.

End Function.

Figure 3: Pseudocode for basic prioritized solutions algorithm.

by-product of solving the model. We shall now explain how we have done this.
The next section illustrates with examples.

Evolutionary computation is a natural choice for the problem of populating
the FoIs. In a successful run, or series of runs, of a genetic algorithm (for exam-
ple) we would expect (and do find repeatedly in practice) that the GA (genetic
algorithm) will produce many feasible solutions with fitness values (objective
function values, z) close to the best found, z+. As a meliorizing population-
based metaheuristic, a GA will tend to produce many solutions with similarly
high fitness values (providing of course that they exist and can be found). It is
just these good but non-optimal solutions that, we observe, constitute the FoIs.

What about the infeasible side and the IoIs? Here we have to worry that
standard penalty function approaches to handling infeasible solutions will not
very comprehensively explore the infeasible region(s) near the feasible-infeasible
boundary(ies). In the extreme case, amounting to a ‘death penalty’ for infeasible
solutions, there will be comparatively few solutions found and they will not be
parents of subsequent exploration. This worry has received some empirical
confirmation Kimbrough et al. (2009). For these kinds of reasons we chose to
begin our explorations using a version of the feasible-infeasible 2-population
(FI2Pop) GA Kimbrough et al. (2008, 2003), which maintains two populations,
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one of feasible solutions and one of infeasible solutions. Feasibles are selected
with respect to objective function values, infeasibles with respect to minimizing
distance to feasibility, or degree of constraint violation. New solutions, however
parented, are placed in the feasible or infeasible population according to their
evaluations. Figure 1 presents pseudocode for our version of the FI2Pop GA.

Given the choice of GA, in order to populate the FoIs and IoIs, we set up
heaps, or priority queues, two for feasibles and two for infeasibles. See Figure
3 for the pseudocode of what we call our prioritized solutions algorithm. Each
heap comes with a maximum size parameter, MaxHeapSize, which we set to 2000
solutions. In a single run, we fix the problem to be solved, e.g., a particular
GAP, and we conduct a number of replications, each beginning with a different
randomized initialization. The heaps, however, are maintained throughout the
run, and so at the conclusion they contain the best solutions found, by their
criteria, over all the replications in the run. We emphasize that what goes into
the heaps does not affect the search process of the GA, and this method of
collecting data (Figure 3) is computationally efficient.

On the feasible side we have heaps FoI(Obj) and
FoI(Slacks|MinObj). In FoI(Obj) we store feasible solutions, ranked by objec-
tive function value, limited to the best MaxHeapSize encountered. FoI(Slacks|MinObj)
contains the best feasible solutions whose objective values equal or exceed
MinObj (normally set at 97.5% of z+), where the evaluation criterion is the
sum of the slacks in the constraints. Recalling Figure 2 and constraints (3), the
sum of the slacks for any given feasible solution is

∑
i∈I(bi −

∑
j∈J aijxij).

On the infeasible side, we have heaps IoI(SumV) and
IoI(Obj|MaxDist). IoI(SumV) contains the best infeasible solutions found as
measured by the sum of constraint violations. Recalling Figure 2 and constraints
(3), the sum of the constraint violations for any given infeasible solution is∑

i∈I min{0, (bi −
∑

j∈J aijxij)}. (Only violated constraints count towards the
sum of the violations.) These are the infeasibles that are closest to feasibility.
IoI(Obj|MaxDist) contains the best infeasible solutions as measured by objec-
tive value, z, provided their sum of constraint violations is less than or equal to
MaxDist, typically = 5. These are high objective value infeasible solutions that
are near the feasible region.

5 Using the SoI’s

We have tested our approach by extensive running of our deliberation support
system (the FI2Pop GA with prioritized solutions to collect FoIs and IoIs), under
various settings, on the Beasley OR-Library GAP sets Beasley (2009), collecting
FoIs and IoIs as described in the previous section. As a representative example
of our results, we report here with regard to the FoIs and IoIs solutions found for
the Beasley OR-Library GAP set 4 problem 2 (c530-2). The problem dimension
of GAP4-2 is 5×30 (5 machines, 30 jobs) and its known optimal objective value
is 644. A main purpose of this section is to illustrate (very briefly for lack of
space) how having access to the SoIs may indeed be interesting and contribute to
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improved decision making. (Data was generated with GA runs with a mutation
rate of 0.09, crossover rate of 0.5, population size 250, 5000 generations, 20
replications or trials, and heap sizes of 1000.)

5.1 GAP4-2: Feasible solutions

On the feasible side, the deliberation system found not only one but two so-
lutions with the known optimal objective value of 644. Tables 1 and 2 show
the two optimal solutions found. The differences are shown in red. We note
that (i) conventional solvers will typically find just one optimal solution and
(ii) there is generally real value in knowing of more than one. For example,
one optimal solution to the model may be preferable to another because the
underlying problem has changed or has relevant aspects that are not captured
in the model.

0 1 2 3 4 5 6 7 8 9
0 - 3 3 5 1 2 1 4 1 4
1 2 3 2 1 4 4 5 2 2 5
2 3 4 5 3 5 3 1 4 1 5
3 2 - - - - - - - - -

Table 1: GAP4-2: Optimal solution #1

0 1 2 3 4 5 6 7 8 9
0 - 3 3 5 1 2 1 3 1 4
1 2 3 2 1 4 5 5 2 4 5
2 3 4 5 3 4 2 1 4 1 5
3 2 - - - - - - - - -

Table 2: GAP4-2: Optimal solution #2

The GA also produced other feasible solutions which have near-optimal val-
ues. See Table 3. At objective value 643, the GA found eight solutions which
spare more units of certain resources. To compare the slacks among the opti-
mal / near optimal solutions, we display them in the resource usage mode. If
a resource, say R4 (corresponding to the constraint whose RHS value is b4),
can be used in other more profitable ways, the decision maker may be partic-
ularly interested in the alternative solution number 3 (which spares 11 units
of resource 4). Also, the sampling results show that we have fewer opportu-
nities for redeployment on resources 3 and 5. Looking at Table 4, from the
FoL(Slacks|MinObj) heap, we note that 629 is an objective value above 97.6%
of optimality (644) and the heap contains three solutions whose sum of slacks
is 36 or more. This is potentially a significant savings on resources from either
of the optimal solutions and may well be a good bargain, depending of course
on actual opportunities and prices.
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Obj.Val. R1 R2 R3 R4 R5
0 644 2 1 1 2 0
0 644 2 5 0 1 1
1 643 5 4 1 3 0
2 643 0 2 1 0 0
3 643 0 4 1 11 0
4 643 2 1 1 3 0
5 643 0 1 0 7 0
6 643 5 4 0 1 5
7 643 2 1 0 4 0
8 643 2 5 1 4 1
9 642 0 4 3 12 1
10 642 9 0 0 0 2
11 641 0 8 0 1 3

Table 3: GAP4-2: FoIs with high objective values; from FoI(Obj)

Since the sampled feasible solutions from the heaps can be ranked according
to either their objective values or the slack on a certain resource, it is easy to
obtain the information with regard to what-if questions involving reductions in
one or more resources.3 For example, in both of our optimal solutions, constraint
1 has a slack of 2 (see Table 3). To look for alternative solution(s) with a slack
of at least 5 on resource 1, we can easily identify that solutions #1 and #6 both
have a slack on constraint 1 of 5 and objective values of 643, requiring a reduction
of less than 0.002% from optimality. We can also get relevant information on
certain why-questions. For example, task 25 is assigned to machines 3 and 2
in the two optimal solutions respectively (see Tables 1 and 2). Why not assign
task 25 to machine 1?, alternatively What is the best solution if we assign task
25 to machine 1? Solution #4 listed above has an objective value of 643 with
the task 25 being assigned to machine 1. Its detailed assignment is given in
Table 5.

Finally, on the feasible side, note that in FoI(Obj), Table 3, there is one
solution, #8 with objective value 643, that has slack of at least 1 on every
constraint (resource). Neither of the optimal solutions have this property. In
a stochastic world a decision maker may well prefer #8 to either of the opti-
mal solutions. The FoI(Slacks|MinObj) heap, Table 4, predictably has more
solutions with this property, although it is interesting that very many of the
solutions there do not.

5.2 Infeasible solutions

When considering the infeasible solutions, perhaps the most frequently asked
questions are about how one can best utilize extra resources (available say by

3In the linear programming context, the analog of this is the examination of shadow prices
on the constraints.
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Obj.Val. Slack Sum R1 R2 R3 R4 R5
0 644 6 2 1 1 2 0
0 644 9 2 5 0 1 1
1 629 37 0 28 3 5 1
2 629 36 0 8 10 17 1
3 629 36 20 5 0 4 7
4 628 39 15 15 3 5 1
5 627 38 0 21 10 4 3
6 626 42 0 8 16 17 1
7 626 40 5 28 6 0 1
8 626 40 15 8 10 4 3
9 626 40 15 8 3 5 9
10 626 39 15 9 3 11 1
11 626 39 20 8 7 4 0
12 626 39 0 8 9 22 0
13 625 42 20 15 6 0 1
14 625 41 0 1 3 29 8

Table 4: GAP4-2: FoIs with large sums of slacks; from FoL(Slacks|MinObj)

0 1 2 3 4 5 6 7 8 9
0 - 3 3 5 1 2 3 4 1 4
1 2 4 2 1 4 5 5 2 2 5
2 3 4 3 3 5 1 1 4 1 5
3 2 - - - - - - - - -

Table 5: GAP4-2: Best found solution with task 25 assigned to processor 1

purchase) to improve the objective value. In the case that an extra resource
is very hard to get, one may be more interested in finding out what possible
improvement can be achieved with minimal additional resource. In the case
that a given amount of extra budget is available, one may be more interested to
know how to allocate the extra resources to achieve the new optimal objective
value. By sampling the infeasible solutions, the deliberation system offers the
flexibility to accommodate these two different deliberation focuses.

Option one is to search the infeasible solutions which have the shortest dis-
tance to the feasible boundary, that is the IoI(SumV) heap. Since such search
focusing on solutions with minimal constraint violation, the sampled infeasible
solutions tend to have fitness value -1 (one distance unit). See Table 8. A rich
collection of infeasible solutions which are just one step away from the feasible
boundary are typically found by our approach. Three infeasible solutions (at
least) are one unit short of either resource 2 or resource 4. If the one extra unit
of required resource is obtained, the objective value will increase to 648 for all
three alternative solutions (listed below in resource usage mode). See Table 6.
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R1 R2 R3 R4 R5
1 0 4 -1 0 1
2 2 1 0 -1 0
3 5 4 0 -1 0

Table 6: GAP4-2 IoIs: Three nearly-feasible solutions with objective values of
648

A second option in searching infeasible solutions in the IoIs is to look for
solutions with high objective values, provided they are not too far away from
feasibility. These are collected in the IoI(Obj|MaxDist) heap. With a given
constraint violation threshold (a certain number of units away from the feasibil-
ity boundary, 5 in what we report here), the system offers different alternatives
which achieve higher objective values then the one-away infeasible solutions do.
For example, the deliberation system found the solutions (displayed in resource
usage mode) shown in Table 7. If the required extra units of resources are
supplied, we will be able to improve the objective value from the original 644
to 650 or even higher. Thus, the table can be used to answer what-does-it-
take? questions. Interestingly, although Table 7 is just a small portion of the
IoI(Obj|MaxDist)s, we see that there is considerable heterogeneity in the op-
tions displayed. For example, a decision maker could get an objective value of
650 by finding 5 units of R2 or 5 units of R5 or (2 units of R1 and 2 of R4), and
so on.

6 Populating the Heaps

We have identified four heaps of solutions, two on the feasible side and two
on the infeasible, whose members are of particular interest for post-solution
analysis and deliberation with COModels. Further, we have presented and

Distance to Objective
Boundary×-1 Value R1 R2 R3 R4 R5

1 -4.1231 652 -2 4 -2 -3 0
2 -2.8284 651 -2 4 0 -2 1
3 -2.8284 651 -2 -2 0 5 2
4 -5 650 -0 4 0 1 -5
5 -5 650 2 -5 1 0 1
6 -2.8284 650 -2 4 0 -2 1
7 -3.4641 650 -2 4 0 -2 -2
8 -3.6056 650 -3 -2 0 1 0
9 -4.2426 650 -3 1 1 -3 0

Table 7: GAP4-2 IoIs: Ranked by objective value
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Distance to Objective
Boundary×-1 Value R1 R2 R3 R4 R5

1 -1 648 5 4 0 -1 0
2 -1 648 0 4 -1 0 1
3 -1 645 8 1 1 -1 0
4 -1 645 0 4 1 -1 5
5 -1 644 0 4 10 -1 0
6 -1 644 0 2 4 -1 0
7 -1 643 5 -1 0 0 0
8 -1 640 -1 9 0 9 0
9 -1 639 0 8 -1 10 1
10 -1 638 5 -1 0 11 3
11 -1 637 5 1 0 16 -1
12 -1 637 16 1 0 2 -1
13 -1 636 -1 7 4 1 0
14 -1 635 5 18 1 -1 1
15 -1 635 5 8 14 -1 1
16 -1 634 5 8 2 -1 7

Table 8: GAP4-2: IoIs with with minimum constraint violations; from
IoI(SumV)

demonstrated one way of populating these heaps. This raises a number of
researchable questions. Let us say that one of our heaps is complete if it has
no missing solutions. That is, for example, the FoI(Obj) heap is complete
if it finds the MaxHeapSize feasible solutions with the best objective values;
the IoI(Obj,MaxDist) heap is complete if it finds the MaxHeapSize infeasible
solutions with the best objective values, provided they are within MaxDist of
feasibility. And so on. Research questions arising include:

1. How can we determine whether a given heap is complete or reasonably so?
2. What are the most efficient/effective ways of populating the heaps?
3. When are we better off obtaining presumably very incomplete heaps,

which we use to identify areas of interest and which we follow up on
with focused efforts at heap population, perhaps with local search near
solutions of particular interest? And how might we do this best?

4. Are some solutions of interest typically harder to find than others?

With these questions in mind, we offer a benchmark method. In our prioritized
solutions algorithm we keep track of when (which generation of which trial) a
solution enters the heap. Each trial begins with a random start. We can thus
expect that over multiple trials the heaps will move towards completion, since
no found solution that is in the (ideally) complete heap ever leaves it once it
is found and enters. This would indicate a falling off by trial in the number of
new heap entries.
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Figure 4: GAP5-1. Number of feasible solutions with superior objective values
entering the FoI(Obj) heap by replication (trial). Heap size 2000, 200 trials.
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Figure 5: GAP5-1. Number of infeasible solutions with superior objective values
entering the IoI(Obj|MaxDist) heap by replication (trial). MaxDist=5. Heap
size 2000, 200 trials.

Figures 4 and 5 display the number of new entries in two of the heaps
(see figure captions) by trial over 200 trials. There is an apparent high degree
of completion on the infeasible heap (Figure 5), and perhaps a trend towards
completion in the feasible heap (Figure 4).

A little modeling is helpful for insight. If, for example, every completed heap
member was equally easy/hard to find and on average a trial would find 10 of
the 1000 members, then the probability that a given member is not found in
n independent trials is (1 − 0.01)n = 0.99n. If we want to have an expected
completion score of say 90% then we need 1−0.99n = 0.9 or n = ln 0.1/ ln 0.99 
n > 229. Alternatively we can think of this as follows. Suppose a solution of
interest will only be found, say, in 1 in 100 trials and we want a 90% chance of
finding it. Well, then we need to run at least 229 trials.

Table 9 is also helpful for understanding heap completion issues. (Data on
the infeasible side are similar.) The (problematic) assumption that every SoI
is equally easy or hard to find would suggest a Poisson distribution for the
number of times the solutions in the final heap are encountered during the run
(of multiple random-start trials). And indeed the results in Table 9 broadly
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suggest Poisson-like distributions, although they are too thin in the tail for
Poisson. Even so, we can gain some insight with a Poisson assumption. On the
feasible side, for example, Table 9 would suggest a mean of 0.55 for a Poisson
distribution, implying that the heap is about 1- 0.58 = 42% complete.

What we are reporting here with respect to GAP 5-1 is similar to what we
have found with other problems in the GAP test suite Beasley (2009). Broadly
speaking, there are (at least to us) surprisingly large numbers of SoIs, both
feasible and infeasible. This implies important opportunities, currently not well
exploited, of supporting post-solution deliberation. Of course, much more and
much broader empirical work needs to be done. We can hope, however, that
the methods here on display, of estimating the completion percentages of the
heaps by internal means, will prove fruitful in the sequel and in practice. (Data
was generated with GA runs with a mutation rate of 0.09, crossover rate of 0.7,
population size 250, 5000 generations, 200 replications or trials, and heap sizes
of 2000.)

7 Summary and Discussion

To summarize the contributions of this paper:

1. We identify the non-optimal solutions of interest (SoI) problem as impor-
tant for the study of constrained optimization by metaheuristics, including
particularly evolutionary computation. Further, we identify two related
sub-problems: identifying FoIs and IoIs for support of deliberation and
post-solution analysis.

2. We propose two collections of solutions to constitute the FoIs: the FoI(Obj)s
and the FoI(Slacks|MinObj)s. Similarly, we propose two collections
of solutions to constitute the IoIs: the IoI(SumV)s and the IoI(Obj|
MaxDist)s.

3. We demonstrate the usefulness of the FoIs and the IoIs for post-solution
analysis on a prototypical problem, GAP4-2. We assert, based on many
test runs on different problems, that these results are representative.

4. We begin to investigate the question of how the four collections of solu-
tions of interest may be most effectively populated. We find that multiple
replications (trials) of the FI2Pop GA display a gradual, noisy leveling off
in finding improved entries for the four heaps. The computational task,
that is the number of trials needed, is typically larger than if we simply
want the optimal solution (in expectation). This approach serves as a
benchmark for other methods.

Regarding future research, besides exploring other kinds of models and gaining
practical experience, we see a number of especially important agenda items.

1. The FI2Pop GA is a credible, and in our experience very good, approach
to finding FoIs as well as IoIs. Other approaches that work as well or
better need to be sought and investigated. (Our experience with penalty
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function GAs suggests that they are not very good at finding IoIs, and
this is hardly surprising.)

2. In our searches we used two heaps each for the feasibles and the infeasi-
bles, one heap for each “objective” (fitness value, slack value). Perhaps a
combined, weighted search would suffice or be preferable, i.e. to construct
a heap that integrates the degree of infeasibility into the objective func-
tion. One way to implement this is via Guided Local Search Voudouris
and Tsang (2003) in which different features of infeasibility are treated as
penalty terms that augment the objective function.

3. There is no reason to require that the SoIs are found by a single method.
Multiple heuristics might be employed. Hyperheuristics Burke et al. (2003),
for example, offers a framework for selecting, combining, generating or
adapting multiple heuristics (or components of such heuristics) to obtain
the Sols.

4. Interpolation, neighborhood search, simulated annealing, et cetera among
the FoIs and IoIs found by the GA or whatever method(s) are initially
employed to find SoIs, may well be effective ways of focusing on regions of
interest and providing the decision maker with a more complete inventory
of the options available.

Clearly, very much additional research is called for on the SoI problem. Our
aim in this paper has been to motivate and frame such prospective research,
not to culminate it, an impossible task for any single paper. We hope, however,
that others will become interested in investigating the non-optimal solutions of
interest problem, and that soon progress on it will be seen as progress of the
first kind.
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Bin Frequency
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8 5
9 4
10 1
11 2
12 2

More 0
Total 2000
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tive values entering the FoI(Obj) heap are found. Heap size 2000, 100 trials.
Frequency = number of solutions in the final heap that were found Bin number
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