
Evolving the Placement and Density of Neurons in the
HyperNEAT Substrate

In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2010). New York, NY: ACM
Winner of the Best Paper Award in the Generative and Developmental Systems (GDS) Track

Sebastian Risi
School of EECS

University of Central Florida
Orlando, FL 32816, USA

sebastian.risi@gmail.com

Joel Lehman
School of EECS

University of Central Florida
Orlando, FL 32816, USA

jlehman@eecs.ucf.edu

Kenneth O. Stanley
School of EECS

University of Central Florida
Orlando, FL 32816, USA

kstanley@eecs.ucf.edu

ABSTRACT
The Hypercube-based NeuroEvolution of Augmenting Topolo-
gies (HyperNEAT) approach demonstrated that the pat-
tern of weights across the connectivity of an artificial neu-
ral network (ANN) can be generated as a function of its
geometry, thereby allowing large ANNs to be evolved for
high-dimensional problems. Yet it left to the user the ques-
tion of where hidden nodes should be placed in a geome-
try that is potentially infinitely dense. To relieve the user
from this decision, this paper introduces an extension called
evolvable-substrate HyperNEAT (ES-HyperNEAT) that de-
termines the placement and density of the hidden nodes
based on a quadtree-like decomposition of the hypercube of
weights and a novel insight about the relationship between
connectivity and node placement. The idea is that the rep-
resentation in HyperNEAT that encodes the pattern of con-
nectivity across the ANN contains implicit information on
where the nodes should be placed and can therefore be ex-
ploited to avoid the need to evolve explicit placement. In
this paper, as a proof of concept, ES-HyperNEAT discovers
working placements of hidden nodes for a simple navigation
domain on its own, thereby eliminating the need to config-
ure the HyperNEAT substrate by hand and suggesting the
potential power of the new approach.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – connectionism
and neural nets

General Terms
Algorithms

Keywords
Substrate Evolution, NEAT, HyperNEAT, Neuroevolution

1. INTRODUCTION
When the Hypercube-based NeuroEvolution of Augment-

ing Topologies (HyperNEAT) method was introduced [5,
9, 17], it provided a new perspective on evolving artificial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$5.00.

neural networks (ANNs) by showing that the pattern of
weights across the connectivity of an ANN can be gener-
ated as a function if its geometry. This insight allowed large
ANNs with regularities in connectivity to evolve for high-
dimensional problems [4, 5, 6, 9, 10, 17]. Yet the positions
of the nodes connected through this approach must be de-
cided a priori by the user. Thus by introducing the idea
that connectivity is related to geometry, HyperNEAT also
uncovered a deep and enduring puzzle about the placement
of the nodes themselves: What kind of representation can
decide where to place nodes in a geometry that is potentially
infinitely dense? It seems that, given that there are approx-
imately 100 billion neurons in the human brain [13], for any
representation to evolve the placement and density of nodes
it would need to span an incalculable gulf between networks
of several dozen nodes and several billion. The contribu-
tions of this paper are to introduce a novel insight about
the relationship between connectivity and node placement
that suggests they are really two sides of the same coin, and
to exploit this relationship to avoid the need to evolve the
placement of nodes at all.

That is, the novel insight is that a representation that en-
codes the pattern of connectivity across a network (such as in
HyperNEAT) automatically contains implicit clues on where
the nodes should be placed to best capture the information
stored in the connectivity pattern. In other words, there
is no need for any new information or any new representa-
tional structure beyond the very same compositional pattern
producing network (CPPN) that already encodes network
connectivity in HyperNEAT.

In this paper, the evolvable-substrate HyperNEAT (ES-
HyperNEAT) algorithm is introduced that constructs the fi-
nal phenotypic network, including the number, density, and
placement of nodes, guided by information implicit in the
CPPN. A simple navigation domain is presented in which
the agent needs to make decisions that are not linearly sep-
arable at the turning points of the maze, thereby requiring
an ANN controller with hidden nodes. The task thereby
serves as an initial proof of concept for the novel approach.

Because the task is simple, it can be solved effectively by
HyperNEAT with a traditional fixed-geometry substrate in
which the positions of a few hidden nodes are decided by
the user. Yet the ES-HyperNEAT approach finds a solution
in about the same number of evaluations and frees the user
from deciding the placement and number of hidden nodes.
Importantly no new information or parameters were added
to the CPPN representation beyond that in original Hyper-
NEAT. Thus the entire internal geometry of node placement

and density is derived from the connectivity pattern suc-
cessfully. The advantage of deriving node placement from
connectivity is further confirmed by an additional experi-
ment that shows that representing evolved node placement
independently of connectivity yields worse performance.

While the proof-of-concept experiment is simple and does
not take advantage of the full power of the approach, its
long-term impact should be to enable very complex tasks
for which large-scale unknown node placements are needed
to be solved in the future. The more complex the task, the
more important it will be to free the user from the burden
of configuring the substrate by hand. Also importantly, the
approach has the potential to create networks from several
dozen nodes up to several million, which will be necessary
in the future to create truly intelligent systems. It is fur-
thermore an important contribution to generative and de-
velopmental systems (GDS) because indirect encodings of
connectivity patterns (such as in HyperNEAT) are among
its most promising applications, and the insight that node
placement is implicit within connectivity itself can acceler-
ate research in this direction.

2. BACKGROUND
This section reviews NEAT and HyperNEAT, which are

foundational to the approach introduced in this paper.

2.1 Neuroevolution of Augmenting Topologies
The HyperNEAT method that enables learning from ge-

ometry in this paper is an extension of the original NEAT
algorithm that evolves ANNs through a direct encoding.
NEAT performs well in a variety of control and decision-
making problems [1, 18, 20]. It starts with a population
of simple neural networks and then complexifies them over
generations by adding new nodes and connections through
mutation. By evolving networks in this way, the topology
of the network does not need to be known a priori; NEAT
searches through increasingly complex networks to find a
suitable level of complexity.

The important feature of NEAT for the purpose of this
paper is that it evolves both the topology and weights of a
network. Because it starts simply and gradually adds com-
plexity, it tends to find a solution network close to the mini-
mal necessary size. In principle, another method for evolving
or learning the topology and weights of networks could also
play the role of NEAT in this paper. Nevertheless, what is
important is to begin with a principled approach to learning
both such features, which NEAT provides. For a complete
overview of NEAT see Stanley and Miikkulainen [18, 20].

The next section reviews the HyperNEAT extension to
NEAT that is itself extended in this paper.

2.2 HyperNEAT
In direct encodings like NEAT, each part of the solution’s

representation maps to a single piece of structure in the final
solution [8]. The significant disadvantage of this approach
is that even when different parts of the solution are similar,
they must be encoded and therefore discovered separately.
Thus this paper employs an indirect encoding instead, which
means that the description of the solution is compressed such
that information can be reused, allowing the final solution
to contain more components than the description itself. In-
direct encodings are powerful because they allow solutions
to be represented as a pattern of parameters, rather than

requiring each parameter to be represented individually [2,
3, 10, 12, 16, 19]. HyperNEAT, reviewed in this section,
is an indirect encoding extension of NEAT that is proven
in a number of challenging domains that require discovering
regularities [4, 6, 9, 10, 17]. For a full description of Hyper-
NEAT see Stanley et al. [17] and Gauci and Stanley [10].

In HyperNEAT, NEAT is altered to evolve an indirect
encoding called compositional pattern producing networks
(CPPNs [16]) instead of ANNs. CPPNs, which are also
networks, are designed to encode compositions of functions,
wherein each function in the composition loosely corresponds
to a useful regularity. For example, a Gaussian function in-
duces symmetry. Each such component function also creates
a novel geometric coordinate frame within which other func-
tions can reside. For example, any function of the output of
a Gaussian alone will output a symmetric pattern because
the Gaussian is symmetric.

The appeal of this encoding is that it allows spatial pat-
terns to be represented as networks of simple functions (i.e.
CPPNs), which means that NEAT can evolve CPPNs just
like ANNs. CPPNs are similar to ANNs, but they rely on
more than one activation function (each representing a com-
mon regularity) and are an abstraction of biological develop-
ment (through which phenotype patterns are constructed)
rather than of brains.

The indirect CPPN encoding can compactly encode pat-
terns with regularities such as symmetry, repetition, and
repetition with variation [15, 16]. For example, simply by in-
cluding a Gaussian function, which is symmetric, the output
pattern can become symmetric. A periodic function such as
sine creates segmentation through repetition. Most impor-
tantly, repetition with variation (e.g. such as the fingers of
the human hand) is easily discovered by combing regular co-
ordinate frames (e.g. sine and Gaussian) with irregular ones
(e.g. the asymmetric x-axis). For example, a function that
takes as input the sum of a symmetric function and an asym-
metric function outputs a pattern with imperfect symmetry.
In this way, CPPNs produce regular patterns with subtle
variations. The potential for CPPNs to represent patterns
with motifs reminiscent of patterns in natural organisms has
been demonstrated in several studies [15, 16].

The main idea in HyperNEAT is that CPPNs can nat-
urally encode connectivity patterns [9, 10, 17]. That way,
NEAT can evolve CPPNs that represent large-scale ANNs
with their own symmetries and regularities.

Formally, CPPNs are functions of geometry (i.e. locations
in space) that output connectivity patterns whose nodes are
situated in n dimensions, where n is the number of dimen-
sions in a Cartesian space. Consider a CPPN that takes
four inputs labeled x1, y1, x2, and y2; this point in four-
dimensional space also denotes the connection between the
two-dimensional points (x1, y1) and (x2, y2), and the output
of the CPPN for that input thereby represents the weight of
that connection (figure 1). By querying every possible con-
nection among a pre-chosen set of points in this manner, a
CPPN can produce an ANN, wherein each queried point is
a neuron position. Because the connections are produced by
a function of their endpoints, the final structure is produced
with knowledge of its geometry. In effect, the CPPN is paint-
ing a pattern on the inside of a four-dimensional hypercube
that is interpreted as the isomorphic connectivity pattern,
which explains the origin of the name hypercube-based NEAT
(HyperNEAT). Connectivity patterns produced by a CPPN

-1 1

CPPN (evolved)
x1 y1 x2 y2

3) Output is weight
between (x

1
,y

1
) and (x

2
,y

2
)

1) Query each potential
connection on substrate

Substrate

1,0 1,1
...

-0.5,0 0,1
...

-1,-1 -0.5,0
...

-1,-1 - 1,0
...

2) Feed each coordinate pair into CPPN

X

1 Y

-1

Figure 1: Hypercube-based Geometric Connectiv-
ity Pattern Interpretation. A collection nodes, called
the substrate, is assigned coordinates that range from −1 to
1 in all dimensions. (1) Every potential connection in the
substrate is queried to determine its presence and weight;
the dark directed lines in the substrate depicted in the fig-
ure represent a sample of connections that are queried. (2)
Internally, the CPPN (which is evolved) is a graph that de-
termines which activation functions are connected. As in
an ANN, the connections are weighted such that the out-
put of a function is multiplied by the weight of its outgoing
connection. For each query, the CPPN takes as input the
positions of the two endpoints and (3) outputs the weight
of the connection between them. Thus, CPPNs can produce
regular patterns of connections in space.

in this way are called substrates so that they can be ver-
bally distinguished from the CPPN itself, which has its own
internal topology.

Each queried point in the substrate is a node in an ANN.
In current implementations of HyperNEAT as of this writ-
ing, the experimenter defines both the location and role (i.e.
hidden, input, or output) of each such node. As a rule of
thumb, nodes are placed on the substrate to reflect the ge-
ometry of the task [4, 6, 9, 17]. That way, the connectivity
of the substrate is a function of the task structure.

For example, the sensors of an autonomous robot can be
placed from left to right on the substrate in the same order
that they exist on the robot. Outputs for moving left or right
can also be placed in the same order, allowing HyperNEAT
to understand from the outset the correlation of sensors to
effectors. In this way, knowledge about the problem geom-
etry can be injected into the search and HyperNEAT can
exploit the regularities (e.g. adjacency, or symmetry) of a
problem that are invisible to traditional encodings. Yet a
problem that has endured with HyperNEAT is that the ex-
perimenter is left to decide how many hidden nodes there
should be and where to place them. That is, although
the CPPN determines how to connect nodes in a geomet-
ric space, it does not specify where the nodes should be. No
automated solution to this problem has yet been introduced,
in part because it seems to require some kind of additional
structure or apparatus beyond the CPPN representation.

In answer to this challenge, the next section introduces
an extension to HyperNEAT in which the placement and
density of the hidden nodes do not need to be set a priori and
in fact are completely determined by implicit information in
the CPPN itself.

3.CHOOSING CONNECTIONS TO EXPRESS
The placement of nodes in original HyperNEAT is decided

by the user. Yet whereas it is often possible to determine

how sensors and effectors relate to domain geometry, it is
difficult for the user to determine the best placement and
number of necessary hidden nodes a priori. For example,
the location of the hidden nodes in the substrate in figure 1
had to be decided by the user. HyperNEAT thus creates
the strange situation that it can decide with what weight
any two nodes in space should be connected, but it cannot
tell us anything about where the nodes should be. What
representation can evolve the placement and density of nodes
that can potentially span between networks of several dozen
nodes and several billion?

3.1 Implicit Information in the Hypercube
The novel insight in this paper is that a representation

that encodes the pattern of connectivity across a network
automatically contains implicit information on where the
nodes should be placed. In HyperNEAT the pattern of con-
nectivity is described by the CPPN, where every point in
the four-dimensional space denotes a potential connection
between two two-dimensional points. Because the CPPN
takes x1, y1, x2, and y2 as input, it is a function of the infi-
nite continuum of possible coordinates for these points. In
other words, the CPPN encodes a potentially infinite num-
ber of connection weights within the hypercube of weights.
Thus one interesting way to think about the hypercube is as
a theoretically infinite pattern of possible connections that
might be incorporated into a neural network substrate. If a
connection is chosen to be included, then by necessity the
nodes that it connects must also be included in the sub-
strate. Thus by asking which connections to include from
the infinite set, we are also asking which nodes to include.

By shifting the question of what to include in the sub-
strate from nodes to connections, two important insights
follow: First, the more such connections are included, the
more nodes would also be added to the substrate. Thus
the node density increases with the number of connections.
Second, for any given pattern, there is some density above
which increasing density further offers no advantage. For
example, if the hypercube is a uniform gradient of maximal
connection weights (i.e. all weights are the same constant),
then in effect it encodes a substrate that computes the same
function at every node. Thus adding more such nodes adds
no new information. On the other hand, if there is a stripe
of differing weights running through the hypercube, but oth-
erwise uniform maximal connections everywhere else, then
that stripe contains information that would perform a dif-
ferent function from its redundantly-uniform neighbors.

The key insight is that it is not always a good idea to
add more connections because for any given finite pattern,
at some resolution there is no more information and adding
more weights at such high resolution would be redundant
and unnecessary. This maximal useful resolution varies for
different regions of the hypercube depending on the com-
plexity of the pattern in those regions. Thus the answer to
the question of which connections should be included is that
connections should be included at high enough resolution
to capture the detail (i.e. information) in the hypercube.
Any more than that would be redundant. Therefore, an al-
gorithm is needed that can choose many points to express
in regions of high variance and fewer points to express in
regions of relative homogeneity. Each such point is a con-
nection weight in the substrate whose respective nodes will
be expressed as well. The main principle is simple: Density

V 4x4

2x2

1x1

1 2
3 42 3 4

c. Determine
variance for all
higher nodes

a.
Sp

lit
un

til
de

si
re

d
re

so
lu

tio
n

b. Query CPPN

1

(1) Division Phase

Va. Remove nodes
with low parent
variance

b. Create points
for resulting
leaves

(2) Pruning Phase

Figure 2: Quadtree information extraction example
for a two-dimensional CPPN. The algorithm works in
two main stages. (1) In the division phase the quadtree is
created by recursively splitting each square into four new
squares until the desired resolution is reached (1a). Sub-
sequently the CPPN value for each leaf (1b) and the vari-
ance of each higher node is determined (1c). Gray nodes in
the figure have a variance greater than zero. Then, in the
pruning phase (2), all quadtree nodes are removed whose
parents have a variance that is smaller than a given thresh-
old (2a). Points are created for all resulting quadtree leaves
(2b). That way, the density of points in different regions will
correspond to the amount of information in that region.

follows information. Thus a deep insight in this argument
is that the placement of nodes in an ANN is ultimately a
signification of where information is stored within weights.

To perform the task of choosing points (i.e. weights) to
express, a data structure is needed that allows space to be
represented at variable levels of granularity. One such multi-
resolution technique is the quadtree [7], which traditionally
describes two-dimensional regions. It has been applied suc-
cessfully in fields ranging from pattern recognition to im-
age encoding [14, 21] and is based on recursively splitting
a two-dimensional region into four sub-regions. That way,
the decomposition of a region into four new regions can be
represented as a subtree whose parent is the original region
with one descendent for each decomposed region. The re-
cursive splitting of regions can be repeated until the desired
resolution is reached or no further subdivision is needed.

How can this data structure be applied to choose which
points in the hypercube to express? To facilitate under-
standing without loss of generality, the basic idea behind
the algorithm is explicated in two dimensions (i.e. the CPPN
takes two inputs). Of course, in practice it is run in four di-
mensions for a four-dimensional CPPN.

The quadtree algorithm works in two main phases (fig-
ure 2): In the division phase the quadtree is created by
recursively subdividing the initial square until a desired ini-
tial resolution r is reached (e.g. 4 × 4). Once this res-
olution is reached, for every quadtree leaf (corresponding
to square (x1, y1, x2, y2)), the CPPN is queried at position(

x1+x2
2

, y1+y2
2

)
and the resulting value w is stored. Given

those values (w1, w2, .., wk) for a subtree of quadtree node p
and mean w̄ the variance of node p in the quadtree can be
calculated as σ2

p = 1
k

∑k
1(w̄−wi)

2. This variance is a heuris-

tic indicator of the homogeneity (i.e. lack of information) of
a region. If the variance of the parent of a quadtree leaf is
still higher than a given division threshold dt then the di-
vision phase can be reapplied for the corresponding square,
allowing increasingly high densities. A maximum resolution
level rm can be set to place an upper bound on the number
of possible nodes.

The quadtree representation created in the division phase
can serve as a heuristic variance indicator to decide on the
placement and density of points to express. Because more
points should be expressed the higher the variance is in a cer-
tain region, a pruning phase is executed, in which quadtree
nodes are removed whose parents’ variance is smaller than
a given variance threshold σ2

t . Subsequently, points are cre-
ated for all resulting quadtree leaf nodes. The result is
higher resolution in areas of more variation.

Figure 3a shows an example of the points chosen at this
stage of the algorithm, which resembles typical quadtree im-
age decompositions [21]. The variance is high at the borders
of the circles, which results in a high density of expressed
points at those locations. However, there are reasons to re-
fine the quadtree algorithm further to best suit the purpose
of choosing connections for expression in a substrate. One
way to think about the pattern expressed by the CPPN (e.g.
such as the one in figure 3) is as a kind of language through
which the CPPN describes where it wants to express connec-
tions. Like any language, it can be interpreted in different
ways. The way it is interpreted will bias the ES-HyperNEAT
algorithm towards different kinds of node density patterns.
The goal should be to provide the CPPN with a most conve-
nient language for expressing points in locations that would
be useful for describing the weights of an ANN. While fig-
ure 3a takes a step in this direction, it tends to cluster many
points along edges (because they represent areas of high vari-
ance). Yet clustering density around edges would make it
hard for the CPPN to easily choose to express weights of one
value and not another because the points chosen along edges
are on both sides. Thus a more parsimonious “language” for
describing density patterns would ignore the edges and fo-
cus on the inner region of bands, which are points that are
enclosed by at least two neighbors on opposite sides (e.g.
left and right) with different CPPN activation levels (fig-
ure 3b). Furthermore, narrower bands can be interpreted as
requests for more point density, giving the CPPN an explicit
mechanism for affecting density.

Thus, to facilitate banding, a second pruning stage is
added that removes points that are not in a band. Mem-
bership in a band for square (x1, y1, x2, y2) is determined by
b = max(min(dtop, dbottom),min(dleft, dright)), where dleft is
the difference in CPPN activation levels between the point
(x1+x2

2
, y1+y2

2
) and its left neighbor at the same resolution

level with location (2x1−|x1−x2|
2

, y1+y2
2

) (the other values,
dright, dbottom, and dtop, are calculated accordingly). If the
band level b is below a given threshold bt then the corre-
sponding point is not expressed. Figure 3b shows the re-
sulting point selections with band pruning.

This approach also naturally enables the CPPN to in-
crease the density of points chosen by creating more bands
or making them thinner. Thus no new information and no
new representational structure beyond the CPPN already
employed in HyperNEAT is needed to encode network con-
nectivity, as concluded in the next section.

(a) Quadtree point selection
without band pruning

P

(b) Final point selection with
band pruning

Figure 3: Example point selection in two dimen-
sions. Different stages of point selection are shown for a
two-dimensional image. Chosen points are shown in (a) af-
ter the pruning stage but without band pruning. Points that
still remain after band pruning (e.g. point P , whose neigh-
bors at the same resolution have different CPPN activation
levels) are shown in (b). Note that the points in the outer
black region are removed because they are not enclosed by
contrasting neighbors on opposite sides. The resulting point
distribution reflects the information inherent in the image.
In effect, the CPPN speaks a language through its pattern
that denotes exactly which weights within the hypercube
should be expressed.

3.2 Evolvable-Substrate HyperNEAT
(ES-HyperNEAT)

The weight-choosing approach from the previous section
can be generalized to work in the four-dimensional hyper-
cube that is isomorphic to a two-dimensional connectivity
pattern. The quadtree is replaced by what can be called a
hypertree, in which each node in the tree has 16 descendents.
The band pruning in the hypercube takes four dimensions
into account instead of only two as in the previous section.
Recall that the weights of connections are being chosen in
the hypercube, whose nodes (i.e. neurons) will be placed
in the substrate with them. In particular, for each chosen
connection the corresponding hidden neurons are included.

A third step is also added to the algorithm, called the in-
tegration phase, that constructs the final fully-functioning
ANN from the discovered hidden nodes by connecting them
to the inputs and outputs. Integration entails first querying
potential connections from hidden nodes without outgoing
connections to outputs and then sequentially querying pos-
sible connections to output and hidden nodes that remain
without incoming connections from input neurons.

The complete ES-HyperNEAT algorithm that determines
the density and locations of the hidden nodes is enumerated
in Algorithm 1. The six parameters, weight threshold wt,
band threshold bt, variance threshold σ2

t , division threshold
dt, initial resolution r, maximum resolution rm, and the
space spanned by the hypercube, adjust the amount and
distribution of resulting hidden neurons and connections.

The next section demonstrates the capabilities of the sub-
strate evolution algorithm.

4. EXPERIMENT
This section introduces the navigation task designed to

demonstrate the substrate evolution algorithm.

4.1 Maze Navigation Domain
Because the goal of the substrate evolution algorithm is to

determine the placement and density of the hidden nodes, a

Input: 4-D CPPN, input & output nodes on substrate
Output: Final ANN
1) Division Phase

a. Create hypertree by recursively dividing hypercube
until desired resolution r is reached.

b. Query CPPN for each leaf for weight w.
c. Determine variance for all tree nodes.
d. Repeat division on leaves with parent variance

σ2
p > dt (and maximum resolution rt not reached).

2) Pruning Phase
a. Remove all nodes with parent variance σ2

p < σ2
t .

b. For all leaf nodes: If |w|>wt and band level b > bt
create connection with a weight proportional to w
and corresponding hidden neurons if not existent.

3) Integration Phase
a. Query connections to outputs from hidden nodes

without any outgoing connections.
b. Query connections from inputs to output and

hidden nodes without any incoming connections.
c. For (a) and (b): If |w| > wt create connection with

a weight proportional to w.

Algorithm 1: Evolvable-Substrate HyperNEAT

good test domain should require hidden nodes to solve. The
domain in this paper is a simple navigation task that satis-
fies this requirement. The goal of the agent is to navigate
from starting point S to goal G (figure 4a) as fast as possible.
To solve the maze the agent must learn to maintain straight
motion in corridors and at any junction that has an opening
to the left and right. If there is only one opening to the left
(or right) the agent should take the left (or right) branch.
That way, the decision in which direction to turn to solve
the given maze is similar to XOR, which is not linearly sep-
arable. It therefore requires hidden nodes and consequently
makes a good validation domain for ES-HyperNEAT.

Four HyperNEAT variants are compared. In all four, the
input and output nodes are placed at the same locations on
the substrate (figure 4b), which are designed to geometri-
cally correlate senses and outputs (e.g. seeing something on
the left and turning left). Thus the CPPN can exploit the
geometry of the agent. The agent is equipped with three
rangefinder sensors that detect walls to the left, front, and
right of the robot. All sensor values are scaled into the range
[0,1], where lower activation indicates closer proximity to a
wall. The three output neurons are Left, Straight and Right.
At each simulated time step, the agent continues to move
straight at a constant pace if the Straight output is greater
than 0.5. If the Straight output is less than or equal to 0.5,
the agent turns 90 degrees in the direction of the highest
activated neuron (Left or Right).

The FS-HyperNEAT variant is the original HyperNEAT
approach with a fixed substrate. To generate such a con-
troller, a four-dimensional CPPN with inputs x1, y1, x2,
and y2 queries the substrate shown in figure 4b, which has
three inputs, three hidden nodes, and three output nodes,
to determine its connection weights.

The Perceptron-HyperNEAT variant validates that the
navigation task indeed needs hidden neurons. The inputs are
connected directly to the outputs.

In the ES-HyperNEAT approach, the placement and
density of the hidden nodes and their connections to the

A

G

S
(a) Navigation Domain

0.5
Y

X

Left Straight

1 32-0.5
-0.5 0.5

A

Right

(b) Fixed-Substrate Layout

Figure 4: Navigation domain and substrate configu-
ration. (a) The goal of agent A is to navigate from starting
point S to goal point G. The difficulty is that the turning
decisions that the agent must make are not linearly separa-
ble and thus require an ANN with hidden nodes. The con-
troller substrate is shown in (b) that is queried by the CPPN
for FS-HyperNEAT. The autonomous agent A is equipped
with three distance sensors. Three hidden nodes (shown) are
given to the fixed substrate, whereas the evolvable substrate
decides on the positions of hidden nodes on its own.

input and output nodes are determined entirely from the
CPPN by the algorithm in Section 3.2 (Algorithm 1).

Finally, a key insight in ES-HyperNEAT is that the best
clue to where to place nodes is in fact connection weights.
To validate that tying node placement to connection weights
indeed provides an advantage, the SES-HyperNEAT ap-
proach separates the encoding of node placement and con-
nectivity. It is identical to ES-HyperNEAT except that it
is based on two CPPNs, where node placement is decided
by the first CPPN as in ES-HyperNEAT, but the weight of
each included connection is supplied by the second CPPN.

The aim of this experiment is primarily to show that the
ES-HyperNEAT algorithm can indeed evolve the placement
and density of the hidden nodes on its own to solve the task.
Of course, the FS-HyperNEAT variant has the advantage of
a fixed topology sufficient for this simple domain, but the
interesting issue is how ES-HyperNEAT will creatively lay
out its substrate on its own, and whether it can do so.

The fitness function is the same for all approaches with a
maximum evaluation period of 25 time steps:

f =

{
25
T
, if the agent is able to reach the goal

e−
d
D , otherwise,

where d is the distance to the goal after the end of the eval-
uation period, D is the initial distance, and T is the number
of steps it takes the agent to reach the goal.

4.2 Experimental Parameters
Because HyperNEAT differs from original NEAT only in

its set of activation functions, it uses the same parameters
[18]. All experiments were run with a modified version of
the public domain SharpNEAT package [11]. The size of
each population was 300 with 10% elitism. Sexual offspring
(50%) did not undergo mutation. Asexual offspring (50%)
had 0.94 probability of link weight mutation, 0.03 chance of
link addition, and 0.02 chance of node addition. The NEAT
coefficients for determining species similarity were 1.0 for
nodes and connections and 0.1 for weights. The available

CPPN activation functions were sigmoid, Gaussian, absolute
value, and sine, all with equal probability of being added.
Parameter settings are based on standard SharpNEAT de-
faults and prior reported settings for NEAT [18, 20]. They
were found to be robust to moderate variation through pre-
liminary experimentation. As in previous work [5, 17] all
CPPNs received the length of the queried connection as an
additional input. All hypercubes spanned the space between
(-0.5, -0.5, -0.5, -0.5) and (0.5, 0.5, 0.5, 0.5).

ES-HyperNEAT and SES-HyperNEAT started with an
initial resolution of 2× 2× 2× 2 and had a maximum reso-
lution of 8× 8× 8× 8. The weight threshold was set to 0.6
and the band pruning threshold to 0.3. The variance and
division threshold were set to 0.03. Hidden neurons were
only allowed to connect to other neurons with a greater y-
value. Thus all resulting ANNs are feedforward and the
comparison between FS-HyperNEAT and ES-HyperNEAT
(and SES-HyperNEAT) is fair.

Runs consisted of 1,000 generations and all reported re-
sults are averaged over 20 runs. The problem is considered
solved when the agent is able to navigate to the goal as fast
as possible without taking any detours, which corresponds
to the maximum fitness of 7.58. If no solution was found
within the initial 1,000 generations, the current simulation
was restarted. This procedure was repeated until a solution
was found, counting all generations over all restarts for that
particular run.

5. RESULTS
Figure 5a shows the training performance over generations

for the fixed substrates (with three and no hidden nodes) and
the evolved substrates. The substrate without hidden nodes
is not able to solve the task, confirming that the domain in-
deed requires hidden neurons. It took FS-HyperNEAT 282
generations (σ = 139) on average to find a solution, includ-
ing one restart. ES-HyperNEAT took 302 generations (σ
= 189) and was able to find a solution in all 20 runs. SES-
HyperNEAT took 550 generations (σ = 391) on average and
required one restart. While FS-HyperNEAT solves the task
slightly (though not significantly; p = 0.76 according to the
Student’s t-test) faster on average, ES-HyperNEAT reaches
a slightly (though not significantly; p = 0.33) higher aver-
age level of fitness. Thus overall the performance of the two
methods is about the same, which means that evolving the
placement of the nodes exacts no extra cost in terms of eval-
uations in this domain. SES-HyperNEAT, however, took
significantly longer to evolve solutions than ES-HyperNEAT
(p < 0.01), indicating that it may indeed be more efficient
to couple node placement and connectivity together than to
encode them separately.

In ES-HyperNEAT, there is a significant positive correla-
tion (r=0.67, p<0.01) between the number of connections in
the CPPN and in the resulting ANN (figure 5b). This trend
indicates that the substrate evolution algorithm may tend
to create increasingly complex indirectly-encoded networks
even though it is not explicitly designed to do so (e.g. like
regular NEAT). The complexity of ANN (substrate) solu-
tions (267 connections on average) is more than five times
greater than that of the underlying CPPNs (50 connections
on average), which suggests that ES-HyperNEAT can en-
code large ANNs from compact CPPN representations.

An example ANN created by ES-HyperNEAT that is able
to solve the navigation domain and the CPPN that encodes

0

2

4

6

8

0 100 200 300 400 500 600 700 800 900

Fi
tn

es
s

Generations

ES-HyperNEAT

FS-HyperNEAT

Perceptron-HyperNEAT

SES-HyperNEAT

(a) Training Performance

0
50

100
150
200
250
300
350

0 100 200 300 400 500 600 700 800 900
Generations

C
om

pl
ex

ity

ANN Connections

ANN NeuronsCPPN Connections

(b) Average ES-HyperNEAT Champion Complexity

Figure 5: Training performance and average cham-
pion complexity over generations. (a) The change in
performance over evaluations for HyperNEAT for the four
compared approaches is shown. All results are averaged
over 20 runs. FS-HyperNEAT and ES-HyperNEAT take
about the same number of evaluations and the task cannot
be solved without hidden neurons. SES-HyperNEAT takes
significantly longer to evolve a solution. The horizontal line
(top) indicates at what fitness the maze is solved. The av-
erage number of connections and neurons of the champion
ANNs produced by ES-HyperNEAT and the number of con-
nections of the underlying CPPNs are tracked in (b). In-
creasing CPPN complexity shows a positive (and significant)
correlation with an increase in ANN complexity.

it are shown in figure 6. The algorithm creates a working
network topology with hidden nodes, although it includes
more structure than necessary, suggesting the technique may
be most suited to finding ANNs for more complex problems.

6. DISCUSSION AND FUTURE WORK
The very idea revealed by HyperNEAT that connectivity

can exist at infinite resolution hints at a potentially useful
shift in thinking about networks. When continuous func-
tions encode connectivity patterns, the strange corollary is
that nodes are not explicitly determined; for any such con-
nectivity pattern, the nodes that are connected can literally
exist at any density and in any distribution. Yet while this
condition seems to present a puzzle, it also presents an op-
portunity to think anew about the deeper relationship be-
tween connections and nodes. The ideas in this paper are a
step towards such renewed thinking.

The convention in HyperNEAT of the last several years
that the user would simply decide a priori where the nodes
belong evaded this deeper mystery about how connectivity
relates to node placement. In fact, if the user dictates that
hidden node n must exist at position (a, b), it creates the
unintentional constraint that any pattern of weights encoded
by the CPPN must intersect position (a, b) precisely with
the correct weights. That is, the pattern in the hypercube
must perfectly align the correct weights through (a, b, x2, y2)
and (x1, y1, a, b). Yet why should such an arbitrary a priori
constraint on the locations of weights be imposed? It might
be easier for the CPPN to represent the correct pattern at a

1 2 3

L S R

(a) ANN

X1 Y1 X2 Y2

S

G

G

A

Si

BiasL
(b) CPPN

Figure 6: Example solution ANN created by ES-
HyperNEAT and its underlying CPPN. Inputs (bot-
tom) and outputs (top) are displayed in black. Hidden nodes
are shown in white. Positive connections are dark whereas
negative connections are light. Line width corresponds to
connection strength. The algorithm discovered an ANN so-
lution with hidden nodes (a) by extracting the information
inherent in the simpler underlying CPPN (b). CPPN activa-
tion functions are denoted by G for Gaussian, S for sigmoid,
Si for sine, and A for absolute value.

slightly different location in the hypercube, yet that would
fail under the user-imposed convention.

One way to interpret the preceding argument is that the
locations of useful information in the hypercube are where
the nodes need to be. That way, the size of the brain
is roughly correlated to its complexity. There is no need
for a billion neurons to express a simple Braitenberg vehi-
cle. Even if a billion neurons were summoned for the task,
many of their functions would end up redundant, which geo-
metrically means that large cross-sections of the hypercube
would be uniform, containing no useful information. The
ES-HyperNEAT approach in this paper is a heuristic at-
tempt to formalize this notion and thereby correlate size
to complexity. In this context, nodes become a kind of
harbinger of complexity, proliferating where it is present and
receding where it is not. Thus the solution to the mystery of
the relationship between nodes and connections is that nodes
are sentinels of complex connectivity; they are beacons of in-
formation in an infinite cloud of possible connections.

The contribution of this paper, supported by its results,
is to show that this idea can work. While the experiment
does not establish the necessity of the approach, it does es-
tablish its feasibility. It really is possible to extract from a
CPPN that encodes nothing but connectivity a reasonable
set of node locations based on a heuristic concept of what
kind of information is important (which will be inevitably
refined and improved in the future). In fact, allowing the
separate specification of connectivity and node placement
(as in SES-HyperNEAT) significantly degrades performance,
providing empirical evidence for the motivation behind ES-
HyperNEAT. While the navigation task is simple, it is a first
step towards establishing that this theory can actually work.
Future experiments in more ambitious domains will be im-
portant towards establishing the necessity of the approach.

The hypertree decomposition in this paper is likely not
the last word on this type of algorithm but more fundamen-
tally is the first of potentially many such algorithms that
heuristically search the hypercube for the most promising
weights. Thus in effect it opens a new research direction in
neuroevolution. For example, while discovering regions of

high variance in the hypercube space can become expensive
at high resolutions, a possible future refinement of the ap-
proach might begin searching only around the input neurons
and then iterate to other areas of the hypercube only if they
are connected.

Importantly, ES-HyperNEAT and FS-HyperNEAT take
about the same number of evaluations to find a solution.
Thus the new algorithm frees the user from needing to decide
anything about the placement or number of hidden nodes.
The ES-HyperNEAT solutions, with on average 64 hidden
nodes and 267 connections, are significantly more complex
than necessary for this task. Yet they are optimized as fast
as a fixed substrate with only three hidden neurons. An
indirectly-encoded neuroevolution algorithm is not the same
as a direct encoding like NEAT that complexifies by adding
one node at a time to find just the right number of nodes
for a task. The promise of the indirect encoding is rather
to evolve very large networks that would be prohibitive to
such direct encodings, with thousands or more nodes. In
this context, 67 nodes is still not many.

Thus, now that the technical viability of the approach is
established, it is possible to move on to tasks that might
benefit from large-scale ANNs, like robots driven by raw
high-resolution vision, strategic game-players, or human as-
sistants. ES-HyperNEAT offers a new angle from which to
tackle such problems; for any such task, the information
needed to solve it may be found lurking in the infinite depths
of a hypercube of connection weights.

7. CONCLUSIONS
This paper presented a novel approach to determining the

placement and density of the hidden nodes based on implicit
information in an infinite-resolution pattern of weights. Re-
sults in a simple navigation task demonstrated that there
is no need for any new information or any additional rep-
resentational structure beyond the very same CPPN that
encodes connectivity in the original HyperNEAT. The main
conclusion is that ES-HyperNEAT is a promising new ap-
proach that frees the user from deciding on the placement
or number of hidden nodes a priori.

Acknowledgments
This research was supported by DARPA under grant HR0011-
09-1-0045 (Computer Science Study Group Phases II).

8. REFERENCES
[1] T. Aaltonen et al. Measurement of the top quark mass

with dilepton events selected using neuroevolution at
CDF. Physical Review Letters, 2009.

[2] P. J. Bentley and S. Kumar. Three ways to grow
designs: A comparison of embryogenies for an
evolutionary design problem. In Proceedings of the
Genetic and Evol. Comp. Conf. (GECCO-1999),
pages 35–43, San Francisco, 1999. Kaufmann.

[3] J. C. Bongard. Evolving modular genetic regulatory
networks. In Proceedings of the 2002 Congress on
Evolutionary Computation, 2002.

[4] J. Clune, B. E. Beckmann, C. Ofria, and R. T.
Pennock. Evolving coordinated quadruped gaits with
the HyperNEAT generative encoding. In Proceedings
of the IEEE Congress on Evolutionary Computation

(CEC-2009) Special Section on Evolutionary Robotics,
Piscataway, NJ, USA, 2009. IEEE Press.

[5] D. D’Ambrosio and K. O. Stanley. A novel generative
encoding for exploiting neural network sensor and
output geometry. In Proc. of the Genetic and Evol.
Comp. Conf. (GECCO 2007), NY, 2007. ACM Press.

[6] J. Drchal, J. Koutnık, and M. Šnorek. HyperNEAT
controlled robots learn to drive on roads in simulated
environment. In Proc. of the IEEE Congress on Evol.
Comp. (CEC 2009). IEEE Press, 2009.

[7] R. Finkel and J. Bentley. Quad trees: A data structure
for retrieval on composite keys. Acta informatica,
4(1):1–9, 1974.

[8] D. Floreano, P. Dürr, and C. Mattiussi.
Neuroevolution: from architectures to learning.
Evolutionary Intelligence, 1(1):47–62, 2008.

[9] J. Gauci and K. O. Stanley. A case study on the
critical role of geometric regularity in machine
learning. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence (AAAI-2008),
Menlo Park, CA, 2008. AAAI Press.

[10] J. Gauci and K. O. Stanley. Autonomous evolution of
topographic regularities in artificial neural networks.
Neural Computation, 2010. To appear.

[11] C. Green. SharpNEAT homepage.
http://sharpneat.sourceforge.net/, 2003–2006.

[12] G. S. Hornby and J. B. Pollack. Creating high-level
components with a generative representation for
body-brain evolution. Artificial Life, 8(3), 2002.

[13] E. R. Kandel, J. H. Schwartz, and T. M. Jessell.
Principles of Neural Science. McGraw-Hill, New York,
fourth edition, 2000.

[14] A. Rosenfeld. Quadtrees and pyramids for pattern
recognition and image processing. In Proceedings of
the 5th International Conference on Pattern
Recognition, pages 802–809. IEEE Press, 1980.

[15] J. Secretan, N. Beato, D. B. D’Ambrosio,
A. Rodriguez, A. Campbell, and K. O. Stanley.
Picbreeder: Evolving pictures collaboratively online.
In CHI ’08: Proc. of the twenty-sixth annual SIGCHI
conf. on Human factors in computing systems, pages
1759–1768, New York, NY, USA, 2008. ACM.

[16] K. O. Stanley. Compositional pattern producing
networks: A novel abstraction of development.
Genetic Programming and Evolvable Machines Special
Issue on Developmental Systems, 8(2):131–162, 2007.

[17] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A
hypercube-based indirect encoding for evolving
large-scale neural networks. Artificial Life,
15(2):185–212, 2009.

[18] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10:99–127, 2002.

[19] K. O. Stanley and R. Miikkulainen. A taxonomy for
artificial embryogeny. Art. Life, 9(2):93–130, 2003.

[20] K. O. Stanley and R. Miikkulainen. Competitive
coevolution through evolutionary complexification.
Journal of Art. Int. Research, 21:63–100, 2004.

[21] P. Strobach. Quadtree-structured recursive plane
decomposition coding of images. Signal Processing,
39:1380–1397, 1991.

http://sharpneat.sourceforge.net/

	Introduction
	Background
	Neuroevolution of Augmenting Topologies
	HyperNEAT

	Choosing Connections to Express
	Implicit Information in the Hypercube
	Evolvable-Substrate HyperNEAT(ES-HyperNEAT)

	Experiment
	Maze Navigation Domain
	Experimental Parameters

	Results
	Discussion and Future Work
	Conclusions
	References

