
Investigating Whether HyperNEAT Produces Modular
Neural Networks

Jeff Clune, Benjamin E. Beckmann, Philip K. McKinley, and Charles Ofria
Department of Computer Science and Engineering, Michigan State University

East Lansing, MI, 48824, USA
jclune@msu.edu, beckma24@msu.edu, mckinley@cse.msu.edu, ofria@msu.edu

ABSTRACT
HyperNEAT represents a class of neuroevolutionary algorithms that
captures some of the power of natural development with a
computationally efficient high-level abstraction of development.
This class of algorithms is intended to provide many of the desirable
properties produced in biological phenotypes by natural
developmental processes, such as regularity, modularity and
hierarchy. While it has been previously shown that HyperNEAT
produces regular artificial neural network (ANN) phenotypes, in
this paper we investigated the open question of whether
HyperNEAT can produce modular ANNs. We conducted such
research on problems where modularity should be beneficial, and
found that HyperNEAT failed to generate modular ANNs. We then
imposed modularity on HyperNEAT’s phenotypes and its
performance improved, demonstrating that modularity increases
performance on this problem. We next tested two techniques to
encourage modularity in HyperNEAT, but did not observe an
increase in either modularity or performance. Finally, we conducted
tests on a simpler problem that requires modularity and found that
HyperNEAT was able to rapidly produce modular solutions that
solved the problem. We therefore present the first documented case
of HyperNEAT producing a modular phenotype, but our inability to
encourage modularity on harder problems where modularity would
have been beneficial suggests that more work is needed to increase
the likelihood that HyperNEAT and similar algorithms produce
modular ANNs in response to challenging, decomposable problems.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning: Concept Learning,
Connectionism and Neural Nets

General Terms: Experimentation, Algorithms

Keywords: HyperNEAT, NEAT, Neuroevolution, Modularity,
Generative Encodings, Developmental Encodings, Indirect
Encodings, Artificial Neural Networks.

1. INTRODUCTION AND BACKGROUND
A long-term goal in the fields of evolutionary computation,
neuroevolution, and artificial life is to synthetically evolve
phenotypes as complicated as those seen in the natural world. Many

complex natural organisms exhibit modularity, regularity, and
hierarchy [9, 14, 20, 25, 26], which increase the evolvability of
these organisms [10, 13, 17, 19]. Modularity is the localization of
function within an encapsulated unit, which in a network entails
clusters of nodes with high connectivity within the cluster and low
connectivity to nodes outside the cluster [13, 17]. Regularity refers
to the compressibility of the information describing a structure, and
typically involves symmetries and module repetition [17].
Hierarchy is the recursive composition of lower-level units [17].
Note that modularity does not require regularity, as is often
assumed: the single wheel on a unicycle is a module, whereas the
four wheels on a car are a regular repetition of a wheel module [17].
Without the ability to evolve phenotypes that possess these
characteristics, it may be difficult to synthetically evolve creatures
as complicated as those found in nature [1, 17, 20]. Modularity is
especially important for neural networks, where it can improve both
evolvability and learning, because modular networks can more
easily be rearranged to produce new functions [13, 19]. These
benefits likely explain why natural brains display a high degree of
modularity, regularity, and hierarchy [9, 14, 20, 25, 26]. Designs
engineered by humans also possess these properties for the same
reasons: they make it easier to design and modify complex artifacts.
 Modularity, regularity, and hierarchy arise in natural organisms
as a result of a complex developmental process [1, 20]. A desire to
produce these design principles in synthetic evolution has led many
researchers to switch from direct encodings, where each phenotypic
element is specified by a corresponding genomic element, to
generative encodings that resemble natural developmental
processes, wherein elements in a genome can influence many parts
of a phenotype [22]. It has been shown that generative encodings
are capable of producing modularity, regularity, and hierarchy in
phenotypes [10], and specifically can create regularity and
modularity in evolved neural networks [8, 11]. These generative
encodings are based on rewriting symbols, such as Lindenmayer
Systems [10-12, 16], or programs that are recursively called at
vertices in a graph [8]. These representations perform well in part
because they strongly and explicitly bias evolution towards
phenotypes with modularity, regularity, and hierarchy [10].
 A different type of generative encoding, called a Compositional
Pattern Producing Network (CPPN), includes a generative process
that abstracts how natural organisms develop complexity in a novel
way [1, 23, 24]. CPPNs have shown promise as an evolutionary
encoding, but they were not designed to generate modularity,
regularity, and hierarchy as explicitly as previous generative
encodings. It is therefore important to determine the degree to
which CPPNs produce these properties in their phenotypes.
 A CPPN is a high-level abstraction of biological genetic
regulatory networks, which construct positional information that
determines the fate of phenotypic elements in organisms. While

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07...$10.00.

635

CPPNs have an artificial component that provides each phenotypic
element with its location in an objective coordinate space, natural
development goes through intermediate steps to arrive at a similar
result [1]. CPPNs also abstract away growth through intermediate
forms, and instead build the ‘adult’ phenotype directly. Despite
these differences with natural development, CPPNs do capture a
key factor that enables natural development to produce complexity:
determining the fate of phenotypic elements as a function of their
location in complex geometric coordinate frames [1].
 Images evolved via artificial selection with the CPPN encoding
look complex and natural [23, 27]. These images can easily be
selected to resemble animals and human artifacts. They are often
highly regular, including symmetries and repeated themes, with and
without variation. These images suggest that CPPNs present a
promising encoding that is on the path toward synthetically
evolving complex phenotypes that resemble natural organisms.
 CPPNs can encode neural networks via the HyperNEAT
algorithm [24], which is described in Section 2. HyperNEAT has
performed well on a wide range of problems, such as generating
gaits for legged robots [3], pattern recognition [24], controlling
simple multi-agent systems [6], and evaluating checkers boards
[7]. Because of HyperNEAT’s potential as an effective
neuroevolutionary algorithm, and given that HyperNEAT captures
some of the power of biological development, it is worthwhile to
investigate whether HyperNEAT tends to produce ANNs that
exhibit modularity, regularity, and hierarchy. It has already been
shown that HyperNEAT produces regular ANNs that exploit the
regularity of problems [3, 4, 7]. This paper investigates the
previously unstudied question of whether HyperNEAT produces
modular ANNs. In future investigations we will address whether
HyperNEAT can produce hierarchical ANNs. We would like to
emphasize that in this paper we focus on modularity in evolved
phenotypes. In future work we also plan to investigate the
modularity, regularity, and hierarchy of HyperNEAT genotypes.
 We tested whether HyperNEAT and a direct encoding control
produce modular ANNs on a problem that has previously been
shown by Kashtan and Alon [13] to generate modular ANNs with
a different direct encoding neuroevolution algorithm. In contrast
to those results, this problem did not encourage modularity in the
direct encoding we tested, raising a question about the generality
of Kashtan and Alon’s results. We also found that HyperNEAT
performed poorly on this problem, and variants of it, and did not
produce modular ANNs. We then tested whether HyperNEAT
would have done better had it produced a modular ANN by
imposing modularity on its ANN phenotypes. With this imposed

modularity, HyperNEAT’s performance improved. These results
show that, irrespective of how the direct encoding performed on this
problem, HyperNEAT would have done better had it produced
modular ANNs. We next tested two techniques to encourage
HyperNEAT to produce modularity automatically, but did not
observe an increase in either modularity or performance. Finally, we
conducted tests on a simplified version of the problem and found
that HyperNEAT quickly was able to produce modular solutions
that solved the problem. We therefore present the first documented
case of HyperNEAT generating a modular phenotype, but our
inability to encourage modularity on harder problems where
modularity would have increased performance suggests that more
work is needed to increase the likelihood that HyperNEAT and
similar algorithms will produce modular ANNs in response to
challenging, decomposable problems.

2. THE HYPERNEAT ALGORITHM AND A
DIRECT ENCODING CONTROL
HyperNEAT [24] is a generative encoding that evolves ANNs with
the principles of the widely used NeuroEvolution of Augmenting
Topologies (NEAT) algorithm, which is described below [21].
HyperNEAT evolves Compositional Pattern Producing Networks
(CPPNs) [23], each of which is a mathematical function. For
example, to evolve two-dimensional pictures [27], the inputs to a
CPPN could be the Cartesian coordinates of each pixel on a canvas.
The CPPN output could determine the color of each pixel (Figure
1).
 Evolution modifies a population of CPPNs. Each CPPN is a
directed network, where each node is itself a mathematical function.
The nature of the functions included can enable a variety of
desirable properties, such as symmetry (e.g., a Gaussian function)
and repetition (e.g., a sine function) that evolution can take
advantage of. Nested coordinate frames can develop in the CPPN.
For instance, a sine function early in a network can create a
repeating theme that, when passed into the symmetric Gaussian
function, creates a repeating, symmetric motif, as demonstrated by
the body segments in Figure 1. This process is similar to how
natural organisms develop [1]. For example, many organisms set up
a repeating coordinate frame (e.g., body segments) within which are
symmetric coordinate frames (e.g., left-right body symmetry).
Asymmetries can be generated by referencing global coordinate
frames, such as the x-axis. The links that connect and allow
information to flow between nodes in a CPPN have a weight value
that can magnify or diminish the values that pass along them.
Mutations that change these weights may, for example, give a
stronger influence to a symmetry-generating part of a network while
diminishing the contribution from another part.
 When CPPNs are evolved to generate ANNs, the algorithm is
called HyperNEAT [24]. In this case, the inputs to the CPPN are the
locations in three-dimensional Cartesian space of both the source
and target nodes of each link in a target ANN, and a constant bias
value. The function takes these seven values (x1, y1, z1, x2, y2, z2,
bias) as inputs and produces an output value that determines the
weight of the link between the associated source and target nodes in
the ANN. All source and target nodes for each link in the ANN are
iteratively passed as inputs to a CPPN to determine the weight of
each link. Thus, a CPPN is a genome that encodes for an ANN
phenotype [24].
 One benefit of HyperNEAT is that it can exploit the geometry
of a problem [5, 24]. Because the link values between nodes in the
final ANN substrate are a function of the geometric positions of
those nodes, if those geometric positions represent aspects of the

Figure 1. CPPNs can compose math functions to generate the
properties of symmetry and modular repetition, with and
without variation. This figure is adapted from [23].

636

problem that are relevant to its solution, then HyperNEAT can
exploit such information. For example, when playing checkers, the
concept of adjacency (on the diagonals) is important. Link values
between adjacent squares may need to be different than link values
between distant squares. HyperNEAT can create this sort of
connectivity motif and repeat it across the board [7, 24]. In the case
of quadruped locomotion, HyperNEAT exploited geometric
regularities to generate front-back and left-right symmetries to
produce common gaits [3, 5].
 Variation in HyperNEAT occurs when mutations or crossover
alter a CPPN. Mutations can add a node, which results in the
addition of a function to a CPPN, or change its link weights. The
functions in CPPNs in this paper are the standard set: sine, sigmoid,
Gaussian, and linear [24]. A population of CPPN networks is
evolved with the NEAT algorithm, which was originally designed
to evolve ANNs. NEAT can be effectively applied to CPPNs
because CPPN networks are similar in structure to ANNs.
 The NEAT algorithm contains three key elements [21]. Initially,
it starts with small genomes that encode simple networks and
slowly complexifies them via mutations that add nodes and links to
the network. This complexification enables the algorithm to evolve
the network topology in addition to its link weights. Secondly,
NEAT has a fitness sharing mechanism that preserves diversity and
gives new innovations time to be tuned by evolution before
competing them against more mature rivals. Finally, NEAT tracks
historical information to perform crossover in a way that is
effective, yet avoids the need for expensive topological analysis. A
full explanation of NEAT can be found in Stanley & Miikkulainen
[21].
 A direct encoding control for HyperNEAT is FT-NEAT [2, 4,
24]. FT-NEAT independently evolves each weight in the ANN and
does not add hidden nodes (complexify). All other elements from
NEAT (e.g., its crossover and diversity preservation mechanisms)
remain the same between HyperNEAT and FT-NEAT.
 The specific parameters for these experiments are similar to
those of previous HyperNEAT studies [24], and can be found at
http://devolab.msu.edu/SupportDocs/HyperNEATModularity.

3. THE RETINA PROBLEM
An informative test of whether HyperNEAT produces modular
ANNs is to try it on a problem where modularity is known to be
helpful, and in an environmental regime that has been shown to
encourage modularity in a neuroevolution algorithm. Fortunately,
previous research has been conducted on such a problem [13].
Kashtan and Alon demonstrated that environmental regimes that
switch between problems with modularly varying goals (MVG)

increase the evolution of modular phenotypic networks. MVG
environments switch between tasks that have shared subproblems,
but where the overall problem is solved by combining answers to
these subproblems in different ways. On two different problems,
Kashtan and Alon demonstrate that MVG environments produce
highly modular networks. They also show that fixed goal (FG)
controls that evolve to solve a single unchanging problem produce
non-modular networks, even though the fixed goal was identical to
one of goals from the MVG regime and thus had the same
subproblems. The MVG treatments also solved problems in an
order of magnitude fewer generations. Moreover, the evolved
modules of the MVG networks solved the subproblems Kashtan and
Alon had designed into the overall problems. Over time, solutions
evolved that allowed the modules to be reconfigured via a single or
small number of mutations, thereby enabling quick adaptations from
one environment to another. In subsequent work it was shown that,
after an environmental change, modular networks were faster at
adapting both to previously seen and novel environments: This
ability to quickly adapt to new environments is made easier because
of the modularity that evolved in the networks [19]. Inspired by
these findings, scientists tested and confirmed that similar results
hold for natural organisms: bacteria that live in changing
environments have more modular metabolic networks [15, 18].
 Kashtan and Alon’s results are consistent with our expectations
for when modularity is useful. Modularity is not necessarily helpful,
and may be harmful, when designing a solution for a single,
unchanging problem [17]. Modularity becomes beneficial when
designs need to be changed quickly, because modules that solve
subproblems can be easily reorganized [17].
 Kashtan and Alon’s first problem involved evolving the
connections of networks of NAND gates to solve Boolean logic
functions. Their second problem consisted of evolving neural
networks to perform pattern recognition. We chose their second
problem as the test problem in this paper because HyperNEAT was
designed to evolve neural networks. The second problem evolves a
neural network to separately recognize patterns, or ‘objects’, on the
left and right sides of an artificial retina (Figure 2a). The retina
consists of eight pixels, four per side, which were the inputs to a
neural network with sigmoid activation functions. The left four
pixels (the left pane) can form 16 unique patterns, half of which are
considered Left Objects. The same is true for the right four pixels
(the right pane). The goal is to have the single output of the network
answer one of two Boolean logic questions: [L AND R] (true if
there is a Left Object and a Right Object), or [L OR R] (true if there
is a Left Object, if there is a Right Object, or both). This Retina
Problem is challenging because the network must independently
recognize and process low-level patterns before processing that

Figure 2. (a) The eight-pixel artificial retina and the patterns that constitute Left and Right Objects (adapted from [13]). (b) The
geometric representation of the ANN nodes for the Standard Setup of the Retina Problem. (c) The geometric representation for the
Retina Problem with Increased Geometric Coordinate Separation. The x, y, and z coordinate values for each node are passed into the
CPPN when determining the weight of links between nodes.

637

information to determine if a higher-level pattern is present [13].
The networks had four feed-forward layers in addition to an input
layer (Figure 2b-c). Layer 1, which received connections from the
input layer, had eight input neurons. Layers 2 and 3 were hidden
layers with four and two neurons, respectively. The output layer had
a single neuron.
 A human engineer immediately recognizes the modularity in the
Retina Problem: The left and right panes can be processed
independently to determine if an object is present. The information
can then be combined in either a logical AND or OR. There are
non-modular ways that may be equally good at solving either
problem, but such non-modularity will likely make it more difficult
to switch from a network that solves one problem to a network that
solves the other, where difficulty is measured by the number and
magnitude of link weight changes that need to be made.
 We implemented this problem in a version of the HyperNEAT
software that was used in several previous studies [2-5, 7, 24].
Pixels were limited to ‘on’ and ‘off’ states, represented as input
values of 3.0 and -3.0, respectively. A bias neuron with a constant
input of 3.0 had evolvable connections to all neurons. This feature
serves a similar function to the evolvable thresholds in Kashtan and
Alon’s setup [13]. Outputs were considered true if they were close
to 1 and false if they were close to -1. Our fitness function was
inversely proportional to the difference (the error) between the
correct answer (1 or -1) and the network output. Specifically, the
fitness function summed the error across all 256 possible input
patterns and squared the result to magnify the importance of slight
improvements.
 The specifics of our implementation differ in certain ways from
Kashtan and Alon’s [13]. While the description of their model is not
complete, it appears that their inputs and outputs were binary, the
activation functions of their neurons were step functions with only
three possible thresholds, and their link weights consisted of a small
set of discrete values. They evolved their networks via a standard
direct encoding genetic algorithm with mutation and crossover.
Their fitness was a function of the percent of correct answers
provided across 100 randomly chosen input patterns. These
differences, while seemingly minor, may explain the different
qualitative results we observe from those of Kashtan and Alon [13].
 Kashtan and Alon evolved networks in an FG regime [L AND
R] and an MVG regime, wherein the rewarded task switched every
20 generations from [L AND R] to [L OR R]. They continued each
evolutionary run until the networks output the correct answer for
95% of the input patterns, at which point they considered the
problem solved. That took a median of 21,000 generations in the
FG regime, which was nearly an order of magnitude slower than in

the MVG regime, which took 2,800 generations. The MVG
networks were more modular, and could adapt to an environmental
change from one goal to the other in about 3 generations, often via a
single mutation [13].

4. RESULTS AND INTERPRETATION
4.1 Retina Problem
We tested the performance of HyperNEAT and FT-NEAT on the
Retina Problem for two MVG regimes, one that alternated between
tasks [L AND R] and [L OR R] every 20 generations (MVG-20),
which was the rate used by Kashtan and Alon, and another that
alternated every 100 generations (MVG-100). We also conducted
experiments with faster and slower rates of change, but the results
were not qualitatively different (data not shown). We tested two FG
regimes (FG-AND and FG-OR), one for each of the tasks. For each
experimental treatment discussed in this paper we performed 20
runs of evolution with different random number generator seeds,
and report the median (bold lines) and 25th and 75th percentiles (thin
lines). To represent fitness values, we show the percent of test cases
the best organism in the population provided the correct answer for.
The nature of the logic functions means that always outputting 1 (in
the OR environment) or 0 (in the AND environment) achieves a
score of 75%. For this reason, it was rare to see the best organism in
each generation score below 75%. Each run had a population size of
500, which is large for HyperNEAT experiments [24].
 The results, presented in Figure 3a, reveal that HyperNEAT
does not perform well on this problem. Recall that Kashtan and
Alon’s direct encoding achieved 95% accuracy in both the FG and
MVG regimes. FT-NEAT also performed poorly (Figure 4), and its
results were qualitatively the same as for HyperNEAT on the FG-
AND, FG-OR, and MVG treatments. While Kashtan and Alon did
perform evolution for many more generations, additional
experiments up to 30,000 generations for both HyperNEAT and FT-
NEAT revealed that longer experiments do not change the
qualitative results (data not shown). More likely, the difference in
absolute success has to do with the differences in the neural
networks. However, alternative experiments with different selective
pressures produced networks that perfectly solved the FG problems,
suggesting that the difference between our results and those of
Kashtan and Alon is not due to any limitation in the capability of
the networks in our experiments, but is instead related to differing
evolvability between the configurations.
 To better understand why HyperNEAT performed poorly, we
ran the same experiment, with the same number of nodes and
potential links in the ANN, but where ANNs were rewarded for

Figure 3. Performance versus evolutionary time for HyperNEAT on (a) the Retina Problem (Standard Setup), (b) the Retina Problem with
Imposed Modularity, and (c) the Retina Problem with Increased Geometric Coordinate Separation. Plotted is the percent of the 256 trials
that the network output the correct answer. Medians are shown as bold lines surrounded by the 75th and 25th percentiles of the data. See
the text for explanations of what constituted a correct answer for different variants of the problems.

638

correctly identifying only Left Objects in the FG-AND problem.
The evaluated output was taken from the left node of layer 3 (the
layer just before the output layer). In this easier version of the
problem, which we call Retina Left Only, HyperNEAT performed
better, but still had difficulties (Figure 3a). These difficulties may
have occurred because HyperNEAT created too many links in its
substrate and therefore did not ignore the inputs from the right panel
when identifying Left Objects. FT-NEAT, on the other hand,
performed significantly better, with 17 of 20 treatments surpassing
95% accuracy (p < 0.001, Mann-Whitney U rank test, Figure 4).
 We conducted a similar experiment, but rewarded networks that
could correctly report whether there were Left Objects and Right
Objects, respectively, in the left and right nodes of layer 3. This is a
particularly illuminating experiment because a network must be
able to first solve this task before computing the logical AND or OR
of these answers, which is required for the optimal solution to the
FG and MVG problems. The results of this experiment, which we
call Retina Left & Right, demonstrate that HyperNEAT did worse
on this task than all other versions of the problem (Figure 3a). That
HyperNEAT was unable to independently determine the presence
or absence of Left Objects and Right Objects helps explain why it
did not do well on the harder tasks that require further processing
this information. Of particular interest is how much better the FG-
AND and FG-OR treatments performed than the Left & Right
treatment. Given that HyperNEAT had difficulty independently
identifying Left and Right Objects, we can infer that the strategy it
employed on the FG treatments to perform better than the Left &
Right treatment did not independently process the left and right
panels. HyperNEAT likely took advantage of the locally optimal
shortcut of always outputting 1s or 0s, which yields fitness values of
75%. It could then have increased its performance up to the level it
achieved by encoding some additional information about the
problem, such as certain situations in which to provide the other
output.
 More important than the absolute difference between Kashtan &
Alon’s results and those of HyperNEAT and FT-NEAT is the
qualitative difference: the MVG regimes performed worse than the
FG-AND regime, which was the opposite of what occurred in
Kashtan and Alon’s study. Our result raises questions as to the
generality of Kashtan and Alon’s discovery that environments with
MVG will generate the evolution of modular networks. While there

are differences between Kashtan and Alon’s experimental setups
and our own, the differences are relatively small and should not
preclude such a seemingly general result. We will investigate what
differences in the implementations led to the differing results in
future work.
 Despite the differences between our results and those of
Kashtan and Alon, the Retina Problem still serves as a diagnostic
problem regarding the ability of an algorithm to produce
modularity. Because the problem can be decomposed on the left and
right sides until the final layer, networks that are more modular
should perform better. The case is even clearer for the Retina Left &
Right problem, because the left problem is independent of the right
problem. For the remainder of the paper, we utilize the Retina
Problem and variants of it to investigate HyperNEAT’s ability to
generate modular ANNs.
 We hypothesized that HyperNEAT may have performed poorly
because it was not producing modular ANNs. To test whether
HyperNEAT’s ANNs were modular, we counted the number of
active (non-zero) links in the substrate. A modular design that
processed the left and right panels separately before combining
them has at most 69 of the possible 121 links in the neural network,
or 57%. This number is small because there are no links between
the two modules. The degree to which the percent of links in a
network is over 57% suggests the extent to which the ANN is
interconnected instead of modular. This link-counting measure is a
crude estimation of modularity, but it is not accurate to simply count
the links between the nodes on the left and right side of the
coordinate space, because it is possible for evolution to create
modules that are not correlated with geographic location. In future
work we plan to quantify the modularity of these networks with a
more sophisticated modularity metric.
 The FG regimes had a median of 94% and 96% of links active
(SD 6%), respectively, for the FG-AND and FG-OR treatments.
The MVG-100 and MVG-20 regimes had medians of 94% and 95%
(SD 3%, 7%). For many runs, 100% of the links in the champion
ANN were active, which is the lowest level of modularity possible.
There were no statistically significant differences in the link
percentages between the FG and MVG treatments (p > 0.05, Mann-
Whitney U rank test). We conclude from these data that part of the
reason HyperNEAT performed poorly on both the FG and MVG
tasks is because it has difficulty turning off links and thus produced
ANNs with low levels of modularity.

4.2 Retina Problem with Imposed Modularity
We next investigated whether HyperNEAT would have done better
had it discovered the left-right modularity of the problem. To test
this, we disabled all connections between the left and right sides of
the network, except between layers 3 and 4. Disabling of cross-links
ensured that information from the left and right panels was
processed independently until it was combined in the final layer.
 This Imposed Modularity treatment improved the performance
of every treatment (Figure 3b, p < 0.001 comparing the fitnesses of
the generation champions per treatment from the final generation
with a Mann-Whitney U rank test) except for FG-OR, which
performed worse (p < 0.05). The decline in FG-OR performance
with imposed modularity, while slight, is counterintuitive and was
anomalous compared to the results from the other treatments. We
hypothesized that this odd result may have occurred only because
evolution had not yet leveled off, which was more so the case for
the FG-OR treatments than the others. To test whether additional
generations would make a difference, we extended the FG-OR
experiments to 3000 generations, at which point the Imposed
Modularity treatment outperformed the Standard Setup (the setup

Figure 4. The performance of FT-NEAT on the Standard
Setup of the Retina Problem. Medians are shown as bold lines
surrounded by the 75th and 25th percentiles of the data. Note
that the y-axis scale is different than in Figure 3.

639

with results plotted in Figure 3a), although the difference was not
statistically significant (p > 0.05, Mann-Whitney U rank test). Four
of the extended FG-OR with Imposed Modularity runs reached at
least 95% accuracy, further demonstrating that HyperNEAT is
capable of solving the Retina Problem with the neural networks
used in this paper. None of the extended FG-OR runs without
imposed modularity reached a fitness level of greater than 90%. It is
not obvious why Imposed Modularity is less helpful on the FG-OR
treatment than in the other treatments: It may be that the imposed
modularity is interfering with the exploitation of a locally optimal
strategy that is being used in the Standard Setup. Kashtan and Alon
did not report experimenting with FG-OR, so we cannot compare
our results to theirs [13].
 These results confirm that HyperNEAT would have done better
had it generated a modular network that independently processed
the left and right panels. Interestingly, the largest effects were in
two non-MVG treatments. In the Retina Just Left treatment,
HyperNEAT scored nearly perfectly with imposed modularity
(Figure 3b). This result demonstrates that the subproblems of
identifying Left and Right Objects are not impossible for
HyperNEAT to solve (experiments focusing just on the right side
were qualitatively similar, data not shown). The imposed
modularity also substantially improved the performance of the
Retina Left & Right treatment. Four of these treatments achieved
scores above 95%, with one at 99%, and none scored below 86%.
Both the Retina Left Only and Retina Left & Right problems are
thus demonstrations of problems where modularity is beneficial, but
where HyperNEAT did not discover such modularity on its own.
These results emphasize that HyperNEAT would perform better on
some FG problems if it were better able to create modular ANNs.
This is not to say that modularity is necessary, but just that in this
case it improves the likelihood of evolving a high quality solution.
That four of the Left & Right treatments scored above 95% also
offers additional evidence that HyperNEAT is capable of solving
the Retina Problem with the neural networks used in this paper,
because putting this information together into an AND or an OR
function is possible in this setup.
 That imposed modularity increased performance on the Left &
Right problem may help us infer why imposed modularity aided the
performance of HyperNEAT on the FG-AND problem. The
similarity in fitness scores between the Left & Right treatment and
the FG-AND treatment with imposed modularity may indicate that
the FG-AND treatment with imposed modularity did implement the
globally optimal strategy of independently processing the left and
right panels, albeit in an imperfect way. If so, this would be an
interesting demonstration of how modularity helped evolution
switch from a locally optimal strategy to a higher-performing and
possibly globally optimal strategy. Unfortunately, it is difficult to
determine if these networks did indeed correctly process the left and
right panels by recording the values at the associated nodes in layer
3, because evolution can internally represent information in
different ways.

4.3 Retina with Fewer Links
One factor that may hamper HyperNEAT’s ability to create
modular ANNs is that it produces too many substrate links. To test
this hypothesis, we increased the range of CPPN outputs that were
converted to an ANN link weight of zero, which effectively
eliminates the link. For the previous experiments, CPPN outputs in
the range of -0.1 to 0.1 resulted in ANN links of 0. Such a range
was built into HyperNEAT to facilitate the elimination links in its
ANN phenotypes [24]. We call this parameter ZeroOutHalfWidth.
As the ZeroOutHalfWidth increases, a wider range of CPPN output

values result in ANN link weights of zero, decreasing the expected
number of ANN links.
 We tested ZeroOutHalfWidth values of 0.2, 0.4, 0.6, 0.8, 0.9,
0.95 and 0.99, and compared the results to the default value of 0.1
(Figure 5). Altering the ZeroOutHalfWidth parameter had little
effect on fitness and did not raise fitness up to the levels observed
with imposed modularity. All of the treatments with different
ZeroOutHalfWidth values, but without imposed modularity, were
significantly worse than the Imposed Modularity treatment on both
the FG-AND and Left & Right problems (p < 0.001, Mann-Whitney
U rank test).
 The data reveal that higher ZeroOutHalfWidth values did
reduce the number of ANN links in both problems (Figure 5,
bottom row). Importantly, the number of ANN links for some of the
different ZeroOutHalfWidth values were roughly similar to the
number of links in the Imposed Modularity treatment. Given that
these treatments had similar numbers of ANN links, but performed
significantly worse than the Imposed Modularity treatment, it is
likely that the resulting networks were not very modular. This result
suggests that it is not merely the inability to eliminate ANN links
that prevents HyperNEAT from discovering modular solutions to
these problems, but that HyperNEAT also has trouble controlling
which links to deactivate.
 Independent of its effect on modularity or fitness, the tactic of
reducing HyperNEAT links by increasing the ZeroOutHalfWidth
value did have the desired effect of lowering the number of ANN
links. This technique may be beneficial to future HyperNEAT users
that wish to reduce the number of links in HyperNEAT-generated
ANNs.

4.4 Retina with Increased Geometric
Coordinate Separation
Another technique that could facilitate the production of phenotypic
modules in HyperNEAT’s ANNs would be to make it easier for
HyperNEAT’s CPPNs to discriminate between the nodes on the left
and right sides of the ANN. This goal can be accomplished by
changing the geometric representation of the problem, which means
changing the Cartesian coordinates assigned to different nodes in
the ANN. Because each CPPN computes the weights of links
between nodes as a function of the geometric locations of those
nodes, changing these coordinate values can bias HyperNEAT
toward different types of phenotypes that perform significantly
differently [5]. Moreover, the intuitions human engineers have for
how to geometrically represent problems can also aid the
performance of HyperNEAT [5].
 This method is not guaranteed to work, however, because there
are ways to create modularity that do not respect the left and right
sides of the coordinate space, and this mechanism might bias the
CPPN away from producing them. Nevertheless, this technique of
spreading the nodes out in coordinate space could at least make it
easier to adopt the left-right modularity produced by the Imposed
Modularity treatment. Such left-right modularity is also likely to be
the type a human engineer would apply to this problem.
 We implemented this method by changing the coordinate values
of the nodes from a representation that had already been designed to
encourage left-right modularity (Figure 2b) to one that separated the
left and right nodes in geometric space even further (Figure 2c).
This geometric separation did not increase performance in any
treatment compared to the Standard Setup (compare Figure 3a to
3c). Performance actually decreased slightly for the Left & Right
problem, and decreased noticeably for the MVG treatments (p <
0.05, Mann-Whitney U rank test). Although the effect was not
dramatic, this result confirms a previous finding that different

640

geometric representations of a problem can affect HyperNEAT’s
performance [5]. Computational limits prevented us from testing
additional geometric representations, but it is not obvious how to
create a geometric layout that would substantially increase the left-
right bias more than the representation we tested. Based on these
tests, we believe it is unlikely that changes to the geometric
representation alone will make a substantial improvement in
HyperNEAT’s performance on the Retina Problem.

4.5 Simplified Retina Problem
 The previous experiments in this paper have failed to
demonstrate that HyperNEAT is capable of producing modular
ANNs. Instead, its ANNs tend to be more fully connected than
modular ANNs would be. One explanation for these results is that
HyperNEAT is simply incapable of generating modular ANNs. To
test this hypothesis, we conducted experiments on a simple task that
explicitly requires modularity. In this Simplified Retina Problem,
there are eight inputs and two outputs (Figure 6). The goal of the
network is to output the sum of the left four inputs in the left output,
and the sum of the right four inputs in the right output. The output
nodes had linear activation functions instead of sigmoid functions.
The correct wiring for this task is to eliminate all connections
between the left inputs and the right output, and vice versa, creating
two distinct modules. HyperNEAT was queried for all possible
links between inputs and outputs, so it had to learn across
evolutionary time to eliminate connections between the left and
right sides. The fitness function rewarded networks that had smaller
errors between the actual and outputted sum for the left and right
sides.
 Within 500 generations, all 20 runs had achieved near-perfect
fitness scores (>98% of the maximum fitness). Additionally, in all
but one run, the final champion had perfectly discovered the
modularity of the problem by eliminating all links between the left
and right sides. The sole run with imperfect modularity, which had
the lowest fitness, had only one incorrect connection with a small
weight value. The results from the Simplified Retina Problem allow
us to reject the hypothesis that HyperNEAT is incapable of

producing modular ANNs. This experiment provides the first
documented case of HyperNEAT producing modular neural
networks, albeit on a very simple problem.

5. DISCUSSION & CONCLUSION
In contrast to other generative encodings that were explicitly
designed to produce modularity, there is no a priori reason to expect
HyperNEAT will produce modular networks. Nevertheless, it
would be beneficial if HyperNEAT could generate modularity when
doing so would improve performance. In this paper we tested
whether HyperNEAT would generate modular ANNs on a suite of
problems where both reason and experimental evidence suggest that
modularity is helpful. HyperNEAT performed poorly on the
problems and did not generate modular networks. Imposing
modularity improved HyperNEAT’s performance, indicating that
HyperNEAT would have performed better had it been able to
generate such modularity on its own. These results suggest that
HyperNEAT has difficulty generating modularity on complex
problems, although more research is necessary to determine if these
results generalize to other problems.
 Even with imposed modularity, HyperNEAT did not handle the
MVG regime as effectively as Kashtan and Alon’s direct encoding,
where the MVG treatments outperformed the FG treatments.
However, FT-NEAT, a direct encoding control for HyperNEAT,
also did not generate modular and high-performing networks in
MVG environments. Our control experiments thus suggest that the
reason the MVG environments do not qualitatively differ from the
FG environments is likely explained by differences between the
experiment implementations. One candidate explanation is that
Kashtan and Alon’s experiments have a smaller search space. For
example, the link weights and thresholds seem to be discrete values
with only a few options, instead of the continuous values in our
experiments. Mutations between a few discrete values may have a
larger effect on the network output, making it more likely that single
mutations can switch between a solution to FG-OR and FG-AND.
Kashtan and Alon report that networks in the MVG regimes
evolved to switch between solutions to FG-OR and FG-AND with a
single mutation [13]. If such a switch requires multiple mutations in
our implementation, or a single rare mutation, evolution may be
unlikely to benefit from modular phenotypes because it cannot
quickly rearrange modules. We will investigate this hypothesis in
future work. However, even without the benefits of reorganization
(e.g., in the unchanging Retina Left & Right treatment), imposed
modularity benefitted HyperNEAT, so we cannot conclude that
HyperNEAT had no incentive to produce modularity.
 Despite HyperNEAT’s difficulties with generating modularity
on variants of the Retina Problem, we showed that it is capable of
producing modular ANNs on the Simplified Retina Problem. While
these results demonstrate for the first time that HyperNEAT can

Figure 5. The effect on performance (top row) and the
number of ANN links (bottom row) of varying the
ZeroOutHalfWidth parameter. Each column represents a
treatment with a different ZeroOutHalfWidth value (columns
1-8) or the Imposed Modularity (IM) treatment (column 9),
which is shown for comparison. The midline shows the mean,
the lower and upper box lines show the 25th and 75th
percentiles, the whiskers enclose all non-outliers, and outliers
are shown as asterisks.

Figure 6. A modular ANN solution to the Simplified Retina
Problem. Nodes (squares) are shown in their Cartesian
locations. Links with a value of 0 are not shown. This
champion from the end of a run has a nearly perfect fitness
score because HyperNEAT created a modular ANN by
deactivating links between the left and right sides.

641

generate modular phenotypes, the results from variants of the more
complicated Retina Problem suggest that more research is needed to
understand how to generate modular ANNs via HyperNEAT on
complex problems.
 Given the promise of the HyperNEAT approach to evolving
complex ANNs, it is worthwhile to investigate the degree to which
it produces phenotypic regularity, modularity, and hierarchy, which
are traits that facilitate the evolution of complexity in natural
organisms. While HyperNEAT excels at producing regular
phenotypes [3, 4, 7], it was unknown whether it produced modular
and hierarchical phenotypes. This paper demonstrates that
HyperNEAT can generate modular phenotypes on a simple
problem, but our results suggest that it may struggle to do so on
more complex problems. In our future work we will investigate how
to increase HyperNEAT’s ability to evolve modular phenotypes on
complex problems. We will also study how HyperNEAT might be
able to evolve artificial neural networks that are hierarchical.

6. ACKNOWLEDGMENTS
We thank Kenneth O. Stanley, Robert T. Pennock, and the anonymous
reviewers for their helpful comments. This work was supported in part by
NSF grants CCF-0643952, CCF-0750787, CNS-0751155, CCF-0820220,
CCF-0523449, and CNS-0915885, U.S. Army Grant W911NF-08-1-0495,
a Quality Fund Grant from MSU, and the DARPA FunBio program.

7. REFERENCES
[1] S. B. Carroll, Endless forms most beautiful: The new science of evo

devo and the making of the animal kingdom. (New York): W. W.
Norton & Company, 2005.

[2] J. Clune, B. E. Beckmann, R. T. Pennock, C. Ofria, “HybrID: A
Hybridization of Indirect and Direct Encodings for Evolutionary
Computation.” Proceedings of the European Conference on Artificial
Life, 2009.

[3] J. Clune, B. E. Beckmann, C. Ofria, and R. T. Pennock, “Evolving
coordinated quadruped gaits with the HyperNEAT generative
encoding.” Proceedings of the IEEE Congress on Evolutionary
Computing, pp. 2764-2771, 2009.

[4] J. Clune, C. Ofria, and R. T. Pennock, “How a generative encoding
fares as problem-regularity decreases.” Parallel Problem Solving from
Nature, pp. 358–367, 2008.

[5] J. Clune, C. Ofria, R. T. Pennock, “The sensitivity of Hyperneat to
different geometric representations of a problem.” Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), pp.
675-682, 2009.

[6] D. B. D’Ambrosio and K. O. Stanley, “Generative encoding for
multiagent learning.” Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pp. 819–826, 2008.

[7] J. Gauci and K. O. Stanley, “A case study on the critical role of
geometric regularity in machine learning.” AAAI Conference on
Artificial Intelligence, pp. 628–633, 2008.

[8] F. Gruau, “Automatic definition of modular neural networks.”
Adaptive Behaviour, 3(2): 151–183, 1995.

[9] L. H. Hartwell, J. H. Hopfield, S. Leibler, and A. W. Murray, “From
molecular to modular cell biology.” Nature, 402: C47-C52, 1999.

[10] G. S. Hornby, “Measuring, enabling and comparing modularity,
regularity and hierarchy in evolutionary design.” Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), pp.
1729-1736, 2005.

[11] G. S. Hornby, J. B. Pollack, “Creating high-level components with a
generative representation for body-brain evolution.” Artificial Life,
8(3), 2002.

[12] G. S. Hornby, H. Lipson, and J. B. Pollack, “Generative
representations for the automated design of modular physical robots.”
IEEE Transactions on Robotics and Automation, 19: 703–719, 2003.

[13] N. Kashtan and U. Alon, “Spontaneous evolution of modularity and
network motifs.” Proceedings of the National Academy of Sciences,
102: 13773-13779, 2005.

[14] C. P. Klingenberg, Developmental constraints, modules and
evolvability. In Variation: a Central Concept in Biology (Hallgrimsson
B and Hall BK, eds), p. 219-247, Elsevier, 2005.

[15] A. Kreimer, E. Borenstein, U. Gophna, E. and Ruppin, “The evolution
of modularity in bacterial metabolic networks.” Proceedings of the
National Academy of Sciences, 105: 6976-6981, 2008.

[16] A. Lindenmayer, “Mathematical models for cellular interaction in
development, parts I and II.” J. Theoretical Biol., 18: 280–299, 1968.

[17] H. Lipson, “Principles of modularity, regularity, and hierarchy for
salable systems.” Journal of Biological Physics and Chemistry, 7: 125-
128, 2007.

[18] M. Parter, N. Kashtan, and U. Alon, “Environmental variability and
modularity of bacterial metabolic networks.” BMC Evolutionary
Biology, 7:169 –195, 2007.

[19] M. Parter, N. Kashtan, and U. Alon, “Facilitated variation: How
evolution learns from past environments to generalize to new
environments.” PLoS Computational Biology, 4: e1000206, 2008.

[20] R.A. Raff, The Shape of Life: Genes, Development, and the Evolution
of Animal Form. The University of Chicago Press, 1996.

[21] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies.” Evolutionary Computation, 10(2): 99–127,
2002.

[22] K. O. Stanley and R. Miikkulainen, “A Taxonomy for Artificial
Embryogeny.” Artificial Life, 9: 93-130, 2003.

[23] K. O. Stanley, “Compositional pattern producing networks: A novel
abstraction of development.” Genetic Programming and Evolvable
Machines, 8: 131-162, 2007.

[24] K. O. Stanley, D. B. D’Ambrosio and J. Gauci, “A Hypercube-Based
Indirect Encoding for Evolving Large-Scale Neural Networks.”
Artificial Life. 15(2): 185-212, 2009.

[25] G.P. Wagner and L. Altenberg. “Complex adaptations and the
evolution of evolvability.” Evolution, 50: 967-976, 1996.

[26] G. P. Wagner, “Homologues, natural kinds and the evolution of
modularity.” American Zoologist, 36: 36-43, 1996.

[27] www.picbreeder.org

642

