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ABSTRACT 
HyperNEAT represents a class of neuroevolutionary algorithms that 
captures some of the power of natural development with a 
computationally efficient high-level abstraction of development. 
This class of algorithms is intended to provide many of the desirable 
properties produced in biological phenotypes by natural 
developmental processes, such as regularity, modularity and 
hierarchy. While it has been previously shown that HyperNEAT 
produces regular artificial neural network (ANN) phenotypes, in 
this paper we investigated the open question of whether 
HyperNEAT can produce modular ANNs. We conducted such 
research on problems where modularity should be beneficial, and 
found that HyperNEAT failed to generate modular ANNs. We then 
imposed modularity on HyperNEAT’s phenotypes and its 
performance improved, demonstrating that modularity increases 
performance on this problem. We next tested two techniques to 
encourage modularity in HyperNEAT, but did not observe an 
increase in either modularity or performance. Finally, we conducted 
tests on a simpler problem that requires modularity and found that 
HyperNEAT was able to rapidly produce modular solutions that 
solved the problem. We therefore present the first documented case 
of HyperNEAT producing a modular phenotype, but our inability to 
encourage modularity on harder problems where modularity would 
have been beneficial suggests that more work is needed to increase 
the likelihood that HyperNEAT and similar algorithms produce 
modular ANNs in response to challenging, decomposable problems.       

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning: Concept Learning, 
Connectionism and Neural Nets 

General Terms: Experimentation, Algorithms 

Keywords: HyperNEAT, NEAT, Neuroevolution, Modularity, 
Generative Encodings, Developmental Encodings, Indirect 
Encodings, Artificial Neural Networks. 

1. INTRODUCTION AND BACKGROUND 
A long-term goal in the fields of evolutionary computation, 
neuroevolution, and artificial life is to synthetically evolve 
phenotypes as complicated as those seen in the natural world. Many 

complex natural organisms exhibit modularity, regularity, and 
hierarchy [9, 14, 20, 25, 26], which increase the evolvability of 
these organisms [10, 13, 17, 19]. Modularity is the localization of 
function within an encapsulated unit, which in a network entails 
clusters of nodes with high connectivity within the cluster and low 
connectivity to nodes outside the cluster [13, 17]. Regularity refers 
to the compressibility of the information describing a structure, and 
typically involves symmetries and module repetition [17]. 
Hierarchy is the recursive composition of lower-level units [17]. 
Note that modularity does not require regularity, as is often 
assumed: the single wheel on a unicycle is a module, whereas the 
four wheels on a car are a regular repetition of a wheel module [17]. 
Without the ability to evolve phenotypes that possess these 
characteristics, it may be difficult to synthetically evolve creatures 
as complicated as those found in nature [1, 17, 20]. Modularity is 
especially important for neural networks, where it can improve both 
evolvability and learning, because modular networks can more 
easily be rearranged to produce new functions [13, 19]. These 
benefits likely explain why natural brains display a high degree of 
modularity, regularity, and hierarchy [9, 14, 20, 25, 26]. Designs 
engineered by humans also possess these properties for the same 
reasons: they make it easier to design and modify complex artifacts.   
 Modularity, regularity, and hierarchy arise in natural organisms 
as a result of a complex developmental process [1, 20]. A desire to 
produce these design principles in synthetic evolution has led many 
researchers to switch from direct encodings, where each phenotypic 
element is specified by a corresponding genomic element, to 
generative encodings that resemble natural developmental 
processes, wherein elements in a genome can influence many parts 
of a phenotype [22]. It has been shown that generative encodings 
are capable of producing modularity, regularity, and hierarchy in 
phenotypes [10], and specifically can create regularity and 
modularity in evolved neural networks [8, 11]. These generative 
encodings are based on rewriting symbols, such as Lindenmayer 
Systems [10-12, 16], or programs that are recursively called at 
vertices in a graph [8]. These representations perform well in part 
because they strongly and explicitly bias evolution towards 
phenotypes with modularity, regularity, and hierarchy [10].  
 A different type of generative encoding, called a Compositional 
Pattern Producing Network (CPPN), includes a generative process 
that abstracts how natural organisms develop complexity in a novel 
way [1, 23, 24]. CPPNs have shown promise as an evolutionary 
encoding, but they were not designed to generate modularity, 
regularity, and hierarchy as explicitly as previous generative 
encodings. It is therefore important to determine the degree to 
which CPPNs produce these properties in their phenotypes. 
 A CPPN is a high-level abstraction of biological genetic 
regulatory networks, which construct positional information that 
determines the fate of phenotypic elements in organisms. While 
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CPPNs have an artificial component that provides each phenotypic 
element with its location in an objective coordinate space, natural 
development goes through intermediate steps to arrive at a similar 
result [1]. CPPNs also abstract away growth through intermediate 
forms, and instead build the ‘adult’ phenotype directly. Despite 
these differences with natural development, CPPNs do capture a 
key factor that enables natural development to produce complexity: 
determining the fate of phenotypic elements as a function of their 
location in complex geometric coordinate frames [1].  
 Images evolved via artificial selection with the CPPN encoding 
look complex and natural [23, 27]. These images can easily be 
selected to resemble animals and human artifacts. They are often 
highly regular, including symmetries and repeated themes, with and 
without variation. These images suggest that CPPNs present a 
promising encoding that is on the path toward synthetically 
evolving complex phenotypes that resemble natural organisms. 
 CPPNs can encode neural networks via the HyperNEAT 
algorithm [24], which is described in Section 2. HyperNEAT has 
performed well on a wide range of problems, such as generating 
gaits for legged robots [3], pattern recognition [24], controlling 
simple multi-agent systems [6], and evaluating checkers boards 
[7]. Because of HyperNEAT’s potential as an effective 
neuroevolutionary algorithm, and given that HyperNEAT captures 
some of the power of biological development, it is worthwhile to 
investigate whether HyperNEAT tends to produce ANNs that 
exhibit modularity, regularity, and hierarchy. It has already been 
shown that HyperNEAT produces regular ANNs that exploit the 
regularity of problems [3, 4, 7]. This paper investigates the 
previously unstudied question of whether HyperNEAT produces 
modular ANNs. In future investigations we will address whether 
HyperNEAT can produce hierarchical ANNs. We would like to 
emphasize that in this paper we focus on modularity in evolved 
phenotypes. In future work we also plan to investigate the 
modularity, regularity, and hierarchy of HyperNEAT genotypes.  
 We tested whether HyperNEAT and a direct encoding control 
produce modular ANNs on a problem that has previously been 
shown by Kashtan and Alon [13] to generate modular ANNs with 
a different direct encoding neuroevolution algorithm. In contrast 
to those results, this problem did not encourage modularity in the 
direct encoding we tested, raising a question about the generality 
of Kashtan and Alon’s results. We also found that HyperNEAT 
performed poorly on this problem, and variants of it, and did not 
produce modular ANNs. We then tested whether HyperNEAT 
would have done better had it produced a modular ANN by 
imposing modularity on its ANN phenotypes. With this imposed 

modularity, HyperNEAT’s performance improved. These results 
show that, irrespective of how the direct encoding performed on this 
problem, HyperNEAT would have done better had it produced 
modular ANNs. We next tested two techniques to encourage 
HyperNEAT to produce modularity automatically, but did not 
observe an increase in either modularity or performance. Finally, we 
conducted tests on a simplified version of the problem and found 
that HyperNEAT quickly was able to produce modular solutions 
that solved the problem. We therefore present the first documented 
case of HyperNEAT generating a modular phenotype, but our 
inability to encourage modularity on harder problems where 
modularity would have increased performance suggests that more 
work is needed to increase the likelihood that HyperNEAT and 
similar algorithms will produce modular ANNs in response to 
challenging, decomposable problems. 

2. THE HYPERNEAT ALGORITHM AND A 
DIRECT ENCODING CONTROL 
HyperNEAT [24] is a generative encoding that evolves ANNs with 
the principles of the widely used NeuroEvolution of Augmenting 
Topologies (NEAT) algorithm, which is described below [21]. 
HyperNEAT evolves Compositional Pattern Producing Networks 
(CPPNs) [23], each of which is a mathematical function. For 
example, to evolve two-dimensional pictures [27], the inputs to a 
CPPN could be the Cartesian coordinates of each pixel on a canvas. 
The CPPN output could determine the color of each pixel (Figure 
1).   
 Evolution modifies a population of CPPNs. Each CPPN is a 
directed network, where each node is itself a mathematical function. 
The nature of the functions included can enable a variety of 
desirable properties, such as symmetry (e.g., a Gaussian function) 
and repetition (e.g., a sine function) that evolution can take 
advantage of. Nested coordinate frames can develop in the CPPN. 
For instance, a sine function early in a network can create a 
repeating theme that, when passed into the symmetric Gaussian 
function, creates a repeating, symmetric motif, as demonstrated by 
the body segments in Figure 1. This process is similar to how 
natural organisms develop [1]. For example, many organisms set up 
a repeating coordinate frame (e.g., body segments) within which are 
symmetric coordinate frames (e.g., left-right body symmetry). 
Asymmetries can be generated by referencing global coordinate 
frames, such as the x-axis. The links that connect and allow 
information to flow between nodes in a CPPN have a weight value 
that can magnify or diminish the values that pass along them. 
Mutations that change these weights may, for example, give a 
stronger influence to a symmetry-generating part of a network while 
diminishing the contribution from another part.  
 When CPPNs are evolved to generate ANNs, the algorithm is 
called HyperNEAT [24]. In this case, the inputs to the CPPN are the 
locations in three-dimensional Cartesian space of both the source 
and target nodes of each link in a target ANN, and a constant bias 
value. The function takes these seven values (x1, y1, z1, x2, y2, z2, 
bias) as inputs and produces an output value that determines the 
weight of the link between the associated source and target nodes in 
the ANN. All source and target nodes for each link in the ANN are 
iteratively passed as inputs to a CPPN to determine the weight of 
each link. Thus, a CPPN is a genome that encodes for an ANN 
phenotype [24].  
 One benefit of HyperNEAT is that it can exploit the geometry 
of a problem [5, 24]. Because the link values between nodes in the 
final ANN substrate are a function of the geometric positions of 
those nodes, if those geometric positions represent aspects of the 

 
Figure 1. CPPNs can compose math functions to generate the 
properties of symmetry and modular repetition, with and 
without variation. This figure is adapted from [23]. 
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problem that are relevant to its solution, then HyperNEAT can 
exploit such information. For example, when playing checkers, the 
concept of adjacency (on the diagonals) is important. Link values 
between adjacent squares may need to be different than link values 
between distant squares. HyperNEAT can create this sort of 
connectivity motif and repeat it across the board [7, 24]. In the case 
of quadruped locomotion, HyperNEAT exploited geometric 
regularities to generate front-back and left-right symmetries to 
produce common gaits [3, 5].  
 Variation in HyperNEAT occurs when mutations or crossover 
alter a CPPN. Mutations can add a node, which results in the 
addition of a function to a CPPN, or change its link weights. The 
functions in CPPNs in this paper are the standard set: sine, sigmoid, 
Gaussian, and linear [24]. A population of CPPN networks is 
evolved with the NEAT algorithm, which was originally designed 
to evolve ANNs. NEAT can be effectively applied to CPPNs 
because CPPN networks are similar in structure to ANNs.  
 The NEAT algorithm contains three key elements [21]. Initially, 
it starts with small genomes that encode simple networks and 
slowly complexifies them via mutations that add nodes and links to 
the network. This complexification enables the algorithm to evolve 
the network topology in addition to its link weights. Secondly, 
NEAT has a fitness sharing mechanism that preserves diversity and 
gives new innovations time to be tuned by evolution before 
competing them against more mature rivals. Finally, NEAT tracks 
historical information to perform crossover in a way that is 
effective, yet avoids the need for expensive topological analysis. A 
full explanation of NEAT can be found in Stanley & Miikkulainen 
[21].  
 A direct encoding control for HyperNEAT is FT-NEAT [2, 4, 
24]. FT-NEAT independently evolves each weight in the ANN and 
does not add hidden nodes (complexify). All other elements from 
NEAT (e.g., its crossover and diversity preservation mechanisms) 
remain the same between HyperNEAT and FT-NEAT. 
 The specific parameters for these experiments are similar to 
those of previous HyperNEAT studies [24], and can be found at 
http://devolab.msu.edu/SupportDocs/HyperNEATModularity.  
 

3. THE RETINA PROBLEM 
An informative test of whether HyperNEAT produces modular 
ANNs is to try it on a problem where modularity is known to be 
helpful, and in an environmental regime that has been shown to 
encourage modularity in a neuroevolution algorithm. Fortunately, 
previous research has been conducted on such a problem [13]. 
Kashtan and Alon demonstrated that environmental regimes that 
switch between problems with modularly varying goals (MVG) 

increase the evolution of modular phenotypic networks. MVG 
environments switch between tasks that have shared subproblems, 
but where the overall problem is solved by combining answers to 
these subproblems in different ways. On two different problems, 
Kashtan and Alon demonstrate that MVG environments produce 
highly modular networks. They also show that fixed goal (FG) 
controls that evolve to solve a single unchanging problem produce 
non-modular networks, even though the fixed goal was identical to 
one of goals from the MVG regime and thus had the same 
subproblems. The MVG treatments also solved problems in an 
order of magnitude fewer generations. Moreover, the evolved 
modules of the MVG networks solved the subproblems Kashtan and 
Alon had designed into the overall problems. Over time, solutions 
evolved that allowed the modules to be reconfigured via a single or 
small number of mutations, thereby enabling quick adaptations from 
one environment to another. In subsequent work it was shown that, 
after an environmental change, modular networks were faster at 
adapting both to previously seen and novel environments: This 
ability to quickly adapt to new environments is made easier because 
of the modularity that evolved in the networks [19]. Inspired by 
these findings, scientists tested and confirmed that similar results 
hold for natural organisms: bacteria that live in changing 
environments have more modular metabolic networks [15, 18].  
 Kashtan and Alon’s results are consistent with our expectations 
for when modularity is useful. Modularity is not necessarily helpful, 
and may be harmful, when designing a solution for a single, 
unchanging problem [17]. Modularity becomes beneficial when 
designs need to be changed quickly, because modules that solve 
subproblems can be easily reorganized [17].     
 Kashtan and Alon’s first problem involved evolving the 
connections of networks of NAND gates to solve Boolean logic 
functions. Their second problem consisted of evolving neural 
networks to perform pattern recognition. We chose their second 
problem as the test problem in this paper because HyperNEAT was 
designed to evolve neural networks. The second problem evolves a 
neural network to separately recognize patterns, or ‘objects’, on the 
left and right sides of an artificial retina (Figure 2a).  The retina 
consists of eight pixels, four per side, which were the inputs to a 
neural network with sigmoid activation functions. The left four 
pixels (the left pane) can form 16 unique patterns, half of which are 
considered Left Objects. The same is true for the right four pixels 
(the right pane). The goal is to have the single output of the network 
answer one of two Boolean logic questions: [L AND R] (true if 
there is a Left Object and a Right Object), or [L OR R] (true if there 
is a Left Object, if there is a Right Object, or both). This Retina 
Problem is challenging because the network must independently 
recognize and process low-level patterns before processing that 

 

 
Figure 2.  (a) The eight-pixel artificial retina and the patterns that constitute Left and Right Objects (adapted from [13]). (b) The 
geometric representation of the ANN nodes for the Standard Setup of the Retina Problem. (c) The geometric representation for the 
Retina Problem with Increased Geometric Coordinate Separation. The x, y, and z coordinate values for each node are passed into the 
CPPN when determining the weight of links between nodes.  
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information to determine if a higher-level pattern is present [13]. 
The networks had four feed-forward layers in addition to an input 
layer (Figure 2b-c). Layer 1, which received connections from the 
input layer, had eight input neurons. Layers 2 and 3 were hidden 
layers with four and two neurons, respectively. The output layer had 
a single neuron. 
 A human engineer immediately recognizes the modularity in the 
Retina Problem: The left and right panes can be processed 
independently to determine if an object is present. The information 
can then be combined in either a logical AND or OR. There are 
non-modular ways that may be equally good at solving either 
problem, but such non-modularity will likely make it more difficult 
to switch from a network that solves one problem to a network that 
solves the other, where difficulty is measured by the number and 
magnitude of link weight changes that need to be made.  
 We implemented this problem in a version of the HyperNEAT 
software that was used in several previous studies [2-5, 7, 24]. 
Pixels were limited to ‘on’ and ‘off’ states, represented as input 
values of 3.0 and -3.0, respectively. A bias neuron with a constant 
input of 3.0 had evolvable connections to all neurons. This feature 
serves a similar function to the evolvable thresholds in Kashtan and 
Alon’s setup [13]. Outputs were considered true if they were close 
to 1 and false if they were close to -1. Our fitness function was 
inversely proportional to the difference (the error) between the 
correct answer (1 or -1) and the network output. Specifically, the 
fitness function summed the error across all 256 possible input 
patterns and squared the result to magnify the importance of slight 
improvements.    
 The specifics of our implementation differ in certain ways from 
Kashtan and Alon’s [13]. While the description of their model is not 
complete, it appears that their inputs and outputs were binary, the 
activation functions of their neurons were step functions with only 
three possible thresholds, and their link weights consisted of a small 
set of discrete values. They evolved their networks via a standard 
direct encoding genetic algorithm with mutation and crossover. 
Their fitness was a function of the percent of correct answers 
provided across 100 randomly chosen input patterns. These 
differences, while seemingly minor, may explain the different 
qualitative results we observe from those of Kashtan and Alon [13]. 
 Kashtan and Alon evolved networks in an FG regime [L AND 
R] and an MVG regime, wherein the rewarded task switched every 
20 generations from [L AND R] to [L OR R]. They continued each 
evolutionary run until the networks output the correct answer for 
95% of the input patterns, at which point they considered the 
problem solved.  That took a median of 21,000 generations in the 
FG regime, which was nearly an order of magnitude slower than in 

the MVG regime, which took 2,800 generations. The MVG 
networks were more modular, and could adapt to an environmental 
change from one goal to the other in about 3 generations, often via a 
single mutation [13].  

 

4. RESULTS AND INTERPRETATION 
4.1 Retina Problem 
We tested the performance of HyperNEAT and FT-NEAT on the 
Retina Problem for two MVG regimes, one that alternated between 
tasks [L AND R] and [L OR R] every 20 generations (MVG-20), 
which was the rate used by Kashtan and Alon, and another that 
alternated every 100 generations (MVG-100). We also conducted 
experiments with faster and slower rates of change, but the results 
were not qualitatively different (data not shown). We tested two FG 
regimes (FG-AND and FG-OR), one for each of the tasks. For each 
experimental treatment discussed in this paper we performed 20 
runs of evolution with different random number generator seeds, 
and report the median (bold lines) and 25th and 75th percentiles (thin 
lines). To represent fitness values, we show the percent of test cases 
the best organism in the population provided the correct answer for.  
The nature of the logic functions means that always outputting 1 (in 
the OR environment) or 0 (in the AND environment) achieves a 
score of 75%. For this reason, it was rare to see the best organism in 
each generation score below 75%. Each run had a population size of 
500, which is large for HyperNEAT experiments [24]. 
 The results, presented in Figure 3a, reveal that HyperNEAT 
does not perform well on this problem. Recall that Kashtan and 
Alon’s direct encoding achieved 95% accuracy in both the FG and 
MVG regimes. FT-NEAT also performed poorly (Figure 4), and its 
results were qualitatively the same as for HyperNEAT on the FG-
AND, FG-OR, and MVG treatments. While Kashtan and Alon did 
perform evolution for many more generations, additional 
experiments up to 30,000 generations for both HyperNEAT and FT-
NEAT revealed that longer experiments do not change the 
qualitative results (data not shown). More likely, the difference in 
absolute success has to do with the differences in the neural 
networks. However, alternative experiments with different selective 
pressures produced networks that perfectly solved the FG problems, 
suggesting that the difference between our results and those of 
Kashtan and Alon is not due to any limitation in the capability of 
the networks in our experiments, but is instead related to differing 
evolvability between the configurations.  
 To better understand why HyperNEAT performed poorly, we 
ran the same experiment, with the same number of nodes and 
potential links in the ANN, but where ANNs were rewarded for 

 
Figure 3.  Performance versus evolutionary time for HyperNEAT on (a) the Retina Problem (Standard Setup), (b) the Retina Problem with 
Imposed Modularity, and (c) the Retina Problem with Increased Geometric Coordinate Separation. Plotted is the percent of the 256 trials 
that the network output the correct answer. Medians are shown as bold lines surrounded by the 75th and 25th percentiles of the data. See 
the text for explanations of what constituted a correct answer for different variants of the problems.  
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correctly identifying only Left Objects in the FG-AND problem.  
The evaluated output was taken from the left node of layer 3 (the 
layer just before the output layer). In this easier version of the 
problem, which we call Retina Left Only, HyperNEAT performed 
better, but still had difficulties (Figure 3a). These difficulties may 
have occurred because HyperNEAT created too many links in its 
substrate and therefore did not ignore the inputs from the right panel 
when identifying Left Objects. FT-NEAT, on the other hand, 
performed significantly better, with 17 of 20 treatments surpassing 
95% accuracy (p < 0.001, Mann-Whitney U rank test, Figure 4).  
 We conducted a similar experiment, but rewarded networks that 
could correctly report whether there were Left Objects and Right 
Objects, respectively, in the left and right nodes of layer 3. This is a 
particularly illuminating experiment because a network must be 
able to first solve this task before computing the logical AND or OR 
of these answers, which is required for the optimal solution to the 
FG and MVG problems. The results of this experiment, which we 
call Retina Left & Right, demonstrate that HyperNEAT did worse 
on this task than all other versions of the problem (Figure 3a). That 
HyperNEAT was unable to independently determine the presence 
or absence of Left Objects and Right Objects helps explain why it 
did not do well on the harder tasks that require further processing 
this information. Of particular interest is how much better the FG-
AND and FG-OR treatments performed than the Left & Right 
treatment. Given that HyperNEAT had difficulty independently 
identifying Left and Right Objects, we can infer that the strategy it 
employed on the FG treatments to perform better than the Left & 
Right treatment did not independently process the left and right 
panels. HyperNEAT likely took advantage of the locally optimal 
shortcut of always outputting 1s or 0s, which yields fitness values of 
75%. It could then have increased its performance up to the level it 
achieved by encoding some additional information about the 
problem, such as certain situations in which to provide the other 
output.    
 More important than the absolute difference between Kashtan & 
Alon’s results and those of HyperNEAT and FT-NEAT is the 
qualitative difference: the MVG regimes performed worse than the 
FG-AND regime, which was the opposite of what occurred in 
Kashtan and Alon’s study. Our result raises questions as to the 
generality of Kashtan and Alon’s discovery that environments with 
MVG will generate the evolution of modular networks. While there 

are differences between Kashtan and Alon’s experimental setups 
and our own, the differences are relatively small and should not 
preclude such a seemingly general result. We will investigate what 
differences in the implementations led to the differing results in 
future work.  
 Despite the differences between our results and those of 
Kashtan and Alon, the Retina Problem still serves as a diagnostic 
problem regarding the ability of an algorithm to produce 
modularity. Because the problem can be decomposed on the left and 
right sides until the final layer, networks that are more modular 
should perform better. The case is even clearer for the Retina Left & 
Right problem, because the left problem is independent of the right 
problem. For the remainder of the paper, we utilize the Retina 
Problem and variants of it to investigate HyperNEAT’s ability to 
generate modular ANNs.  
 We hypothesized that HyperNEAT may have performed poorly 
because it was not producing modular ANNs. To test whether 
HyperNEAT’s ANNs were modular, we counted the number of 
active (non-zero) links in the substrate. A modular design that 
processed the left and right panels separately before combining 
them has at most 69 of the possible 121 links in the neural network, 
or 57%. This number is small because there are no links between 
the two modules. The degree to which the percent of links in a 
network is over 57% suggests the extent to which the ANN is 
interconnected instead of modular. This link-counting measure is a 
crude estimation of modularity, but it is not accurate to simply count 
the links between the nodes on the left and right side of the 
coordinate space, because it is possible for evolution to create 
modules that are not correlated with geographic location. In future 
work we plan to quantify the modularity of these networks with a 
more sophisticated modularity metric.  
 The FG regimes had a median of 94% and 96% of links active 
(SD 6%), respectively, for the FG-AND and FG-OR treatments. 
The MVG-100 and MVG-20 regimes had medians of 94% and 95% 
(SD 3%, 7%). For many runs, 100% of the links in the champion 
ANN were active, which is the lowest level of modularity possible. 
There were no statistically significant differences in the link 
percentages between the FG and MVG treatments (p > 0.05, Mann-
Whitney U rank test). We conclude from these data that part of the 
reason HyperNEAT performed poorly on both the FG and MVG 
tasks is because it has difficulty turning off links and thus produced 
ANNs with low levels of modularity.    
 

4.2 Retina Problem with Imposed Modularity  
We next investigated whether HyperNEAT would have done better 
had it discovered the left-right modularity of the problem. To test 
this, we disabled all connections between the left and right sides of 
the network, except between layers 3 and 4. Disabling of cross-links 
ensured that information from the left and right panels was 
processed independently until it was combined in the final layer.   
 This Imposed Modularity treatment improved the performance 
of every treatment (Figure 3b, p < 0.001 comparing the fitnesses of 
the generation champions per treatment from the final generation 
with a Mann-Whitney U rank test) except for FG-OR, which 
performed worse (p < 0.05). The decline in FG-OR performance 
with imposed modularity, while slight, is counterintuitive and was 
anomalous compared to the results from the other treatments. We 
hypothesized that this odd result may have occurred only because 
evolution had not yet leveled off, which was more so the case for 
the FG-OR treatments than the others. To test whether additional 
generations would make a difference, we extended the FG-OR 
experiments to 3000 generations, at which point the Imposed 
Modularity treatment outperformed the Standard Setup (the setup 

 
Figure 4. The performance of FT-NEAT on the Standard 
Setup of the Retina Problem. Medians are shown as bold lines 
surrounded by the 75th and 25th percentiles of the data. Note 
that the y-axis scale is different than in Figure 3. 
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with results plotted in Figure 3a), although the difference was not 
statistically significant (p > 0.05, Mann-Whitney U rank test). Four 
of the extended FG-OR with Imposed Modularity runs reached at 
least 95% accuracy, further demonstrating that HyperNEAT is 
capable of solving the Retina Problem with the neural networks 
used in this paper. None of the extended FG-OR runs without 
imposed modularity reached a fitness level of greater than 90%. It is 
not obvious why Imposed Modularity is less helpful on the FG-OR 
treatment than in the other treatments: It may be that the imposed 
modularity is interfering with the exploitation of a locally optimal 
strategy that is being used in the Standard Setup. Kashtan and Alon 
did not report experimenting with FG-OR, so we cannot compare 
our results to theirs [13].  
 These results confirm that HyperNEAT would have done better 
had it generated a modular network that independently processed 
the left and right panels. Interestingly, the largest effects were in 
two non-MVG treatments. In the Retina Just Left treatment, 
HyperNEAT scored nearly perfectly with imposed modularity 
(Figure 3b). This result demonstrates that the subproblems of 
identifying Left and Right Objects are not impossible for 
HyperNEAT to solve (experiments focusing just on the right side 
were qualitatively similar, data not shown). The imposed 
modularity also substantially improved the performance of the 
Retina Left & Right treatment. Four of these treatments achieved 
scores above 95%, with one at 99%, and none scored below 86%. 
Both the Retina Left Only and Retina Left & Right problems are 
thus demonstrations of problems where modularity is beneficial, but 
where HyperNEAT did not discover such modularity on its own. 
These results emphasize that HyperNEAT would perform better on 
some FG problems if it were better able to create modular ANNs. 
This is not to say that modularity is necessary, but just that in this 
case it improves the likelihood of evolving a high quality solution. 
That four of the Left & Right treatments scored above 95% also 
offers additional evidence that HyperNEAT is capable of solving 
the Retina Problem with the neural networks used in this paper, 
because putting this information together into an AND or an OR 
function is possible in this setup.  
 That imposed modularity increased performance on the Left & 
Right problem may help us infer why imposed modularity aided the 
performance of HyperNEAT on the FG-AND problem. The 
similarity in fitness scores between the Left & Right treatment and 
the FG-AND treatment with imposed modularity may indicate that 
the FG-AND treatment with imposed modularity did implement the 
globally optimal strategy of independently processing the left and 
right panels, albeit in an imperfect way. If so, this would be an 
interesting demonstration of how modularity helped evolution 
switch from a locally optimal strategy to a higher-performing and 
possibly globally optimal strategy. Unfortunately, it is difficult to 
determine if these networks did indeed correctly process the left and 
right panels by recording the values at the associated nodes in layer 
3, because evolution can internally represent information in 
different ways. 
 

4.3 Retina with Fewer Links 
One factor that may hamper HyperNEAT’s ability to create 
modular ANNs is that it produces too many substrate links. To test 
this hypothesis, we increased the range of CPPN outputs that were 
converted to an ANN link weight of zero, which effectively 
eliminates the link. For the previous experiments, CPPN outputs in 
the range of -0.1 to 0.1 resulted in ANN links of 0. Such a range 
was built into HyperNEAT to facilitate the elimination links in its 
ANN phenotypes [24]. We call this parameter ZeroOutHalfWidth. 
As the ZeroOutHalfWidth increases, a wider range of CPPN output 

values result in ANN link weights of zero, decreasing the expected 
number of ANN links.  
 We tested ZeroOutHalfWidth values of 0.2, 0.4, 0.6, 0.8, 0.9, 
0.95 and 0.99, and compared the results to the default value of 0.1 
(Figure 5). Altering the ZeroOutHalfWidth parameter had little 
effect on fitness and did not raise fitness up to the levels observed 
with imposed modularity. All of the treatments with different 
ZeroOutHalfWidth values, but without imposed modularity, were 
significantly worse than the Imposed Modularity treatment on both 
the FG-AND and Left & Right problems (p < 0.001, Mann-Whitney 
U rank test).  
 The data reveal that higher ZeroOutHalfWidth values did 
reduce the number of ANN links in both problems (Figure 5, 
bottom row). Importantly, the number of ANN links for some of the 
different ZeroOutHalfWidth values were roughly similar to the 
number of links in the Imposed Modularity treatment. Given that 
these treatments had similar numbers of ANN links, but performed 
significantly worse than the Imposed Modularity treatment, it is 
likely that the resulting networks were not very modular. This result 
suggests that it is not merely the inability to eliminate ANN links 
that prevents HyperNEAT from discovering modular solutions to 
these problems, but that HyperNEAT also has trouble controlling 
which links to deactivate.  
 Independent of its effect on modularity or fitness, the tactic of 
reducing HyperNEAT links by increasing the ZeroOutHalfWidth 
value did have the desired effect of lowering the number of ANN 
links. This technique may be beneficial to future HyperNEAT users 
that wish to reduce the number of links in HyperNEAT-generated 
ANNs.  

4.4 Retina with Increased Geometric 
Coordinate Separation 
Another technique that could facilitate the production of phenotypic 
modules in HyperNEAT’s ANNs would be to make it easier for 
HyperNEAT’s CPPNs to discriminate between the nodes on the left 
and right sides of the ANN. This goal can be accomplished by 
changing the geometric representation of the problem, which means 
changing the Cartesian coordinates assigned to different nodes in 
the ANN. Because each CPPN computes the weights of links 
between nodes as a function of the geometric locations of those 
nodes, changing these coordinate values can bias HyperNEAT 
toward different types of phenotypes that perform significantly 
differently [5]. Moreover, the intuitions human engineers have for 
how to geometrically represent problems can also aid the 
performance of HyperNEAT [5].   
 This method is not guaranteed to work, however, because there 
are ways to create modularity that do not respect the left and right 
sides of the coordinate space, and this mechanism might bias the 
CPPN away from producing them. Nevertheless, this technique of 
spreading the nodes out in coordinate space could at least make it 
easier to adopt the left-right modularity produced by the Imposed 
Modularity treatment. Such left-right modularity is also likely to be 
the type a human engineer would apply to this problem.  
 We implemented this method by changing the coordinate values 
of the nodes from a representation that had already been designed to 
encourage left-right modularity (Figure 2b) to one that separated the 
left and right nodes in geometric space even further (Figure 2c). 
This geometric separation did not increase performance in any 
treatment compared to the Standard Setup (compare Figure 3a to 
3c). Performance actually decreased slightly for the Left & Right 
problem, and decreased noticeably for the MVG treatments (p < 
0.05, Mann-Whitney U rank test). Although the effect was not 
dramatic, this result confirms a previous finding that different 
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geometric representations of a problem can affect HyperNEAT’s 
performance [5]. Computational limits prevented us from testing 
additional geometric representations, but it is not obvious how to 
create a geometric layout that would substantially increase the left-
right bias more than the representation we tested. Based on these 
tests, we believe it is unlikely that changes to the geometric 
representation alone will make a substantial improvement in 
HyperNEAT’s performance on the Retina Problem.  
 

4.5 Simplified Retina Problem 
 The previous experiments in this paper have failed to 
demonstrate that HyperNEAT is capable of producing modular 
ANNs. Instead, its ANNs tend to be more fully connected than 
modular ANNs would be. One explanation for these results is that 
HyperNEAT is simply incapable of generating modular ANNs. To 
test this hypothesis, we conducted experiments on a simple task that 
explicitly requires modularity. In this Simplified Retina Problem, 
there are eight inputs and two outputs (Figure 6). The goal of the 
network is to output the sum of the left four inputs in the left output, 
and the sum of the right four inputs in the right output. The output 
nodes had linear activation functions instead of sigmoid functions. 
The correct wiring for this task is to eliminate all connections 
between the left inputs and the right output, and vice versa, creating 
two distinct modules. HyperNEAT was queried for all possible 
links between inputs and outputs, so it had to learn across 
evolutionary time to eliminate connections between the left and 
right sides. The fitness function rewarded networks that had smaller 
errors between the actual and outputted sum for the left and right 
sides.  
 Within 500 generations, all 20 runs had achieved near-perfect 
fitness scores (>98% of the maximum fitness). Additionally, in all 
but one run, the final champion had perfectly discovered the 
modularity of the problem by eliminating all links between the left 
and right sides. The sole run with imperfect modularity, which had 
the lowest fitness, had only one incorrect connection with a small 
weight value. The results from the Simplified Retina Problem allow 
us to reject the hypothesis that HyperNEAT is incapable of 

producing modular ANNs. This experiment provides the first 
documented case of HyperNEAT producing modular neural 
networks, albeit on a very simple problem.   
 
5. DISCUSSION & CONCLUSION  
In contrast to other generative encodings that were explicitly 
designed to produce modularity, there is no a priori reason to expect 
HyperNEAT will produce modular networks. Nevertheless, it 
would be beneficial if HyperNEAT could generate modularity when 
doing so would improve performance. In this paper we tested 
whether HyperNEAT would generate modular ANNs on a suite of 
problems where both reason and experimental evidence suggest that 
modularity is helpful. HyperNEAT performed poorly on the 
problems and did not generate modular networks. Imposing 
modularity improved HyperNEAT’s performance, indicating that 
HyperNEAT would have performed better had it been able to 
generate such modularity on its own. These results suggest that 
HyperNEAT has difficulty generating modularity on complex 
problems, although more research is necessary to determine if these 
results generalize to other problems.  
 Even with imposed modularity, HyperNEAT did not handle the 
MVG regime as effectively as Kashtan and Alon’s direct encoding, 
where the MVG treatments outperformed the FG treatments. 
However, FT-NEAT, a direct encoding control for HyperNEAT, 
also did not generate modular and high-performing networks in 
MVG environments. Our control experiments thus suggest that the 
reason the MVG environments do not qualitatively differ from the 
FG environments is likely explained by differences between the 
experiment implementations. One candidate explanation is that 
Kashtan and Alon’s experiments have a smaller search space. For 
example, the link weights and thresholds seem to be discrete values 
with only a few options, instead of the continuous values in our 
experiments. Mutations between a few discrete values may have a 
larger effect on the network output, making it more likely that single 
mutations can switch between a solution to FG-OR and FG-AND. 
Kashtan and Alon report that networks in the MVG regimes 
evolved to switch between solutions to FG-OR and FG-AND with a 
single mutation [13]. If such a switch requires multiple mutations in 
our implementation, or a single rare mutation, evolution may be 
unlikely to benefit from modular phenotypes because it cannot 
quickly rearrange modules. We will investigate this hypothesis in 
future work. However, even without the benefits of reorganization 
(e.g., in the unchanging Retina Left & Right treatment), imposed 
modularity benefitted HyperNEAT, so we cannot conclude that 
HyperNEAT had no incentive to produce modularity.  
 Despite HyperNEAT’s difficulties with generating modularity 
on variants of the Retina Problem, we showed that it is capable of 
producing modular ANNs on the Simplified Retina Problem. While 
these results demonstrate for the first time that HyperNEAT can 

 
Figure 5. The effect on performance (top row) and the 
number of ANN links (bottom row) of varying the 
ZeroOutHalfWidth parameter. Each column represents a 
treatment with a different ZeroOutHalfWidth value (columns 
1-8) or the Imposed Modularity (IM) treatment (column 9), 
which is shown for comparison. The midline shows the mean, 
the lower and upper box lines show the 25th and 75th 
percentiles, the whiskers enclose all non-outliers, and outliers 
are shown as asterisks.  

 
Figure 6. A modular ANN solution to the Simplified Retina 
Problem. Nodes (squares) are shown in their Cartesian 
locations. Links with a value of 0 are not shown. This 
champion from the end of a run has a nearly perfect fitness 
score because HyperNEAT created a modular ANN by 
deactivating links between the left and right sides.  
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generate modular phenotypes, the results from variants of the more 
complicated Retina Problem suggest that more research is needed to 
understand how to generate modular ANNs via HyperNEAT on 
complex problems.  
 Given the promise of the HyperNEAT approach to evolving 
complex ANNs, it is worthwhile to investigate the degree to which 
it produces phenotypic regularity, modularity, and hierarchy, which 
are traits that facilitate the evolution of complexity in natural 
organisms. While HyperNEAT excels at producing regular 
phenotypes [3, 4, 7], it was unknown whether it produced modular 
and hierarchical phenotypes. This paper demonstrates that 
HyperNEAT can generate modular phenotypes on a simple 
problem, but our results suggest that it may struggle to do so on 
more complex problems. In our future work we will investigate how 
to increase HyperNEAT’s ability to evolve modular phenotypes on 
complex problems. We will also study how HyperNEAT might be 
able to evolve artificial neural networks that are hierarchical.  
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