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ABSTRACT

In this contribution, a hybrid algorithm combining Differen-
tial Evolution and [POP-CMA-ES is presented and bench-
marked on the BBOB 2010 noiseless testbed. The hybrid al-
gorithm has been constructed within the Multiple Offspring
Sampling framework, which allows the seamless combination
of multiple metaheuristics in a dynamic algorithm capable
of adjusting the participation of each of the composing algo-
rithims according to their current performance. The experi-
mental results show a robust behavior of the algorithm and
a good scalability as the dimensionality increases,

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstratned optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
goritluns and Problems

General Terms
Algorithms

Keywords

Benchmarking of algorithms, Black-box optimization, Con-
tinuous optimization, [POP-CMA-ES, Differential Evolu-
tion, Multiple Offspring Sampling

1. INTRODUCTION

In this contribution, a hybrid algorithm constructed by
means of the Multiple Offspring Sampling (MOS) frame-
work has been applied to the Black Box Optimization 2010
Noiseless Function Testbed. This framework allows the com-
bination of different evolutionary models following an HRH
(High-level Relay Hybrid) approach (according to Talbi's

taxonomy, briefly reviewed in Section 2) in which the num-
ber of evaluations that each algorithm can carry out is dy-
namically adjusted. For this paper, the IPOP-CMAE-ES [1]
and the Differential Evolution (DE) algorithm [8] have been
combined within this framework in a multistart strategy and
has been benchimarked on 24 different functions, Detailed
results regarding the number of evaluations needed to reach
a target function on each dimension along with the CPU
times are also given.

2. ALGORITHM PRESENTATION

Multiple Offspring Sampling (MOS) is a framework for the
development of Dynamic Hybrid Evolutionary Algorithms
[6]. MOS provides the functional formalization necessary
to design this type of algoritluns, as well as the tools to
identify and select the best performing configuration for the
problem under study. In this context, the hybridization of
several algorithms can lead to the following two situations:

¢ A collaborative synergy emerges among the different
algorithms that improves the performance of the best
one when it is used individually.

¢ A competitive selection of the best one takes place, in
which a similar performance (often the same) is obh-
tained with a minimum overhead.

In MOS, a key term is the concept of technique, which is a
mechanism, decoupled from the main algorithm, to generate
new candidate solutions. This means that, within a MOS-
based algorithm, several reproductive mechanisms can be
used simultanecusly, and it is the main algorithin which se-
lects among the available optimization techniques the most
appropriate for the particular problem and search phase. A
mwore concrete definition for these reproductive mechanisims
follows:

Definition I. A MOS reproductive technique is a mech-
anism to create new individuals in which: (a) a particular
avolutionary algerithm model, (b) an appropriate solution
encoding, {c) specific operators (if required), and {d) neces-
sary parameters have been defined.

Furthermore, the use of mmultiple reproductive mechanisins
simultanecusly has to be controlled in some way., The MOS
framework offers two groups of functions to deal with this
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issue: Quality and Participation functions. The first group
of functions evaluate how good a set of new individuals is
from the point of view of a desirable characteristic. The sec-
ond group of functions consider the quality values computed
by the first proup and adjust the nunber of new individuals
that each reproductive technique will be allowed to generate
in the next step of the search. This way, the algorithm is
able to dynamically adjust the participation of each of the
available techniques and exploit the benefits of each of them
at different stages of the search process.

Finally, the Multiple Offspring Sampling framework al-
lows the development of both HTH (High-level Teamwork
Hybrid) and HRH (High-level Relay Hybrid) algorithms {ac-
cording to Talbi’s nomenclature [9]). In the case of the
HTH algorithins, two metaleuristics are executed in paral-
lel, working at the saine time on the resolution of the prob-
lem. Omn the other hand, in the case of the HRH algorithms,
two metaheuristics are executed in sequence, one after the
other, and chanpes of the executing algorithm are carried
out according to a given policy. As the proposed algorithm
is of the HRH type, more attention will be paid to this type
of algorithms. In terms of the MOS8 framework, the available
techniques in a MO8-based HRH hybrid algorithm are used
in sequence, one after the other, each of them reusing the
output population of the previous techimique. This approach
fits better when there are non-population-based techniques,
such as local searches, as technigques are not constrained to
produce a % of the commmnon population. If different popula-
tion sizes are used by different techniques, it is the responsi-
bility of the technique to make grow/shrink the population
in order to adjust it to its needs and to return a population
of an appropriate size to the next technique. For example,
if a population-based algoritlun is combined with a local
search, the latter could select one or more individuals from
the cutput population of the population-based algorithm,
madify them as needed and then include them in the origi-
nal population by means of a predefined elitism procedure.
In this type of algorithms, the search process is divided into
a fixed number of steps that is established at the beginning
of the execution. Each step is assigned an amount of Fitness
Evaluations (¥ Es; in Algorithm 1), which are distributed by
the Participation Function {PF). Each technique can man-
age its number of allocated FEs at each step of the algo-
rithm (FEsiJ )) in its own particular way. For example, a
population-based technique, such as Differential Evolution,
could execute several iterations of the algorithm, whereas a
Local Search could decide to spend all its assigned evalua-
tions in improving just one individual. The quality of the
new individuals of each technique will be averaged at the
end of the whole set of evaluations, as the division of the
search into generations depends on each of the techniques.
A psendocode of this approach is given in Algoritlun 1. Fur-
ther information about the MOS framework can be found in
[4].

In this contribution, an HRH Dynamic algorithm is pro-
posed. This algorithm combines the explorative/exploitative
strength of two heuristic search methods, that separately
have proven to obtain very competitive results in either
low or high dimensional problems. These algorithms are;
the [POP-CMA-ES algorithm [1], the best algorithm of the
“hpecial Session on Real- Parameter Oplimization” held at
the CEC 2005 Congress, and the DE algorithm [8] which has
demonstrated to obtain competitive results when executed

Algorithm 1 HRH MOS Alporithm
1: Create initial overall population of candidate solutions
Py
2: Uniformly distribute participation among the n used
techniques — ¥j ]'[gI = J%Q-L. Each technique produces a

subset of individuals according to its participation (l'IE,:f ))
: Evaluate initial population Py
: while nunber of steps not exceaeded do
Update Quality of T; computed as the average qual-
ity of all the individuals created by technique 75 in the
previous step
6: Update participation ratios from Quality values com-
puted in Step 5 — ¥y H§-331 = PF(@QY)
7: 1Ipdate FEs allocated for each technigue at this step:
—¥j FEs{) =7, - FEs;

g L

& for every available technique T; do
o while FEs!" not exceeded do
10 Evolve

11: end while

12: end for

13; end while

independently and when combined with other algorithms [3,
7.

For the adjustment of the participation of each technique
in the overall search process, a new Quality Function (QF)
has been proposed. This QF takes into account two desirable
characteristics in a search algorithim: the Average Fitness
Increment of the newly created individuals after a set of
allocated Fitness Evaluations and the number of times that
these improvements take place (Equation 1}.
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I‘E“’_ )1 otherurise
Q&"') = Quality of technique T} in step {
Egj ) = Average Fitness [ncrement of T; instep ¢

Pg’} = Number of Fitness improvements of 7 in step ¢
(1)
This Quality Function uses the Average Fitness [ncrement
as the effective QF only if there is consensus among both
measures, If this is not the case, the raw number of fitness
improvements is used. The logic behind this function is that,
in some functions, the use of the Average Fitness Increment
QF could be very elitist. In some particular situations, a
technigque which is not carrying out an effective search could
introduce, for some reason, a large increment in the aver-
age fitness value of the new individuals. This could be due,
for example, to a recombination of poor solutions. In such
a case, it is easy for a techmique to improve previous solu-
tions. However, it could be more adequate to carry out small
changes to good individuals in order to find the right "path”
to the global optimum rather than carrving out substantial
modifications to poor solutions. For this reason, a consen-
sus of both measures is required in order to apply the more
alitist Average Fitness Incremment QF. If this is not the case,
the number of fitness improvements is used to guarantee a
softer adjustment of participation.



The quality values computed by this QF are used by a
Dvnamic Participation Function to adjust the number of
Fitness Evaluations allocated for each technigue at each step
{Equation 2). This PF computes, at each step, a trade-oft
factor for each technique, Ai”, that represents the decrease
in participation for the 7 — th technigque at the i — th step,
for every technique except the best performing ones. These
techniques will increase their participation by the sum of all
those Aij } divided by the mumber of techniques with the
best. quality values.

Hﬁ‘i’l +7 if j & best,
Hi’_)l — Ag’} otherwise

Pden(ng}) - { (2)

[k
- Zkgbest A'é !
= |best]

best = {1 / Q¥ = Q™ Wi,m & [L,n]}

The above-menticned Ag‘” values are computed as shown
in Equation 3. These AE“’ ' factors are computed from the
relative difference between the quality of the dest and the
3 — th techniques, n being the nunber of available tech-
niques. In this equation, £ represents a reduction factor,
i.e., the ratio that is transferred from one technique to the
other(s) (usually set to a value of 0.05). Finally, a minimun
participation ratio can be established to guarantes that all
the techniques are represented through all the search. This
is done to avoid, if possible, premature convergence to un-
desired solutions caused by a technique that obtains all the
participation in the early steps of the search and quickly con-
verges to poor regions of the solution space, preventing the
other techniques to collaborate at later stages of the process,
in which they could be more beneficial.

\ Q{besi} _ Q(_j} _
AP =g B ) Wig(Ln] /5 # best (3)
2

To summarize, the presented algorithm works as follows,
All the available techniques are allocated the samme number
of FEs at the beginming of the execution. At the end of
each step, the quality of the new solutions created by each
technique is evaluated and, based on this quality, its partici-
pation ratio is adjusted accordingly. This participation ratio
is used to compute the number of FEs that each technique
will be allowed to use in the next step of the search. If a
minimum participation ratio has been established, then the
number of FEs can not go below this threshold.

Finally, a restart mechanisin, similar to the one used by
the [IPOP-CMA-ES algorithm, was also used within the pro-
posed algorithm. With this strategy, the algorithm is halted
whenever a restart stopping criteria is met, reinitializing the
population and increasing its size by a factor of two until a
maximum population size is reached. As this restart mecha-
nisin depends on some specific conditions of the IPOP-CMA-
ES technique, the restart can only take place when this tech-
nigue is being executed. However, the effect of the restart
affects to all the available techniques, as it is the overall pop-
ulation which is restarted. Moreover, the frammework easily
allows the use of additional restart mechanisms associated
to the remaining techniques or overall restart mechanisms
independent of these techniques.

3. EXPERIMENTAL PROCEDURE

The results reported for this work have been obtained
from 15 independent executions executed on the computer
configuration displayed in Table 1.

Table 1: Computer Configuration
PC Intel Xeon 8 cores 1.86Ghez CPU
Operating System Ubuntu Linux 8.04
Prog. Language CH++
Compiler GNU C++4 43.2

Reparding the parameter tuning, no thorough paramster
study has been conducted for this work. The paraneters
of the algorithm were selected based on the extensive pa-
rameter tuning that was carried out for the HRH algorithm
presented in [7] on a different testbed of functions, and for
a similar study that considers the saine benchmark of [SDA
2009 and experiments with a MOS based algorithin, submit-
ted for publication to an international journal and currently*
under review. Table 2 displays the final values that were se-
lected for this experimentation, both for the DE, the IPOP-
CMA-ES and also for the main algorithm. The parameters
of the algorithms remain the same for all the functions and,
thus, the Crafting Effort {CrE) value is zero.

Table 2: Parameters of the algorithm

Parameter Value
Initial Population Size 15
Maximum Pop. Size (after restarts) 6400
DE CR 0.5
DEF 0.5
DE Crossover Operator Exponential
DE Selection Operator Tournament 2
DE Maodel classic
Minimuin Participation Ratio 5%
Nunber of Steps 85

4. CPU TIMING EXPERIMENT

For the timing experiment the proposed algorithin was
run on fg for at least 30 seconds. This experimentation has
been conducted on the aforementioned computer configu-
ration depicted in Table 1. The results of this study are
reported in Table 3.

Table 3: CPU Timing
D 2 3 5 10 20 40
runs 182 161 143 112 82 52
seconds x 107% 35 3.9 45 45 47 5.8

The CPU-time per function evaluation grows linearly up
to O dimensions, probably due to the overhead of the hy-
bridization procedures, and then it gets stabilized for dimnen-
sions 5, 10 and 20. Finally, for 40 dimensions, the CPU-time
starts to grow again, this time due to the increased complex-
ity for this problem size.
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Table 5: ERT loss ratio (see Figure 3) compared to
the respective best result from BBOB-2009 for bud-
gets given in the first column. The last row RLug/D
gives the number of function evaluations in unsuc-
cessful runs divided by dimension. Shown are the
smallest, 10%-ile, 25%-ile, 50%-ile, 75%-ile and 90%-
ile value (smaller values are better).
f1—f24 in 5-D, maxPE/D=727186
#FEs/D | best  10% 25% med T75% 90%

2 1.3 1.6 19 29 4.2 85
10 28 33 38 5l 6.8 50

100 2.8 6.6 87 12 16 42
led 2.2 22 32 93 25 51
led 0.72 1.6 3.1 6.6 34 1.3e2
le5 1.2 1.6 3.1 56 17 2.5e2
le6 052 1.2 26 4.7 16 2.7e2

RLus/D | 1eb leb leb 1leb  2e5  3eb

f1—f24 in 20-D, maxFE/D=199139

#FEs/D | best  10%  25% med 75%  90%
2 1.0 24 94 31 40 40

10 4.8 6.9 10 51 2.0e2  2.0e2
100 5.6 6.5 88 17 24 47

led 026 1.6 32 98 44 1.4e2
led 009 11 20 39 67 2.8e2
leb 007 094 21 40 14 2.2e2
le6 0.07 094 21 44 30 1.3e2

RLus/D | 1e5 leb leh  1leb 2eh 2eh

5. RESULTS

Results from experiments according to [4] on the bench-
mark functions given in [2, 5] are presented in Figures 1, 2
and 3 and in Tables 4 and 5.

The overall results in the noiseless testbed are quite sat-
isfactory in terms of achieved precision and scalability. The
hybrid algorithm here presented is able to solve 24, 24, 24,
24, 21 and 20 functions out of 24 in 2, 3, 5, 10, 20 and 40
dimensions, respectively.

Compared to the individual use of its composing algo-
rithms, the hybrid algorithm obtains more stable results
than any of them. Furthermore, functions f3 and f4 which
are practically unsolvable for the IPOP-CMA-ES algorithm,
are now solved thanks to the hybridization with the DE al-
gorithim. On the other hand, the most difficult function for
our approach is fos, for which convergence is never reached
for dimension 20 or above. Nevertheless, this is somehow
reasonable, as this function has been designed to be decep-
tive for Evolution Strategies (and the DE is also unable to
deal with it).

Farthermore, it can also be observed that the proposed al-
gorithm achieves one of the best results in terms of ECDFs
values, compared with the algorithms presented in the pre-
vious BBOB-2009 workshop, for all the groups of functions,
as it can be seen in Figure 2.

Finally, regarding the number of Fitness Evaluations re-
quired to reach a particular precision, it can be higher than
for other algorithms, such as the IPOP-CMA-ES when it is
used individually. This is normal, as the regulatory mecha-
nisms implemented by the MOS framework need some time
to take a decission and adjust the participation of each tech-
nique accordingly.
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Figure 3; ERT loss ratio versus given budget FEvals.
The target value f; for ERT (see Figure 1) is the
smallest (best) recorded function value such that
ERT(f.) < FEvals for the presented algorithm. Shown
is FEvals divided by the respective best ERT(f;) from
BBOB-2009 for functions fi—fss in 5-D and 20-D.
Each ERT is multiplied by exp(CrE) correcting for the
parameter crafting effort. Line: geometric mean.
Box-Whisker error bar: 25-75%-ile with median
(box), 10-90%-ile (caps), and minimum and maxi-
mum ERT loss ratio (peints). The vertical line gives
the maximal number of function evaluations in this
function subset.
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Figure 1: Expected Running Time (ERT, @) to reach f..: + Af and median number of f-evaluations from
successful trials (1), for Af = 10{F1.01-2-8-5-5} (the exponent is given in the legend of f; and fu;) versus
dimension in log-log presentation. For each function and dimension, ERT{Af) equals to #FEs(Af) divided
by the number of successful trials, where a trial is successful if f.,c + Af was surpassed. The #FEs(Af) are
the total number (sum) of f-evaluations while f,;x + Af was not surpassed in the trial, from all (successful

and unsuccessful) trials, and f.,: is the optimal function value.

Crosses (x) indicate the total number of

f-evaluations, #FEs(—cc), divided by the number of trials. Numbers above ERT-symbols indicate the number
of successful trials. Y-axis annotations are decimal logarithms. The thick light line with diamonds shows the
single best results from BBOB-2009 for Af = 10~%, Additional grid lines show linear and quadratic scaling.



#1 in B5-I}, N=1%, mFE=3144 | #1 in 20-I3, N=18, mFE=10101 t2 in B-D, N=15, mFE=7080 | {2 in 20-D, N=15, mFE=1r043
Af |# ERT 1% O RBTgyec|# ERT  10% 0% RTeyec Af |# ERT 10% 0% RTepce|# ERT  10%  #0%  RBTayec
10 15 T.lel 2020 1322 7T.l=1 15 1.0e3 1.323 2.0e3 1.0=23 10 18 1.2e3d 1.T23 2,123 1.923 |15 1.Ted 1.0=2d 2021 1.7=d
1 1% 4.0el 2.322 5.522 4022 |15 2.5e3 I.4e3 2.6a3 2.5e3 1 1% 2.5e% 2.4e23 3023 2,523 |15 1.%ed 1.323 5. 5e4 1.9e3
le—1|15 8.1=2 T.222 D222 8.122 |15 2.923 2023 3,03 2.0=23 la—1 (15 3123 2.123 3123 2123 |15 2.2ed 1.0ed 36241 2. 2=d
le—3(15 1.0=23 1.1223 1623 1.022 |15 0.323 5 123 5 523 5.3=23 l=—2 (15 1123 2.923 1723 1.1=23 |15 Z2.8ed 1.92d 4121 2024
le—5[1% 2.1e% 1.83e3 2.323 2.1e3 |15 f.4ed 5.9e3 T.0a3 G4l le—5 (1% S.0e3 4.6ed 5.6e3 G023 |15 2.%ed 2,223 3204 2. %ed
le—8|15 3.0=23 2.922 3123 2022 |15 9.123 E 823 1.0e21 D123 l=—8 |15 G423 T.023 G923 G.123 |15 ZT.ded Z.82d 4121 I.d=d
fain 5-D, N=15, mFE=20423% | f3 in 20-D}, N=15, mFE=1&1160 f4in 5-D. N=15, mFE=22862 | f4 in 20-D, N=15, mFE=154657
Af |# ERT 10% 90% BRTauee |# ERT 10% 90% RTayec Af |# ERT 10% 90% BRTauce |# ERT 10% 90% RTayee
10 |15 1.1e5% &.8e22 1.6e3 1.1a5 15 2.4ed 42l 5.1ed FIETE) 1 |15 1.3e5% 8,722 1.723 1.5a3 15 4.%ed l.4ed4 6.3e4 +. %ol
1 15 2.Ted 2,123 3.1=23 2.7e3 15 D G6ed 1.0=21 1.3e0 5. Ged 1 15 D.8ed 3123 1.1=2d 5.8e3 15 O.led 0821 1.320 D.ded
le—1(1% 4.0e3 2.6e3 31e3  +.{sed 15 f.8e4 1.724 1.4s5 6. &ed le—1(1% 9,423 3423 1.fed H3a3 1% 1.0es G204 l.4eb 1.{tas
l=—3 (15 5.323 1.0=23 5. 123 5.3=3 15 T.0ed 2121 1.50 T.5ed l=—2 (15 1.1ed 1.823 1. 82l 1.11 15 1.1=25 G. 821 1.0=20 1.1=5
le—5(1% f.2e53 4.9e3 6.2e3 6.2e3 1% 5,204 2T.5e4 1.65 &.2ed le—5 (1% 1.2e3 G.3e3 2.0e4 1.2a04 15 1.225% 7T.424 1.feh 1.2a%
la—8 (15 7.723 G.123 7T.623 T.7e3 15 9.0ed 3121 1.7e0 O 5ed l=—8 (15 ld4ed T.723 2.2l 1.4l 15 1.1=5 8021 1.820 1.458
B in 5-D, N=15, mFE=465{ f5 in 20-D3, N=15, mFE=22{} f6in 5-D, N=1% mFE=7366 | fg in 20-D}, N=15%, mFE=2032{
Af | # ERT 10% 90% RTapec|# EBERT 10% 90% ETapes Af | # ERT 10% 90% RTapce|# ERT 10%  90%  RTapes
10 115 200e2 3.8el 2.9e2 2.de2 |15 2.1e23 2.0=23 2.2 2.1a% 10 |15 %.1e2 S5.0e2 1.5e3 Y.le2 [1% 7.223 5.5e3 &H.4e3 T.2el
1 15 1,222 3022 B.8=22 4.23 |15 2123 2123 2.13 1 15 1.8e3d 1.0=23 2223 1.823 |15 0.123 8223 1.1=24 9.1=23
la—1|15 L.0=2 3.2l §.322 B5.0e2 |15 2123 2123 2.13 l=—1 (15 2523 2.1=23 2923 2023 |15 l.l=d 1.lad 1,121 1.1=1
le—3%[1% 6.1e2 3.3e2 6.322 5.1e2 |1% 2.1e3 2.1e3 2.i 2.1a% le—3% (1% 3.7a3 3223 023 35723 |15 1.fed 1.5ed 1.7e4 1,604
le—5| 15 0,122 3,32k §.322 5.1e2 |15 2123 2123 2.13 l=—0 (15 1923 1023 5223 1,023 |15 2.0=d 1.921 21241 2.0=1
le—&|1% S.1e2 3.3e2 6.322 5.1e2 |1% 2.1e3 2.1e3 2.1e3 2.1e% le—8 1% f.&5ad 6203 T.3e3 A.8ed |15 2.6ed 2404 2.7e4 2. fed
Ffrin 5-D, N=15, mFE=58&8T Ffrin 20D, N=15, mFE=r3317 fa in 6-D, N=1%, mFE=751" fa in 20-D, N=18, mFE=122r0"1
Af | # ERT 10%  90% RTegec |# ERT  10% 0%  RTsyco Af |# ERT 10% 9% RTspec|# ERT 10% 0%  RTsyer
10 10 3.0e2 1.5:3 6122 3022 |10 3. 83 2.8e3 L.0=23 3.63 10 1L 8022 T.0e2 1.023 E.0el 10 222l 1.8el T.0ed 2324
1 15 1.6e3 T.6e2 3.%4e3 1.6e3 |15 2.6e4 1.5 35.9ed 2.6ed 1 15 2.9el 2.1e3 34663 2.0e3 |16 4704 3. 584 5.5ed 4.Ted
la— 1|15 2223 1l.ded 0.2e3d 20ed |10 3.7el Z.led 1.062d 3.7Ted le—1 |15 4.1=23 3.4e2 5023 4.1£2 10 5 lal 3.8l 9.8ed f.l=d
le—3]15 5.6a3 2,183 A.{ed 5623 |15 5.0ed 2,304 4.5 LY ) le—3%|15 5.1e3 +.3e3 6.4 5.123 |15 5.4ed4 +.1ed4 1.ad G.4e03
l=—0 |18 3,823 2.1ed G.0e3d 3.8e3 |10 3.0el 2.3ed 1.8=2d 3.0ed le—5|18 5723 B5.0e2 §. 823 5.7 10 Bdel 4.2e1 1.025 O.G=d
le—3| 15 $.&e3 2183 f.5e3 3.&e3 |15 3004 2404 4.83e3 1.{ed le—&|15 6.4e23 5.7e3 T.%65% 6.423 |15 5.8e4 +.4e4 1185 S.8e4
fo in B-D, N=15, mFE=17883 | #g in 20-D, N=15, mFE=210130 f14 in B-D, N=1%, mFE=13486 | f14 in 20-D, N=1%, mFE=40013
Aaf | # ERT 10%  90% RTeuec |# ERT  10%  90%  RTsyec Aaf |# ERT 10% 90% RTguee |# ERT 10%  90%  RTeuec
10 10 4. 8e2 113 1,822 4.0=22 10 1.8ed 1.1ed 2124 1.6=1 10 10 3.d4e3 2,323 2.8e3 3.1=23 10 2. 8el 2.1led 2.8ed 2. 51
1 15 1.583 7.682 l.Ael 1.3523 15 S5.6ed 2.7ed 4,224 3.6ed 1 15 3.1e3 2943 4.0e5 4.1e3 15 2.4ed4 2603 3.2ed 2. fhad
le—1]15 5.6a3 2183 8,025 3.6l 15 3.5ad 3.1ed 4.fed +.8ed le—1]15 4.3423 5.0 4.3e5 4.4l 15 5.2e4 5124 3.3e4 3204
l=—32 |10 5.223 2.1ed 1.12d 5.2=23 10 5.3ed 3.d4ed 1.924 5.3=21 l=—2| 10 4.823 3.7ed 1.8e3 1.8=23 10 3. 8el 3.3ed T.8ed 3.5e1
le—5] 15 5.7a3 3.7e3 1.5ed 5703 15 5.4e4 3.6ed 5.0e3 S.odad le—5]15 5. 523 3,483 5.1e5 S.3el 15 5.7e4 5603 3.8ed 3.Ted
l=—E8| 15 §.423 lded 1.0ed G.1=23 10 5. Ged 3.8ed T.2d 5.G=1 l=—&| 1% §.023 5.0e3 0. Ded G.0=23 10 3. 8el 3.8cd IT.0ed 3.8l
fi11 in 5-I3, N=15, mFE=5#}2 Fi11 o 20-D, N=15, mFE=3&5&6 | f1z in 5-D. N=15 mFE=1042¢ f1_2 in 200, N=15% mFE=2135163
af |# ERT 10% 90% RTsuce |# ERT 10% 90% RTepce Af |# ERT 10% 90% RTsuce ERT 10% 90%  RTauce
1 |15 2523 1.Ta3 2.9%e% 2.5e3 15 2.1e4 1.8e4 2.6ed 2. 1ed 10 |15 2.7e5% 1.8e2% 4.2e3 FECE] 15 T. 483 f0el B.0ed T.dal
1 15 3,322 3.0e3 3.723 3.3=23 15 2.%3el 2021 2.7ed 2321 1 10 1.3e3 2.223 B.8=23 4.323 15 1.Ted T7.823 2.0=2d 1.7=1
lea—1]1% 5.8e3 5.6e3 +.2e5 3.8e3 1% 2.5e4 2.3e4 T.0ed 2.5ed le—1[15 5.%a3 2,723 1.2e4 5803 15 3.7ed 862l 4.1e4 3704
le—3 |15 4.1=23 4.2e2 4. 8e3 4.1=23 15 2. 8el 2621 3.3ed 2821 l=—2 (15 7423 1.0=23 1.121 T.1=23 10 Dded 2,024 022l 5.0=1
lea—5|1% 4823 3583 525 +.8e3 15 3004 2.724 3584 3004 le—5 (15 %.{0e3 5.6ed 1.7ed el 15 5.fed 3723 fled 5.9ed
le—8 |15 5.G6=3 5.2e2 5. Ded 5.G=23 15 2.%el 3021 3.7ed 3.3=1 l=—8 (15 1.1ed G.223 1.921 1.1=1 10 G.Ted 1.0=2d G821 §.7T=1
fiz in 5-D. N=15 mFE=833% | fiz in 20+-D. N=15. mFE=154040 F14 in 5-0, N=15 mFE=6517 | f14 in 20-D, N=15, mFE=44704
Af | # ERT 107" 90% BRTepes [ # ERT 107 90%h RT:uce Af l# ERT 107"  90% BRTauee |# ERT 107 90 RT:uee
10 |15 1.4e85% 1.22% 1.7e3 1.4a% 15 6,483 5.2e5% 5.9e5 [ ETE] 1 |15 2%el 1.4e0 A.5al 2.%al 15 1.5e3 1.4e3 1.5s8% 1.523
1 10 2.3e3 2,123 2.823 2.3e3 10 1.8ed 7823 T 224 1.8=1 1 10 5 222 3.522 T.6e2 5.3e2 10 2.hel 2.3e3 2823 2023
la—1 (15 3423 2.923 3. 823 343 10 3.2ed 8023 0324 3.2=1 le—1 |18 8.1=2 5. 0el 1.1e3 8.4l 1% 32223 2,03 3.8e23 3.2=23
le—3 (15 4.6e% 4,223 5.123 4.6s83 15 5.2e4 2.5e3 8.5e3 5. 204 le—3%]|15 1.%e3 1.5e3 2.3e5 1.%4a3 15 1.1e4 1.1e4 1.254 1.1=4
l=—0 (15 B Ded 0,323 G.623 5. Ded 10 T.8ed G.3ed 1.028 T.8=21 le—5| 10 3.6=3 3.4e2 3.Ded 3.63 10 2.3el 2.2el 2ded 2321
le—3 |15 7.7e5 7.3e3 8.2e3 T.Ted 15 1.0e% A.0%ad 1.5e5 1.0e5 le—&]| 15 5.8e3 5.3e3 f.1e5 5. 8al 15 +.3e4 +.1e4 3.354 +. 34
fis in 6-Ir, N=18, mFE=75737 f15 in 20-Ir, N=1%, mFE=545957 fie in B-I, N=15, mFE=1.30=6 f]f-] in 20-Ir, N=1%, mFE=3.01&6
Aaf |# ERT 10% 99%  FRTeyee ERT 10% 0%  FRTeyes Af |# ERT 10% 0%  RTayec ERT 10% 9%  RTayec
10 15 2222 1.123 3.023 2.2e3 15 4621 3.9=21 T.Ded 1.6ed j) 15 2.0e2 B G2l 3.3=22 2022 15 2123 2.0 2 Eed 2.1=23
1 1% 1.3e4 3.1e3 I.3e4 1.5a4 1% 2.3e5 1.6e5 3.{e% 2.%e5 1 1% 1.%5e3 G Uel 2.2e3 1.3e3 15 7.3e3 523 6.0el T.hel
le—1|15 Z.1=1 1.3zl S.4ed 3. 1led 15 3.1=0 1820 4.78 3.15 la—1 (15 .93 1.223 1821 §.0=23 10 3 8=l 8723 1.2e5 J.8=21
la—3]|1% 35.3524 1.4e4 f.fed 354 1% $.2e5 1.Tef 4.&a% 3.2es le—3(1% 1.5e3 2,123 2.1e4 1.504 12 1.0ef T.2e4 3.2ef F.0es
le—5|15 T 1=l 1.821 §.7ed J.ded 15 3.3=0 1.8=20 5,028 3.38 l=—0 (15 9024 2,923 222l D021 12 1.leG 7.521 3.2e8 3.0=20
la—%|1% 35.6ed4 1.6ed T.lad 3. 5ed 15 3.4e5 1.9a5 5285 3.4es le—3 (15 9.4ed 3,723 2.5e4 +4ed 11 1.4ef &.{ded 3.5e6 3.3e5
fi7 in B-D, N=15, mFE=183781 | f17 in 20-D, N=15, mFE=197%91 f1& in B6-D, N=1%, mFE=77728 | f1& in 20-I}, N=1%, mFE=375028
Af |# ERT 10% 90%  RTsyee |# ERT 10%  90%  RTsyec Af |# ERT 10% 90% RTeuee |# ERT 10%  90%  RBTsyee
10 10 1.del 2020 3621 l.del 10 &.2e2 253 1.023 §.0=22 10 10 5022 3.2e1 8.5&2 5023 10 2.0e3 2,33 3.0e3 2.0=23
1 10 1.3e3 8022 2.723 1.323 10 8. 8ed 2,723 G6.323 8023 1 10 203 1.423 Dded 2.0=23 10 6123 5123 1.2ed G.1=3
le—1(15 4723 163 1.fed 4.7Tad 15 1.1e4 5.5%e3 4.0e5 1.1=4 lea—1]15 1.224 2.183 2.5e4 1.2=3 15 2.2e4 &.{de3 5.{ed 2,223
l=—2 (15 2.02d 2.1ed G.T2d 2.0ed 10 3.8ed 1.1ed 1.02d 3.0=1 le—3 |15 1.6=1 3.8l 1.led 1.G=d 10 80l 4.7l 1.7e8 8.0=d
le—5 (15 2.5a4 4.5e3 9.Ted 2,504 15 6.%5ed 4.Ted U.7Ted 6.8ed lea—5|15 1.8e4 5683 4.504 1,523 15 1.6e5 %.9ad 2,185 1.6e%
l=—8 (15 3.2ed4 G.8ed 1.0=25 3.2ed 10 1.0ef 0.7ed 1.128 1.0=f le—8| 15 2621 T.5e2 D.ded 2024 10 1820 1.120 2. 3e8 1.8=58
f1o in 5-0. N=1% mFE=564}753 | f19 in 2D, N=15 mFE=2 234 fzo in 50, N=15 mFE=2745134 | f20 in 2D, N=15%, mFE=%411{5
Af |# ERT 10% 90% RTauee |# ERT 10% 90%  BETauec Af ERT 10% 90%  BTauce | % ERT 10%  90%  ETauec
1 115 2.7e1 1.2el 5.2el 2.7el 1% 1.225% 3.8e2 1.Ge3 1.2a% 10 15 1.6e2 5.5el 2. 322 1.6e2 15 1.72%3 1.723 1.8a3 1.7a%
1 15 G.Gel 1.8=22 D722 G623 15 Z.led 9.023 4221 2. 1ed 1 15 2,323 1.623 31.5=23 2.3=23 15 1.0ed 2021 8.1l 4. 5ed
le—1(1% 2.6ad 2,53 1.1e5 2.6ed 11 1.0ef 3Yed4 T.5e6 2.8a5 la—1(1% 1.fed 4.123 3.0e4 1.6ed 1% 2.4e% 2T.2e5 T.5e5 2.4e5
la—3| 9 L. 8el 1.923 1.1=26 2.3=28 0 JY%e-F 8fe-j Hle-0 208 le—3 |15 T.0=d 5123 4.021 3.0=21 15 2.225 2020 3. 50 3.28
le—5 | % 5.8e% 5.3e3 1l.4e6 2.5e5 . . le—5[1% 5.6e4 2.4e4 1.0e5 S.0e4 1% 3.6e% 3.3e6 +.{eh 3.6a5
l=—8| 9 5. 828 G.123 11206 2.3=28 . - - . - le—8| 15 G.0=d Z. 82l 1.1=20 G6.0=1 15 1.2=25 3020 4,30 4. 28
Ffz21 In 5-I}, N=15, mFE=5.64a% f21 in 20-D. N=15% mFE=3&5%&f f2z in 5-D. N=15 mFE=2.73e6 f22 in 20-D, N=15, mFE=3 4&ef
Af |# ERT 10% 90%  BTauee |# ERT 10% 90%  BTauee Af |# ERT 10% 90%  RTepee | # E‘.R’T‘ 107%  90%  RTeyuer
1 |16 1.ue2 2.5al 5.8e2 1.%a2 15 Abed 2123 2.1e4 6. {hal 10 |15 2.6e2 5,70l G.3e2 2.6el 15 2.5e5 2.1e3 I.8a% 2.5e5
1 15 T.9ed 5582 3. 585 T el 11 1.7e6 2,423 5.4eh 3. 5a5 1 15 9,183 f.le2 1.Ged Yolel T d.4ef 2.1ed4 1.1a7 2.0e5
le—1 |15 4.7=0 T.2el 1. 5ed 4. 78 8 10ef 2723 9820 T.6ef la—1 (15 288 8.822 1.1l20 2.8=20 3 1627 500 3.7e7 l.l=6
le—35|1% & 325 1.3e3 3.6ef 2. 7% & 4.tef 4,223 1.1e7 T.Tah le—3%[1% G.6a% 1.5e3 2.4e6 G.feh 3 1.fie7 6.0a85 5.7eT 1.1af
le—5]|13 8.1=0 1.5e2 3. 8ed 2. 88 8 10ed G123 1.1=2T7 T.0el l=—0 (15 578 2.123 2Z.120 0 3 1627 §.220 3.8e7 l.l=6
le—&|15% fH.%e5 2.1a3 3.6ef +. 4a5 & 4.1e8 7.5e3 1.1e7 &.1a5 le—3 1% 5.5a% 2.8e3 2.4e6 5.8e5 3 1.fe7 6.585 5.85aT 1.1=%
fox in B-D, N=15, mFE=181806 | f23 in 20-D, N=15, mFE=2.116 f24 in B-I}, N=15, mFE=£83921% | f24 in 20-D, N=15, mFE=2.3226
Af | # ERT 10%  90%  RTsyce | # ERT  10%  40%  RTsycc Af | # ERT 10% 0%  RTeyce |# ERT  10%  00%  RTeyer
j) 1L &.Ted 2020 1.121 6.7 el 1L G.Ded 1.020 1.0al &.0e0 j) 15 2.8e3 1.723 G.1=23 3.0=23 & 2320 4.1al G.LeG 1.2=258
1 15 &#.5e3 2,403 1.fed #.5e5 15 %.1e3 2104 1.%9es 4+ 1ed 1 W fdred A.35e3 1.7e8 f.8ed  dfe-i 23e-i Pdesd 1.0e6
la—1 (15 5.8ed 9.5e3 1.128 L. Sed 12 G.0el 2.0=2d 2026 2.0l la—1 [ 3 3328 1.628 T.8Be2G 1.8=58 .
le—3%[15 1.2a% 1.1a4 3.1e% 1.2a%  #9e-F Sle-§ #5e-f T.185 le—3 1 1.1a7 1.Mef 2.6e7 2.5e5
l=—0 (11 1.328 1.2ed 3.228 9.0ed l=—0( 1 1.1&7 1.1=28 20T 2.0=8
le—3 |14 1.52% 1.5e4 3.2e5 W.5ed le—3| 1 1.1a7 1.0ef 2.6e7 2.6e5
Table 4: Shown are, for a given target difference to the optimal function value Af: the number of successful

trials {#); the expected running time to surpass f.p. +Af (ERT, see Figure 1); the 10%-tile and 90%-tile of the
bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was
successful, as last entry the median number of function evaluations to reach the best function value (RT,c0).
If fope + Af was never reached, figures in italics denote the best achieved Af-value of the median trial and
the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum
of number of function evaluations executed in one trial.

See Figure 1 for the names of functions,
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Figure 2: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running
time (left subplots) or versus Af (right subplots). The thick red line represents the best achieved results. Left
subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D,
to fall below fo,c +Af with Af = 10", where k is the first value in the legend. Right subplots: ECDF of the
best achieved Af divided by 10* (upper left lines in continuation of the left subplot), and best achieved Af
divided by 107% for running times of D,10D,100 D... function evaluations (from right to left cycling black-
cyan-magenta). The legends indicate the number of functions that were solved in at least one trial. FEvals
denotes number of function evaluations, 1) and DIM denote search space dimension, and Af and Df denote
the difference to the optimal function value. Light brown lines in the background show ECDFs for target
value 107% of all algorithms benchmarked during BBOB-2009,



6. CONCLUSIONS

In this contribution, a hybrid algoritlun combining Dif-
ferential Evolution and [POP-CMA-ES has been presented
and benchmarked on the BBEOB-2010 noiseless testbed. The
experimental results show a good performance on all the
groups of functions and a good scalability. The proposed
algorithm has been able to solve 24, 24, 24, 24, 21 and 20
functions out of 24 in 2, 3, 5, 10, 20 and 40 dimensions,
respectively. Furthermore, it obtains better results than its
compaosing alporithins when used individually. Additionally,
a commparative analysis with the alporithins presented at the
BBOB-200% workshop reveals that our approach obtains one
of the best results in terms of convergence. Further research
will investigate with new technigues to complement the two
used algorithms in those functions in which the hybrid algo-
rithms obtains worse results. A more thorough study on the
contrel mechanisms, specially those related to the detection
of the stagnation and the restart of the search process, could
be also useful to increase the stability in those functions in
which the convergence to the global optimum is not always
obtained.
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