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ABSTRACT
This paper presents results of the BBOB-2009 benchmark-
ing of 31 search algorithms on 24 noiseless functions in a
black-box optimization scenario in continuous domain. The
runtime of the algorithms, measured in number of function
evaluations, is investigated and a connection between a sin-
gle convergence graph and the runtime distribution is uncov-
ered. Performance is investigated for different dimensions
up to 40-D, for different target precision values, and in dif-
ferent subgroups of functions. Searching in larger dimension
and multi-modal functions appears to be more difficult. The
choice of the best algorithm also depends remarkably on the
available budget of function evaluations.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms
Algorithms, performance

Keywords
Benchmarking, black-box optimization

1. INTRODUCTION AND METHODS
This paper presents running time results from BBOB-

2009—the Black-Box Optimization Benchmarking workshop
at the Genetic and Evolutionary Computation Conference
(GECCO) 2009. 31 real-parameter optimization algorithms
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(see Appendix) have been tested in a black-box scenario on
24 noiseless benchmark functions. The experimental pro-
cedure is detailed in [16], the functions are presented in
[10, 17]. Performance results for each algorithm on each
function can be found in the original publications. Tables
with results of all algorithms on each single function are
available at http://coco.gforge.inria.fr/doku.php?id=

bbob-2009-results. In the following, we present summa-
rizing results and results on function groups.

The performance measure adopted in this paper is the
runtime (RT). For measuring a runtime, a target preci-
sion value ∆ft = ftarget − fopt is defined. In a single run, an
algorithm can either succeed or fail to reach precision ∆ft.
In case of a success, the runtime is the number of function
evaluations until ∆ft was reached. In case of a failure we
can restart the algorithm. Assuming a positive success prob-
ability in a single run (a mild assumption for a stochastic
search algorithm) the repeatedly restarted algorithm (that
terminates, if ∆ft is reached) has a success probability of
one! Its running time is the number function evaluations
until ∆ft was reached.

In this paper, simulated runtime instances of the virtu-
ally restarted algorithm are displayed. We obtain a simu-
lated runtime instance from a set of given trials (from the
BBOB-2009 data) of the algorithm on a given function: if
not a single trial in the set reached ∆ft, we set RT to in-
finity; otherwise, we draw trials uniformly at random with
replacement until a trial is found that reached the target
precision ∆ft. The runtime instance is then computed as
the sum of function evaluations from all trials drawn. For
the last trial only those function evaluations are taken into
account that were executed until ∆ft was reached.

The expected value of (the simulated) RT obeys

E(RT(∆ft)) = bE(N s
eval) +

1 − bps

bps

bE(Nu
eval) , (1)

where bE(N s
eval) denotes the average number of function eval-

uations until ∆ft is reached from those trials that reached

∆ft; bE(Nu
eval) denotes the average number of function eval-

uation in the remaining (the unsuccessful) trials; bps denotes
the fraction of trials that reached ∆ft. In fact, the true ex-
pected runtime of the (truly) restarted algorithm obeys the

same formula [2], where bE(N s
eval) and bE(Nu

eval) are the ex-
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Figure 1: Empirical runtime distributions (runtime in number of function evaluations divided by
dimension) on all functions with ∆ft ∈ ]100, 10−8] in dimension 10. The cross indicates the maximum
number of function evaluations. A decline in steepness right after the cross (e.g. for IPOP-SEP-
CMA-ES) indicates that the maximum number of function evaluations should have been chosen
larger. A steep increase right after the cross (e.g. for simple GA) indicates that a restart should
have been invoked earlier

pected number of evaluations for successful runs (terminated
when ∆ft is reached) and unsuccessful runs respectively, and
bps is the probability of success.

2. RESULTS
In general, summarizing results never tell the full story :

even if one algorithm solves more functions much faster than
others, it does not necessarily perform superior on each and
every function.

How to read the figures. Each graph in Figure 1 depicts
the empirical cumulative distribution of RT of the annotated
algorithm on all functions f1–f24, in dimension 10. For each
function, each ∆ft-value in {101.8, 101.6, 101.4, . . . , 10−8} is
used. We write ∆ft ∈ ]102, 10−8] for this case and use an
analogous notation for other cases. Here and in the follow-
ing 100 instances of RT are generated (using the method
described in Section 1) for each function-∆ft-pair. For con-
venience, we refer to a function-∆ft-pair also as a problem.

The x-value in the figure shows a given budget, that is, a
given number of function evaluations, divided by dimension.
The y-value gives the proportion of problems (function-∆ft-
pairs), where the ∆ft-value was reached within the given

budget. The graphs are monotonous by definition. Crosses
indicate the maximum number of function evaluations ob-
served for the respective algorithm. Results to the right of a
cross are only comparable between algorithms with similar
maximum number of function evaluations. The limit value
to the right indicates the ratio of solved problems.

For any given budget (x-value), the proportion of solved
problems (y-value) is a useful performance criterion. Even
more useful is the horizontal distance between graphs, re-
vealing a difference in runtime for solving the same propor-
tion of problems. The area between two graphs, up to a
given y-value, is the average runtime difference (averaged
on the log scale), arguably the most useful aggregated per-
formance measure. The best algorithm covers the largest
area under its graph.

Discussion of Figure 1. Overall, the functions are not
easy to solve. Within a budget of 100 × D function evalu-
ations, even the best algorithms can only solve 25% of the
problems (20% of the problems have a target precision of
≥ 1). The worst algorithms need 100 times larger a budget
to solve 25% of the problems and the diversity of results
becomes more pronounced for larger budgets.
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Figure 2: Empirical runtime distributions on all functions with ∆ft ∈ ]100, 10−1] (left) and ∆ft ∈ ]10−1, 10−7]
(right) in dimension 2, 10, 40 (top to bottom)

For budgets below 500D function evaluations, the best
performance achieve NEWUOA, MCS and GLOBAL. For
larger budgets, BIPOP-CMA-ES and IPOP-SEP-CMA-ES
become superior. The latter sample in each iteration step
several solutions from a multivariate Gaussian distribution
like all algorithms with a final success ratio ≥ 0.8.

2.1 Search Space Dimensionality
Figure 2 shows the empirical cumulative distribution of

RT from all functions f1–f24 in 2-D, 10-D and 40-D. The
right column uses ∆ft-values in ]10−1, 10−7].

The overall problem difficulty strongly increases with in-
creasing dimension. In 2-D, pure Monte Carlo search (the
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Figure 3: Empirical runtime distributions on 12 unimodal functions f1, f2, f5–f14 with target precision ∆ft = 1
(left) and ∆ft = 10−6 (right) in dimension 5 (above) and 20 (below)

worst algorithm) can solve about 40% of the problems (function-
∆ft-pairs) in about 106 × D function evaluations. In 10-D,
the fraction of solved problems becomes invisible for Monte
Carlo and half of all algorithms drop below 40%. The spread
between the best and the worst algorithms widens remark-
ably with increasing dimension.

• In 2-D, NELDER (Doe) is overall clearly the best al-
gorithm. Only for tiny budgets of less than 20D = 40
function evaluations, it does not solve the most prob-
lems. In 3-D, it still performs very well (not shown),
while in 5-D other algorithms take over (cp. Fig. 5).

• In larger dimension, the picture is more diverse. The
best performance depends more significantly on the
given budget, as already discussed in Fig. 1.

The left column of Fig. 2 shows data with the more easy
target precision values ∆ft ∈ ]100, 10−1]. The algorithms
perform overall better. Nevertheless, more often than not,
their individual performance coincides with the one for the
more difficult targets.

When the ∆ft-values are set to the ∆f -values reached
by the best algorithm within D function evaluations, MCS
clearly performs best in 20-D, suggesting that MCS has im-
plemented its initial procedures most carefully (not shown).

2.2 Essentially Unimodal Functions
Figure 3 shows results on 12 functions, most of which

are unimodal, or they have otherwise an attraction region
of the global optimum ≫ 50% (i.e. f8 and f9). For target
precision 10−6 the performance spread is quite pronounced.
The above-mentioned set of well-performing algorithms is
complemented by BFGS (5-D), full NEWUOA (target pre-
cision 1), Rosenbrock (5-D, target precision 10−6), NELDER
(Doe) (20-D, target precision 1), and LSfminbnd (20-D).

Figure 4 shows results on three single functions:

f6 Attractive Sector function, a highly asymmetric func-
tion, where the optimum lies at the tip of a cone. 15
algorithms show acceptable performance with a per-
formance loss of mostly less than a factor of hundred
(horizontal distance) compared to the best algorithm.

f8 Rosenbrock function, a classical test function which
has one non-global optimum with an attraction region
of smaller than 50%. 15 algorithms show acceptable
performance.

f10 Ellipsoid function, a globally quadratic, ill-conditioned
function (condition number 106) which is smoothly lo-
cally deformed. 12 algorithms show acceptable perfor-
mance.
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Figure 4: Empirical runtime distributions on single functions with ∆ft ∈ ]102, 10−8] in dimension 20. For a
single trial, the graphs would show a single convergence graph, upside down, with ∆f = 10−10y+2, where
y = −0.1(log10(∆f)− 2) ∈ [0, 1] is the annotated y-value. The lower right figure combines the three other figures

The lower right subfigure combines the convergence data
from the three functions. The first nine algorithms listed
top (down to BFGS) stay within a performance loss factor
of ten (horizontal distance) to the best algorithm up to a
y-value of 0.8.

2.3 Multimodal Functions
Figure 5 shows running times on the 12 multimodal func-

tions in dimension 5 and 20 (right column) compared to the
unimodal functions (left column). The multimodal functions
pose a considerably stronger challenge also with a stronger
decline with increasing dimension.

On multimodal functions in 20-D with larger budgets,
BIPOP-CMA-ES clearly outperforms all algorithms but IPOP-
SEP-CMA-ES, which becomes incomparable for budgets ≫
104D. AMaLGaM IDEA outperforms the remaining algo-
rithms for budgets larger than 104D.

2.4 Function Subgroups
Figure 6 shows results for six subgroups of functions. The

following algorithms perform particularly well up to their in-
dividual maximum number of function evaluations, forming
more than 10% of the left envelope of the set of graphs: on
separable functions NEWUOA, LSfminbnd and LSstep; on

moderate functions NEWUOA and IPOP-SEP-CMA-ES; on
ill-conditioned functions GLOBAL, iAMaLGaM and BIPOP-
CMA-ES; on the multi-modal structured functions IPOP-
SEP-CMA-ES and BIPOP-CMA-ES; on the multimodal weakly
structured functions GLOBAL and BIPOP-CMA-ES; on non-
smooth functions iAMaLGaM and BIPOP-CMA-ES.

The IDEA and *POP*-CMA variants show a quite similar
performance characteristics over the subgroups.

3. CONCLUSIONS
We draw some summarizing conclusions on the BBOB-

2009 data set.

Benchmarks. The benchmark function testbed is compar-
atively difficult. In dimension 20, within 105D function eval-
uations, the best algorithm can solve about 75% of the func-
tions up to a precision of 10−6, the median algorithm solves
about 30%. For the multimodal functions the rate is about
50% (median below 20%).

Empirical run time distributions (cf. Fig. 4). A sin-
gle convergence graph—plotting the best achieved f -value
against time—can be interpreted, when plotted upside down,
as a cumulative runtime distribution for the set of all f -
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Figure 5: Empirical runtime distributions on unimodal (left) and multimodal (right) functions with ∆ft ∈
]102, 10−8] in dimension 5 and 20. The step observed for LSstep in the lower right is due to the separable
functions (see Fig. 6)

values. Exploiting this interpretation, convergence data from
several trials can be combined into a single graph. Even data
from various functions can be merged into a single graph.
During this integration only the labels of single data points
to individual trials and functions are lost.

Impact on performance. A strong impact on the function
difficulty can be found from dimensionality, multi-modality,
and non-smoothness. Also different constraints for the time
budget (number of function evaluations) have a great impact
on which algorithms perform best.

Algorithms. For very low dimension, NELDER (Doe) was
superior. For lower budgets NEWUOA, MCS and GLOBAL
were the best algorithms. For difficult functions and larger
budgets, variants of CMA-ES performed best, followed by
the AMaLGaM-IDEA variants. The results can provide a
clear guideline for the choice of an algorithm or of an ensem-
ble of algorithms in an appropriate way to solve an unknown
black-box optimization problem.
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Figure 6: Empirical runtime distributions on function sub-groups with ∆ft ∈ ]100, 10−8] in dimension 20
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[30] P. Poš́ık. BBOB-benchmarking two variants of the
line-search algorithm. In Rothlauf (2009, [34]), pages
2329–2336.

[31] R. Ros. Benchmarking sep-CMA-ES on the BBOB-2009
function testbed. In Rothlauf (2009, [34]), pages 2435–2440.

[32] R. Ros. Benchmarking the BFGS algorithm on the
BBOB-2009 function testbed. In Rothlauf (2009, [34]),
pages 2409–2414.

[33] R. Ros. Benchmarking the NEWUOA on the BBOB-2009
function testbed. In Rothlauf (2009, [34]), pages 2421–2428.

[34] F. Rothlauf, editor. Genetic and Evolutionary Computation
Conference, GECCO 2009, Proceedings, Montreal, Québec,
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APPENDIX
Used Acronyms
GA/EA: Genetic Algorithm / Evolutionary Algorithm
EDA: Estimation of Distribution Algorithm
CMA: Covariance Matrix Adaptation
ES: Evolution Strategy
PSO: Particle Swarm Optimization
Algorithms
ALPS-GA: Age-Layered Population Structure running a

standard GA in 12 layers
[19,
18]

AMaLGaM IDEA: Adapted Maximum-Likelihood Gaussian
Model Iterated Density Estimation Algorithm with
no-improvement stretch, anticipated mean shift and
interlaced restarts with one large or several small
populations

[5]

iAMaLGaM IDEA: with incremental model building [5]
BayEDAcG: An EDA using Bayesian inference to learn the

parameters of the continuous Gaussian distribution
[11]

BFGS: Quasi-Newton method with MATLABs fminunc [32]
Cauchy EDA: EDA with isotropic Cauchy sampling

distribution
[26]

BIPOP-CMA-ES: CMA-ES restarted with budgets for
small and large population size

[14]

(1+1)-CMA-ES [3]
DASA: Differential Ant-Stigmergy Algorithm using

pheromones on the differential graph that represents
parameter difference

[21]

DEPSO: PSO with Differential Evolution variations [13]
DIRECT: Axis-parallel search space partitioning procedure [27]
EDA-PSO: hybrid of EDA and PSO with adapted

probability of applying one or the other
[7]

G3-PCX: Generalized Generation Gap with Parent Centric
Crossover (local-search intensive variant)

[28]

simple GA: binary coded GA [24]
GLOBAL: Sampling, clustering and local search using

BFGS or Nelder-Mead
[25]

LSfminbnd: Axis-parallel line search with MATLAB
fminbnd univariate search

[30]

LSstep: Axis-parallel line search with the univariate STEP
Select The Easiest Point, based on interval division

[30]

MA-LS-Chain: Memetic Algorithm with Local Search
Chaining using a steady-state GA and CMA-ES for local
search with a fixed local/global search ratio

[23]

MCS: Multilevel Coordinate Search like DIRECT with
additional local searches by triple search

[20]

NELDER (Han): Nelder-Mead downhill simplex restarted
using coordinate-wise projections

[15]

NELDER (Doe): Nelder-Mead downhill simplex with
restarted half-runs

[6]

NEWUOA: NEW Unconstraint Optimization Algorithm
builds a second order model using 2n + 1 points and with
minimal Frobenius norm

[33]

full NEWUOA: using (n2 + 3n + 2)/2 points [33]
(1+1)-ES: with 1/5th success rule for step-size adaptation [1]
POEMS: Prototype Optimization with Evolved

Improvement Steps using hypermutations and stochastic
local search

[22]

PSO: standard PSO with swarm size 40 and no restarts [8]
PSO Bounds: as PSO and diving the search domain based

on a concept from PBIL
[9]

Monte Carlo: uniform random sampling [4]
Rosenbrock: Local search algorithm maintaining an

orthogonal basis for the adaptation of search directions
[29]

IPOP-SEP-CMA-ES: CMA-ES restarted with Increa- sing
POPulation size, first run with SEParable CMA

[31]

VNS: Variable Neighbourhood Search combining CMA-ES,
PBX-α-EA and µCHC

[12]


